
Peridot Protocol

Introduction​ 1

High-Level Overview​ 1
Definitions, acronyms and abbreviations​ 1
Architecture constraints​ 1

Architecture Overview​ 2
C4 L1 Diagram: High-Level Architecture​ 2
C4 L2 Diagram: Zoom into the [Your App Name] System​ 2

Deliverables​ 2
Deliverable 1​ 2
Deliverable 2​ 2
Deliverable 3​ 2

Contract Overview (If you are developing Smart Contract(s))​ 2
Technology Stack​ 3

Backend​ 3
Frontend​ 3
Infrastructure​ 3
Automated Testing​ 3
Integrations​ 3

​

Introduction

High-Level Overview

Peridot Protocol is a cross-chain lending and borrowing platform designed to unify liquidity

and abstract complexity in decentralized finance (DeFi). Built using a Hub & Spoke
architecture and powered by Wormhole, Peridot allows users to deposit collateral on one

blockchain and seamlessly borrow assets on another — without requiring them to manage

multiple wallets, bridges, or gas fees.

The protocol is optimized for both experienced DeFi users and newcomers. For crypto-savvy

users, it offers seamless, composable access to multi-chain capital and advanced use cases

such as perpetual trading.

Core components of the architecture include:

●​ Hub Contract: A smart contract acting as the single source of truth for user

positions, collateral, borrowing logic, and liquidations.​

●​ Spoke Contracts: Lightweight smart contracts deployed across supported chains,

acting as user entry points and forwarding actions to the Hub via Wormhole.​

●​ Wormhole Token Bridge and Messaging Layer: Enabling secure and verifiable

asset transfers and cross-chain intent messaging between Spoke chains and the

Hub.​

●​ Oracles (Pyth, Witnet): Providing real-time price feeds for collateral valuation and

liquidation risk assessment.

Peridot Protocol is designed to provide a unified, capital-efficient, and user-friendly

experience that turns fragmented DeFi ecosystems into one seamless global lending

market.

Definitions, Acronyms and Abbreviations

Term / Acronym Definition

Peridot Protocol A cross-chain lending and borrowing platform using a Hub &

Spoke model to unify liquidity across blockchains.

DeFi (Decentralized
Finance)

Blockchain-based financial applications that operate without

centralized intermediaries.

Hub & Spoke Model An architectural design where a central contract (Hub) manages

logic and user states, and peripheral contracts (Spokes) handle

user interactions across blockchains.

Smart Contract Code deployed on a blockchain that executes automatically

under defined conditions.

Collateral Assets deposited by users to secure loans and borrowing power

within Peridot.

Liquidity The availability of assets in markets to be borrowed, repaid or

liquidated.

Oracle A service that delivers real-world data (such as asset prices) to

blockchain smart contracts.

Pyth Network A decentralized oracle network providing real-time price feeds for

financial assets.

Witnet A decentralized oracle network delivering real-world data to

smart contracts in a trust-minimized manner.

Wormhole A cross-chain messaging protocol facilitating secure

interoperability and token transfers between blockchains.

Token Bridge Mechanism allowing assets to move seamlessly across

blockchain networks.

NTT (Native Token
Transfer)

Wormhole feature enabling native token transfers across

supported chains.

Peridottroller
(Controller)

Core smart contract managing borrowing, repayments,

liquidations and market validations.

PErc20 / PEther Collateral token contracts responsible for minting, redeeming,

and accruing interest on deposited assets.

Interest Rate Model Smart contract calculating borrowing rates based on market

utilization.

Liquidation Automatic repayment process when a user's position falls below

the collateral requirement.

Gas Fees Fees paid to execute transactions and smart contract operations

on blockchains.

WalletConnect Protocol enabling connection between users' wallets and

decentralized applications.

AppKit Toolkit for building dApps with wallet integration.

The Graph Decentralized protocol for querying blockchain data and indexing

events.

Foundry Smart contract development and testing toolkit, primarily for

EVM-compatible chains.

Rust Systems programming language used to write Soroban smart

contracts.

Solidity A programming language for smart contracts on EVM-compatible

blockchains (used optionally in cross-chain Spokes).

TypeScript Typed superset of JavaScript used for frontend and backend

services.

Architecture constraints

Regulatory Constraints

●​ No KYC/AML Integration: Peridot Protocol is designed as a permissionless DeFi

platform, intentionally omitting Know Your Customer (KYC) and Anti-Money

Laundering (AML) procedures to maintain user privacy and inclusivity.​

●​ Jurisdictional Compliance: While the protocol itself does not enforce regional

restrictions, users are responsible for adhering to their local regulations regarding

cryptocurrency usage and DeFi participation.

Software Constraints

●​ Soroban Smart Contract Platform: Development is centered on Soroban, Stellar's

smart contract platform, which utilizes WebAssembly (WASM) and Rust. This choice

influences contract design, emphasizing performance, safety, and compatibility within

the Stellar network.​

●​ Stellar Network Limitations: Operating within the Stellar ecosystem imposes

certain constraints, such as transaction throughput limits and specific consensus

mechanisms, which must be considered in protocol design.​

●​ Cross-Chain Interoperability: Integration with Wormhole for cross-chain

functionality requires adherence to its protocols and standards, impacting how assets

and messages are transferred between networks.

Hardware Constraints

●​ Node Requirements: Running a full node on the Stellar network necessitates

specific hardware capabilities, including sufficient storage, memory, and processing

power to handle the ledger's data and transaction validation processes.​

●​ Scalability Considerations: As the user base grows, infrastructure must scale

accordingly to maintain performance and reliability.

Architecture Overview

C4 L1 Diagram: High-Level Architecture

C4 L2 Diagram: Zoom into the Peridot System

Deliverables

Deliverable 1: Core Lending & Borrowing (MVP / Single Chain)

User Story:

As a DeFi user, I want to supply collateral and borrow assets on Peridot in a

simple and transparent way, so that I can access capital without selling my

assets.

Acceptance Criteria:

●​ Smart contracts (Peridottroller, PErc20, Interest Model) deployed on Soroban.​

●​ Collateral supply, borrow, repay and liquidate flows operational.​

●​ Frontend MVP allowing wallet connection, viewing balances, and initiating

transactions.​

Deliverable 2: Cross-Chain Borrowing & Repayment (Hub & Spoke
Model via Wormhole)

User Story:

As a cross-chain user, I want to deposit collateral on one chain and borrow or

repay on another chain seamlessly, so that I can optimize liquidity across

ecosystems without manually bridging.

Acceptance Criteria:

●​ Spoke contracts deployed on minimum 2 chains and connected to the Hub.​

●​ Cross-chain deposits and borrow actions forwarded via Wormhole.​

●​ Successful cross-chain repay + withdraw actions routed back to the originating chain.​

●​ Automated price feeds integrated to enforce borrow limits.

Deliverable 3: Yield Generation & Capital Efficiency Features

User Story:

As a liquidity provider, I want my deposited assets to earn yield automatically

based on borrowing demand, so that I can passively grow my holdings and

benefit from market activity.

Acceptance Criteria:

●​ Dynamic Interest Rate Model implemented and optimized.​

●​ Frontend updated to show real-time APY and earned yield.​

●​ Initial liquidity incentives prepared to bootstrap markets.

Primary Contracts

Peridottroller (Controller)

The main coordinator and validator of lending & borrowing actions.

Key Methods:

●​ enterMarket() → User enables collateral​

●​ borrow() → Checks collateral, calls Oracle + Interest Rate model, then issues
borrowed asset​

●​ repayBorrow() → Repays outstanding borrow and updates state​

●​ liquidateBorrow() → Allows others to liquidate undercollateralized users​

●​ getAccountLiquidity() → Calculates user liquidity (used for borrowing and liquidation
checks)​

PErc20 / PEther (Collateral Tokens)

User deposit token representation + interest accrual

Key Methods:

●​ mint() → Mints collateral tokens when user deposits​

●​ redeem() → Redeems user’s deposited tokens​

●​ accrueInterest() → Accrues interest on borrows based on utilization​

Oracle Price Reader

Reads updated prices from Oracles (Pyth / Witnet)

Key Methods:

●​ getPrice(asset) → Gets latest price for collateral evaluation​

●​ updatePrice(asset, price) → (Only Oracle can call) Updates price feed​

Interest Rate Model

Dynamic interest rate calculation based on market utilization

Key Methods:

●​ getBorrowRate(utilization) → Returns borrow APR based on current market
utilization​

Liquidation Module (within Peridottroller)

Internal logic triggered via liquidateBorrow()

Technology Stack

Smart Contract Platform
●​ Soroban (Stellar) (Smart Contracts → Rust + Soroban SDK)
●​ Rust (Solana) (Spoke Chains & to make Stellar Tokens available on Solana via NTT)
●​ Solidity (EVM) (Spoke Chains & to make Stellar Tokens available on all EVM Chains

via NTT & Token Bridge)​

Frontend

Core Framework & Language

●​ Next.js (v15.2.4) - React framework for production
●​ React (v19.1.0) - UI library
●​ TypeScript - Type-safe JavaScript

UI Components & Styling

●​ Tailwind CSS- Utility-first CSS framework
●​ shadcn/ui - Component library built on Radix UI
●​ Lucide React- Icon library
●​ Framer Motion - Animation library
●​ Embla Carousel - Carousel component
●​ Sonner - Toast notifications

●​ Vaul - Drawer component

State Management & Data Handling

●​ React Hook Form - Form handling
●​ Zod - Schema validation
●​ Wagmi - Ethereum hooks
●​ Viem - Ethereum TypeScript interface
●​ Ethers.js - Ethereum library

Analytics & Monitoring

●​ PostHog - Product analytics and user behavior tracking
●​ Page view tracking
●​ User behavior analytics
●​ Feature flag management
●​ Custom event tracking

User Alerting via Mail / Wallet

●​ Dialect SDK

Wallet Integration

●​ Wallet Connect Multichain Appkit

Bridge Integration

●​ Wormhole TokenBridge (Cross-chain interoperability)​

Oracles
●​ Pyth Network and/or Witnet (Price feeds)​

Cross-Chain Messaging
●​ Wormhole TokenBridge (Cross-chain interoperability)
●​ Wormhole SDK
●​ Wormhole NTT CLI

Backend (Oracle Feed + Monitoring)
●​ Node.js / Typescript Script → Push Oracle price data to smart contract every 60

seconds​

Database
●​ No heavy backend data store required, but optionally:​

○​ PostgreSQL (optional) → For indexing events + user interface history

(optional) & capturing User Mails

Dev Tools
●​ Foundry →Cross-Chain Smart Contract testing framework​

●​ Rust/Cargo + Soroban CLI → Contract deployment and local testing​

●​ Docker / CI Pipelines → Test + deploy workflow

Automated Testing

●​ Smart Contracts: Stellar/Rust Tests, Foundry Tests

	Peridot Protocol
	Introduction
	High-Level Overview

	Definitions, Acronyms and Abbreviations
	Architecture constraints
	Regulatory Constraints
	Software Constraints
	Hardware Constraints

	Architecture Overview
	C4 L1 Diagram: High-Level Architecture
	C4 L2 Diagram: Zoom into the Peridot System

	Deliverables
	Deliverable 1: Core Lending & Borrowing (MVP / Single Chain)
	Deliverable 2: Cross-Chain Borrowing & Repayment (Hub & Spoke Model via Wormhole)
	Deliverable 3: Yield Generation & Capital Efficiency Features
	Primary Contracts
	Peridottroller (Controller)
	PErc20 / PEther (Collateral Tokens)
	Oracle Price Reader
	Interest Rate Model
	Liquidation Module (within Peridottroller)

	Technology Stack
	Smart Contract Platform
	Frontend
	Oracles
	Cross-Chain Messaging
	
	Backend (Oracle Feed + Monitoring)
	Database
	Dev Tools
	Automated Testing

