Key Vocabulary:

numerator - the top number in a fraction that shows how many parts we have

denominator - the bottom number in a fraction that shows how many equal parts the whole is divided into

mixed number - a whole number and a fraction combined into one "mixed number"

$$\frac{1}{4} \stackrel{\text{fraction}}{\longleftarrow}$$
whole number

Key Ideas:

Students add and subtract fractions, including mixed numbers, using area and length models. They will also solve word problems and write equations to match visual representations.

Addition Strategies

$$1\frac{3}{8} + 1\frac{7}{8}$$

- 1. Draw both fractions.
- 2. Regroup ($\frac{1}{8}$ can go with $\frac{7}{8}$ to make a whole)
- 3. Find the total. $3\frac{2}{8}$

Sample Problems:

Brielle ran $1\frac{2}{3}$ miles less than Kim. Brielle ran $2\frac{2}{3}$ miles. How far did Kim run?

$$\frac{7}{12} + \frac{11}{12} = n$$

What does *n* represent?

a.
$$\frac{18}{24}$$

b.
$$1\frac{8}{12}$$

c.
$$1\frac{6}{12}$$

d.
$$\frac{4}{12}$$

$$\frac{1}{6} + \frac{3}{6} = n$$

What does *n* represent?

a.
$$\frac{4}{12}$$

b.
$$\frac{2}{3}$$

c.
$$\frac{4}{8}$$

d.
$$\frac{5}{6}$$

Subtraction Strategies

$$3\frac{3}{8} - 1\frac{7}{8}$$

Area Model/Bar Model

1. Draw the larger amount.

2. Cross out the wholes.

3. Ungroup to cross out the eighths.

4. Determine the amount left over. $1\frac{4}{8}$

Length Model/Number Line

- 1. Begin at the starting number.
- 2. Decompose the mixed number to make easier jumps backward.
- 3. Determine your ending point.
- * The number line can also be used to find the difference between two fractions by starting at the smaller amount and jumping up to the larger amount.

Sample Problems:

There is some firewood on the pile. Mr. Mickelson adds $\frac{7}{8}$ pounds of firewood. If there is now $2\frac{1}{8}$ pounds of firewood on the pile, how much firewood was first there?

Which of the following fractions make this statement true?

a)
$$\frac{11}{8}$$
, b) $1\frac{1}{6}$, c) $1\frac{1}{4}$, d) $1\frac{1}{3}$, f) $1\frac{2}{10}$

$$8\frac{4}{12} - 3\frac{7}{12} = n$$

What is the value of n?