Peridot Protocol

Introduction

High-Level Overview

Definitions, acronyms and abbreviations

Architecture constraints
Architecture Overview

C4 L1 Diagram: High-Level Architecture

C4 L2 Diagram: Zoom into the [Your App Name] System
Deliverables

Deliverable 1

Deliverable 2

Deliverable 3
Contract Overview (If you are developing Smart Contract(s))
Technology Stack

Backend

Frontend

Infrastructure

Automated Testing

Integrations

Introduction

High-Level Overview

W W WWWWDMNDNDNDDNDNDNDNDDNDN_LAAA A

Peridot Protocol is a cross-chain lending and borrowing platform designed to unify liquidity

and abstract complexity in decentralized finance (DeFi). Built using a Hub & Spoke

architecture and powered by Wormhole, Peridot allows users to deposit collateral on one

blockchain and seamlessly borrow assets on another — without requiring them to manage

multiple wallets, bridges, or gas fees.

The protocol is optimized for both experienced DeFi users and newcomers. For crypto-savvy

users, it offers seamless, composable access to multi-chain capital and advanced use cases

such as perpetual trading.

Core components of the architecture include:



e Hub Contract: A smart contract acting as the single source of truth for user

positions, collateral, borrowing logic, and liquidations.

e Spoke Contracts: Lightweight smart contracts deployed across supported chains,

acting as user entry points and forwarding actions to the Hub via Wormhole.

e Wormhole Token Bridge and Messaging Layer: Enabling secure and verifiable
asset transfers and cross-chain intent messaging between Spoke chains and the
Hub.

e Oracles (Pyth, Witnet): Providing real-time price feeds for collateral valuation and

liquidation risk assessment.

Peridot Protocol is designed to provide a unified, capital-efficient, and user-friendly
experience that turns fragmented DeFi ecosystems into one seamless global lending

market.

Definitions, Acronyms and Abbreviations

Term / Acronym Definition

Peridot Protocol A cross-chain lending and borrowing platform using a Hub &

Spoke model to unify liquidity across blockchains.

DeFi (Decentralized Blockchain-based financial applications that operate without

Finance) centralized intermediaries.

Hub & Spoke Model An architectural design where a central contract (Hub) manages
logic and user states, and peripheral contracts (Spokes) handle

user interactions across blockchains.

Smart Contract Code deployed on a blockchain that executes automatically

under defined conditions.



Collateral

Liquidity

Oracle

Pyth Network

Witnet

Wormhole

Token Bridge

NTT (Native Token

Transfer)

Peridottroller

(Controller)

PErc20 / PEther

Interest Rate Model

Liquidation

Gas Fees

WalletConnect

Assets deposited by users to secure loans and borrowing power

within Peridot.

The availability of assets in markets to be borrowed, repaid or

liquidated.

A service that delivers real-world data (such as asset prices) to

blockchain smart contracts.

A decentralized oracle network providing real-time price feeds for

financial assets.

A decentralized oracle network delivering real-world data to

smart contracts in a trust-minimized manner.

A cross-chain messaging protocol facilitating secure

interoperability and token transfers between blockchains.

Mechanism allowing assets to move seamlessly across

blockchain networks.

Wormhole feature enabling native token transfers across

supported chains.

Core smart contract managing borrowing, repayments,

liquidations and market validations.

Collateral token contracts responsible for minting, redeeming,

and accruing interest on deposited assets.

Smart contract calculating borrowing rates based on market

utilization.

Automatic repayment process when a user's position falls below

the collateral requirement.

Fees paid to execute transactions and smart contract operations

on blockchains.

Protocol enabling connection between users' wallets and

decentralized applications.



AppKit

The Graph

Foundry

Rust

Solidity

TypeScript

Toolkit for building dApps with wallet integration.

Decentralized protocol for querying blockchain data and indexing

events.

Smart contract development and testing toolkit, primarily for

EVM-compatible chains.

Systems programming language used to write Soroban smart

contracts.

A programming language for smart contracts on EVM-compatible

blockchains (used optionally in cross-chain Spokes).

Typed superset of JavaScript used for frontend and backend

services.

Architecture constraints

Regulatory Constraints

e No KYC/AML Integration: Peridot Protocol is designed as a permissionless DeFi

platform, intentionally omitting Know Your Customer (KYC) and Anti-Money

Laundering (AML) procedures to maintain user privacy and inclusivity.

e Jurisdictional Compliance: While the protocol itself does not enforce regional

restrictions, users are responsible for adhering to their local regulations regarding

cryptocurrency usage and DeFi participation.

Software Constraints

e Soroban Smart Contract Platform: Development is centered on Soroban, Stellar's

smart contract platform, which utilizes WebAssembly (WASM) and Rust. This choice

influences contract design, emphasizing performance, safety, and compatibility within

the Stellar network.

e Stellar Network Limitations: Operating within the Stellar ecosystem imposes

certain constraints, such as transaction throughput limits and specific consensus



mechanisms, which must be considered in protocol design.

Cross-Chain Interoperability: Integration with Wormhole for cross-chain
functionality requires adherence to its protocols and standards, impacting how assets

and messages are transferred between networks.

Hardware Constraints

Node Requirements: Running a full node on the Stellar network necessitates
specific hardware capabilities, including sufficient storage, memory, and processing

power to handle the ledger's data and transaction validation processes.

Scalability Considerations: As the user base grows, infrastructure must scale

accordingly to maintain performance and reliability.



Architecture Overview

C4 L1 Diagram: High-Level Architecture

Peridot Protocol
[system]

«containers
Oracle Price Push
Script

[Node.js / Off-chain Service]

Pushes fresh price data
on-chain every 60 seconds.

Interacts via
WalletConnect /
Browser

Pushes price feeds
on-chain every 60s

«Containers
On-chain Oracle
(Witnet / Pyth)

[Smart Contract Oracle]

«Containers
Peridot Web DApp
[{Nextjs / React]

Displays user positions,

triggers interactions, Easy Prmi|des O as_set
Mode UL price feeds to smart

contracts.

Returns user
borrow/collateral
status + actions

Provides latest asset
prices (price feed)

Calls smart contract
functions

wcontainers
Peridot Smart

Contracts
[Soroban Smart Contracts]

Handles collateral,
borrowing logic,
repayments, liquidations.



C4 L2 Diagram: Zoom into the Peridot System

«external systems»

Oracles (Witnet/Pyth)

Push price feeds on-chain
periodically

Uses WalletConnect
-=> deposit, borrow,
repay actions

Pushes -> on-chain
lasset price updates

[ iyl Iondar
baindarye

Peridot Protocol
[system]

wcontai :
Peridot Web App
(Next.js +
WalletConnect)

[Frontend]

User connects wallet, views
positions, tr ars

borrow/lend a

Receives -> borrow(),

enterMarket(), repay(), withdraw() Feeds ->
borrow(), repay(), cross-chain user getPrice(asset)
withdraw() actions
«containers
Contracts (Soroban)
[On-Chain Smart Contracts]
Core logic for lending,
est and
liquidations
Calls -> Triggers ->

Manages -> mint(),
redeeml(), transfer()

getBorrowRate()
when borrow actions
are triggered

liguidateBorrow() if
collateral falls below
threshold

I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: Peridot Smart |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |



Deliverables
Deliverable 1: Core Lending & Borrowing (MVP / Single Chain)

User Story:

As a DeFi user, | want to supply collateral and borrow assets on Peridot in a
simple and transparent way, so that | can access capital without selling my

assets.
Acceptance Criteria:

e Smart contracts (Peridottroller, PErc20, Interest Model) deployed on Soroban.
e Collateral supply, borrow, repay and liquidate flows operational.

e Frontend MVP allowing wallet connection, viewing balances, and initiating

transactions.

Deliverable 2: Cross-Chain Borrowing & Repayment (Hub & Spoke

Model via Wormhole)

User Story:

As a cross-chain user, | want to deposit collateral on one chain and borrow or
repay on another chain seamlessly, so that | can optimize liquidity across

ecosystems without manually bridging.
Acceptance Criteria:

e Spoke contracts deployed on minimum 2 chains and connected to the Hub.

e Cross-chain deposits and borrow actions forwarded via Wormhole.

e Successful cross-chain repay + withdraw actions routed back to the originating chain.

e Automated price feeds integrated to enforce borrow limits.



Deliverable 3: Yield Generation & Capital Efficiency Features

User Story:

As a liquidity provider, | want my deposited assets to earn yield automatically
based on borrowing demand, so that | can passively grow my holdings and

benefit from market activity.
Acceptance Criteria:

e Dynamic Interest Rate Model implemented and optimized.

e Frontend updated to show real-time APY and earned yield.

e |nitial liquidity incentives prepared to bootstrap markets.

Primary Contracts

Peridottroller (Controller)
The main coordinator and validator of lending & borrowing actions.
Key Methods:

e enterMarket() — User enables collateral

e borrow() — Checks collateral, calls Oracle + Interest Rate model, then issues
borrowed asset

e repayBorrow() — Repays outstanding borrow and updates state
e liquidateBorrow() — Allows others to liquidate undercollateralized users

e getAccountLiquidity() — Calculates user liquidity (used for borrowing and liquidation
checks)




PErc20 / PEther (Collateral Tokens)
User deposit token representation + interest accrual
Key Methods:

e mint() — Mints collateral tokens when user deposits
e redeem() — Redeems user’s deposited tokens

e accruelnterest() — Accrues interest on borrows based on utilization

Oracle Price Reader

Reads updated prices from Oracles (Pyth / Witnet)
Key Methods:

e getPrice(asset) — Gets latest price for collateral evaluation

e updatePrice(asset, price) — (Only Oracle can call) Updates price feed

Interest Rate Model
Dynamic interest rate calculation based on market utilization
Key Methods:

e getBorrowRate(utilization) — Returns borrow APR based on current market
utilization

Liquidation Module (within Peridottroller)

Internal logic triggered via liquidateBorrow()



P
(]
Ry
A

User

Peridot Web App ‘ ‘ Peridottroller ‘ ‘ OracleReader‘ ‘ InterestRateModel ‘ ‘ PErc20 / PEther

| |
1 Submit Borrow Transaction
T >
| |
 borrow(asset, amount) !
T

r

| getPrice(asset) |
-

| _ return price |
-

B

| getBorrowRate(utilization)

| return borrow rate
<
<

i
| transfer out borrgwed amount
i i

B

|
| Transaction Success

«
|

|
User
l,_\l

Ry
A

Peridot Web App ‘ ‘ Peridottroller ‘ ‘ OracIeReader‘ ‘ InterestRateModel ‘ ‘ PErc20 / PEther

Technology Stack

Smart Contract Platform

Soroban (Stellar) (Smart Contracts — Rust + Soroban SDK)

Rust (Solana) (Spoke Chains & to make Stellar Tokens available on Solana via NTT)
Solidity (EVM) (Spoke Chains & to make Stellar Tokens available on all EVM Chains
via NTT & Token Bridge)

Frontend

Core Framework & Language

e Next.js (v15.2.4) - React framework for production
e React (v19.1.0) - Ul library
e TypeScript - Type-safe JavaScript

Ul Components & Styling

Tailwind CSS- Utility-first CSS framework
shadcn/ui - Component library built on Radix Ul
Lucide React- Icon library

Framer Motion - Animation library

Embla Carousel - Carousel component

Sonner - Toast notifications



e Vaul - Drawer component

State Management & Data Handling

React Hook Form - Form handling
Zod - Schema validation

Wagmi - Ethereum hooks

Viem - Ethereum TypeScript interface
Ethers.js - Ethereum library

Analytics & Monitoring

e PostHog - Product analytics and user behavior tracking
Page view tracking

User behavior analytics

Feature flag management

Custom event tracking

User Alerting via Mail / Wallet
e Dialect SDK

Wallet Integration
e Wallet Connect Multichain Appkit

Bridge Integration

e Wormhole TokenBridge (Cross-chain interoperability)

Oracles

e Pyth Network and/or Witnet (Price feeds)

Cross-Chain Messaging

e Wormhole TokenBridge (Cross-chain interoperability)
e Wormhole SDK
e Wormhole NTT CLI



Backend (Oracle Feed + Monitoring)

e Node.js / Typescript Script — Push Oracle price data to smart contract every 60
seconds

Database
e No heavy backend data store required, but optionally:

o PostgreSQL (optional) — For indexing events + user interface history
(optional) & capturing User Mails

Dev Tools
e Foundry —Cross-Chain Smart Contract testing framework
e Rust/Cargo + Soroban CLI — Contract deployment and local testing

e Docker / Cl Pipelines — Test + deploy workflow

Automated Testing

e Smart Contracts: Stellar/Rust Tests, Foundry Tests



	Peridot Protocol 
	Introduction 
	High-Level Overview 

	Definitions, Acronyms and Abbreviations 
	Architecture constraints 
	Regulatory Constraints 
	Software Constraints 
	Hardware Constraints 


	Architecture Overview 
	C4 L1 Diagram: High-Level Architecture 
	C4 L2 Diagram: Zoom into the Peridot System 

	Deliverables 
	Deliverable 1: Core Lending & Borrowing (MVP / Single Chain) 
	Deliverable 2: Cross-Chain Borrowing & Repayment (Hub & Spoke Model via Wormhole) 
	Deliverable 3: Yield Generation & Capital Efficiency Features 
	Primary Contracts 
	Peridottroller (Controller) 
	PErc20 / PEther (Collateral Tokens) 
	Oracle Price Reader 
	Interest Rate Model 
	Liquidation Module (within Peridottroller) 


	Technology Stack 
	Smart Contract Platform 
	Frontend 
	Oracles 
	Cross-Chain Messaging 
	 
	Backend (Oracle Feed + Monitoring) 
	Database 
	Dev Tools 
	Automated Testing 


