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Abstract 
 

With the rapid increase of car usage in the past few years, human management 
of parking areas is becoming more difficult and time consuming. This is about 
developing a good and efficient system that takes over the problem of identifying the 
driver ID, associating the driver with his vehicle and maintaining the record of vehicles 
parked accurately. Human interference is minimized at the parking area to a great 
extent such as authorizing the driver to enter the garage and the payment process are 
all done automatically. The various steps that this project comprises are face 
recognition, license plate recognition and interacting through web application. Both face 
recognition and number plate recognition use computer vision technology. 
 

The technology adopted in this research can be utilized not only for security, but 
also in other fields such as parking fee collection, automatic speed control or tracking 
stolen cars. 
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Chapter 1: Introduction 

1.1 Overview 
Computer vision is a field of artificial intelligence that trains computers to interpret and 

understand the visual world. Machines can accurately identify and locate objects then react to 
what they “see” using digital images from cameras, videos, and deep learning models. 
 

Face recognition is one of the much-studied biometrics technology and developed by 
different companies. Human face recognition procedure basically consists of two phases, 
first, face detection… The next is face recognition, which recognizes a face as individuals. 

 
Automatic license plate recognition (ALPR) is the process of retrieving license plate 

information from a captured image or video frames from a sequence of videos. 
 
Optical Character Recognition (OCR) is a field of artificial intelligence that converts 

images with text into machine processed text. OCR systems are available for several 
languages including Arabic, Arabic OCR has been developed and improved over decades, 
which ultimately causes a huge number of approaches with robust results. Using deep 
learning in Arabic OCR can result in 100% accuracy in a shorter time and less resources to 
process the image. The characteristics of Arabic text cause more errors than English text in 
OCR. 

 
A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take in 

an input image, assign learnable weights and biases to various objects in the image and be 
able to differentiate one from the other. 
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1.2 Digital access modules for ticketless parking system 
 
The ticketless parking solution has digital modules. Thanks to them, it allows access to the 
parking facility and identifies each person and its vehicle. Here are the parts of the project: 
 

1.​ Face recognition camera 
Ticketless parking systems depend on FR cameras. They recognize the face of every 
customer. It adds a layer of security to the system. 

 
2.​ ANPR camera 

Ticketless parking systems work with ANPR cameras. They recognize the LPN of every 
vehicle. For new parking customers, the cameras register new faces and LPNs and allow 
their access. For subscribed customers, the system allows immediate access, because the 
face and LPN is previously registered. 

 
3.​ Web parking app 

We provide a user-friendly interface to deal with the hidden modules. 
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1.3 Why use a smart parking system? 

1.3.1 Benefits for customers: 

●​ Better customer experience and satisfaction 

Parking customers really like the ticketless parking system as well as they do not have to deal 
with the control device to get a ticket. That way, customers have minimal interaction with the 
parking management system. It is far more convenient! 

●​ Easy entry/exit 

The ticketless parking system makes the entry/exit process easier than ever! By installing that 
type of parking solution, customers will enjoy a convenient parking experience. Automatic 
barrier opens, no more lost time in waiting for getting or scanning a paper ticket. 

●​ Fast flow-through of cars 

Thanks to the easy entry/exit process, cars move faster without the need to get or insert a 
ticket. The ticketless parking system is dynamic and works mostly with recognizing the driver 
face and the car LPN. 

  

●​ Online payments 

This innovative parking management solution offers many modern methods for online 
payments. Customers can pay for their parking stay via the application. 

ِAlso pay stations can be installed in the parking space for the traditionalists. It will allow 
payment with cash or credit/debit cards. 

In addition, parking customers can subscribe and pay for the service monthly. 

●​ Privacy 

Another benefit for parking customers is that their privacy is secure. The ticketless parking 
system does not record any personal information. The only data collected are the license 
plate numbers, times of entry and exit and the collected parking fees. That is necessary for 
the easier entry/exit ticketless process. 
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●​ No need to press any button for a ticket 

Regarding the current situation of COVID 19, we have to be extremely careful with surfaces 
touched by many people. A suitable example of such a surface is the button for getting a 
paper ticket in the supermarket parking facilities. Hundreds of people a day push it. That 
makes this surface a potential place where COVID 19 can linger on.  The ticketless parking 
system eliminates the risk of spreading the virus because you do not need to press any 
button. 

 

1.3.2 Benefits for parking operators: 

●​ Less costs and more revenue 

The ticketless parking system reduces the equipment maintenance and the need of hardware 
such as ticket terminals. That way, parking operators can save money from reduced 
investment costs. In addition, this solution eliminates the costs for paper tickets, replacing 
them with virtual ones. 

●​ Reduced on-site staff 

This innovative parking management solution is autonomous. It works without or with less 
on-site stuff. Instead, it controls the access to the parking facility via different digital modules 
and cloud-based software. Also, the ticketless parking system can work 24/7, non-stop day 
and night. 

●​ Eco-friendly 

Ticketless parking system is a great eco-friendly solution! It means no paper tickets. No spare 
parts, wastage, litter to collect. No ticket jams. 

●​ Remote parking control 

One of the best advantages of the ticketless solution for parking operators is the option for 
remote control. You can easily manage your parking facility and your parking customers’ 
booking and payments. All that from a distance only by a mobile or a computer. 
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1.4 Use cases 

 
Figure 1.1 UseCase Diagram for Smart Parking System (subscriber-customer scenario) 
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Figure 1.2  Sequence Diagram 
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Figure 1.3 Communication Diagram 
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1.5 Who does this project target? 
A project like ours mainly targets parking spaces in public places like malls, supermarkets, 
and parks. It is also suitable for big companies and hospitals to provide a convenient parking 
experience for their staff and employees. 
 
A similar project can be utilized for governmental use. With the government authority, it would 
be easier to install a barcode on all cars. The barcode will hold all the necessary information 
to identify the driver and the vehicle. Scanning a barcode would be far easier, but it doesn’t 
come up with the level of security that the face recognition module alone provides. In Chapter 
2: Face Module, we will discuss more about Biometric Security and why it is a global trend. 
 
Moreover, the information gathered via the implementation of the Smart Parking System can 
be exploited to predict future parking patterns. Collecting such statistical data is the key to 
reducing costs and increasing revenue. Not to forget that a huge benefit of the smart parking 
system as parking spaces can be fully utilized. 
 

1.6 Agile software development 
Agile is an iterative approach to project management and software development that helps 
teams deliver value to their customers faster and with fewer headaches. Agile methodology 
can fit with our team. 
 

●​ Iterative, incremental, and evolutionary 
Agile development methods can minimize the amount of up-front planning and design using 
iterations. Each iteration involves a cross-functional team working in all functions: planning, 
analysis, design, coding, unit testing, and acceptance testing. It helps to release the product 
or new features quickly. Also it minimizes overall risk and allows the product to adapt to 
changes quickly with minimal bugs. 
Agile's main principle is that the most efficient and effective method of conveying information 
to and within a development team is face-to-face conversation. 
 

●​ Efficient and face-to-face communication 
With the widespread adoption of remote working during the COVID-19 pandemic and 
changes to tooling, more studies have been conducted around co-location and distributed 
working, which shows that co-location is increasingly less relevant. 
  

●​ Very short feedback loop and adaptation cycle 
A common characteristic in agile software development is the daily stand-up meeting of about 
15 minutes. During the meeting, team members review collectively how they are progressing 
toward their goal. 
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Chapter 2: Face Recognition Module 

2.1 Biometric Security 
Face recognition is a biometric solution designed to recognize a human face without any 
physical contact required. The solution runs through algorithms that match the facial nodes of 
a person into the database. Face recognition identifies the unique features of the human face 
and then makes a comparison based on the existing database of photographs. Sensors 
detect and identify face shapes by the color of the iris, nose shape, and so on. Identifying the 
human face includes concentrating on certain unique features. 
The face recognition solution has been a major component in the field of security: 
criminal identification, surveillance, police authorities, bank services, online payment, and 
parking services. 
 
Face recognition pros: 

●​ Major security. Only your face unlocks the device. 
●​ Convenience and simplicity. 
●​ Enhance the organization of photographs.  
●​ Flexible and powerful. 

 
Face recognition cons: 

●​ Access to sensitive data. 
●​ Technology has its limits. Sometimes even the best systems can have a glitch. 
●​ data. Recording and scanning with face recognition technology can make people feel 

like they are being constantly monitored and analyzed. 
●​ Facial recognition is affected by lighting, makeup, and even sometimes by the user’s 

natural skin tone. 

2.2 Face identification and recognition 
Face recognition is a computer vision task of identifying and verifying a person based on a 
photograph of their face. A face recognition system is expected to identify faces present in 
images and videos automatically. It has two steps: 

1.​ Face detection which is the process of automatically locating faces in a photograph 
and localizing them by drawing a bounding box around their extent (e.g. is this the 
person?)  

2.​ Face identification (or recognition) which is a one-to-many mapping for a given face 
against a database of known faces (e.g. who is this person?). 
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2.3 Current solutions 
First, let’s discuss approaches we tried for face detection: 

2.3.1 Haar Cascades  

●​ Haar Cascades is a very efficient and fast technique used for face detection. 
●​ It uses Line detection features proposed by viola and jones in their paper [1] “Rapid 

Object Detection using a Boosted Cascade of Simple Features” published in 2001.  
●​ For example Haar Cascades Features can detect horizontal and vertical edges by 

detecting the light intensity change like in Figure(1) 

 
Figure 2.1 Haar Cascades identifying face features. 

 
●​ We apply those features by passing them on the whole image which is not efficient. 
●​ So we have Optimization Steps in this Algorithm: 
●​ First technique is The integral image: 

 

 
Figure 2.2 Integral image. 
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○​ Each cell in the integral image is the summation of itself and all cells to the left 

and up. 
○​ Instead of applying the features on the whole pixels of the image the integral 

image makes the calculation independent of the image size and reduces them 
to only four calculations. 

 
●​ Second Technique is the AdaBoost: 

○​ The feature set has 180000 features. 
○​ Majority of these features are not irrelevant to facial features. 
○​ AdaBoost technique is a selection technique to eliminate those irrelevant 

features. 
○​  We get 6000 features out of the 180000 after applying this technique. 

 
●​ Third Step is Cascades Of Classifiers: 

○​ Instead of applying the whole 6000 features on each window of the image. 
○​ The features are organized In cascades. 
○​ Total of 38 stages of features. 
○​ The first 5 stages contain 1=>10=>25=>25=>50 features. 
○​ If a window fails in the first cascades it will be discarded. 
○​ On average only 10 features are applied on each non-face sub-window instead 

of the whole 6000 features. 

2.3.2 (HOG) Histogram of Oriented Gradients 

In their paper, Dalal and Triggs [2] describe HOGs as a feature descriptor that has been used 
for object and pedestrian detection. A HOG relies on the property of objects within an image 
to possess the distribution of intensity gradients or edge directions. 
The distribution (histograms) of directions of gradients (oriented gradients) are used as 
features. Gradients (x and y derivatives) of an image are useful because the magnitude of 
gradients is large around edges and corners (regions of abrupt intensity changes) and 
usually, edges and corners pack in a lot more information about object shape than flat 
regions. 

 
Figure 2.3 output of HOG face pattern for a sample image. 
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The basic idea of HOG is dividing the image into small connected cells like the left, then 
computes a histogram for each cell using following formulas: 

​ ​  𝑔 = 𝑔
𝑥
2 + 𝑔

𝑦
2 θ = 𝑎𝑟𝑐𝑡𝑎𝑛

𝑔
𝑦

𝑔
𝑥

 
Figure 2.4 Center: The RGB patch and gradients represented using arrows. Right: The gradients in 

the same patch represented as numbers 
 

The next step is to bring all histograms together to form a feature vector i.e., it forms one 
histogram from all small histograms which is unique for each face. 

 

​ Figure 2.5 Histogram of features vector 
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Finally to visualize the HOG descriptor of an image, we 
plot  the 9×1 normalized histograms in the 8×8 cells. See 
image on the side. You will notice that the dominant 
direction of the histogram captures the shape of the 
person, especially around the torso and legs. 

 
Figure 2.6 the direction of 
the histogram captures the 

shape of the person. 

 
Up until now, we have discussed two approaches to classical face detection techniques. Let’s 
see CNN based face detection, then summaries why it is better to use one. 

2.3.3 MTCNN (Multi-task Cascaded Convolutional Neural Networks) 

MTCNN is one of the most popular and most accurate face detection tools today. Based on 
the paper published in 2016 by (Zhang et al.) [3], it consists of three convolutional networks.                     

 
 Figure 2.7 MTCNN Structure. 

 
●​ First, we create the image pyramid for our input image to be able to detect all faces of 

different sizes in the input. 
●​ This pyramid is the input for the following three-stage cascaded network. 
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1.​ Stage 1: P-Net 
●​ This stage is used to obtain all candidate windows of faces in the previous image 

pyramid and their bounding box regression vector. 
●​ After the bounding box regression is done we do some refinement to combine narrowly 

overlapped boxes to downsize the volume of candidates. 
 

2.​ Stage 2: R-Net 
●​ In this stage we do more optimization by reducing the number of candidate 

windows obtained from the previous stage 
●​ Three outputs of this stage: 

○​ Face classification (if there is a face or not.) 
○​ Vector of Bounding Box coordinates. 
○​ Vector of Facial Landmarks localization. 

 
 
 

3.​ Stage 3: O-Net 
●​  This Stage is similar to R-Net but it has a more specific goal which is to get the five 

facial landmarks:  

○​ Left eye. 
○​ Right eye. 
○​ Nose. 
○​ Mouth left corner. 
○​ Mouth right corner. 

 
Figure 2.8 Five Facial Landmarks. 

 

  So we have Three outputs of this whole Stage: 
1.​ Face Classification: 

-​ Binary Classification using binary cross-entropy loss. 
2.​ Bounding box regression: 

-​ Euclidean loss is used. 
3.​ Facial Landmarks: 

-​ Locating all Face landmarks and using Euclidean distance as a loss function. 
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Figure 2.9 MTCNN Face Detection. 

 
 
 

2.3.4 Comparison Of previous Face Detection Techniques  

 
The next Numbers are based on a processor intel(R) core(TM) i7-7700HQ @ 2.80 GHz. 
 

 Haar Cascades HOG MTCNN 

FPS 
(frames/second) 

25 13 20 

Accuracy 85% 89% 99%~99.50% 
Table(2.1) 

 
To summarize, Classical approaches like haar and HOG don’t work on faces at odd angles. It 
only works with straight and front faces, In addition to that the Haar technique results in a lot 
of false positive detections. It requires manually calibrating the parameters which is not 
practical at all. It is really useful if you use it to detect faces from scanned documents like 
driver’s licenses and passports but not a good fit for real-time video. When working with 
real-time video streaming, CNN-based face detection is much better. 
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2.4 Face recognition 
Second, let’s tackle Face Recognition techniques: 

 
                                Figure 2.10 Face Recognition Pipeline. 

 
KNN 

-​ K-nearest neighbor belongs to classical machine learning under supervised 
classification. 

-​ We used Haar cascades for detection and KNN for creating classifiers of each person 
in our database. 

 
Dlib 

-​ Lib is an open source C++ library implementing a variety of machine learning 
algorithms, including classification, regression, clustering, data transformation, and 
structured prediction. 
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2.4.1 FaceNet 

-​ FaceNet is a face recognition system developed in 2015 by researchers at Google in 
their paper titled FaceNet: A Unified Embedding for Face Recognition and Clustering 
[4]. 

 
-​ The FaceNet system can be used to extract high-quality features from faces, called 

face embeddings. These face embeddings were then used as the basis for training 
classifier systems on standard face recognition benchmark datasets, achieving 
then-state-of-the-art results on a range of face recognition benchmark datasets.  

-​ The focus on training a model to create embeddings directly (rather than extracting 
them from an intermediate layer of a model) was an important innovation in this work. 
The FaceNet system can be used broadly thanks to multiple third-party open source 
implementations of the model and the availability of pre-trained models. 

 
-​ The model is a deep convolutional neural network trained via a triplet loss function that 

encourages vectors for the same identity to become more similar (smaller distance), 
whereas vectors for different identities are expected to become less similar (larger 
distance).  

-​ The focus on training a model to create embeddings directly (rather than extracting 
them from an intermediate layer of a model) was an important innovation in this work. 

 

2.4.2 Comparison of previous Face Recognition techniques 

The next Numbers are based on a processor intel(R) core(TM) i7-7700HQ @ 2.80 GHz. 
 

 KNN Dlib Facenet 

FPS(Frames/second
) 

25 3 9 

Accuracy 84% 97% 99%~99.8% 
Table(2.2)  

 
-​ To summarize using KNN was very fast but with a lot of false detection which leads to 

low accuracy, Using Dlib in my case was very slow, which isn’t suitable for our 
application 

-​ So Facenet was The reasonable choice for our purpose. 
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2.4.3 Further Optimization on Face recognition 

 
-​ We faced a noticed lag while using the CCTV camera  
-​ After encoding the .h264 to mjpeg we transferred the load on the network instead of 

the application so lag was reduced significantly. 
-​ Our application also faced low frame rate while operating on cpu. 
-​ We handled that by using CUDA Toolkit, So we were operating on GPU instead of 

CPU, which increased the number of frames to reach 15 fps. 
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Chapter 3: License Plate Detector 

3.1 Introduction 
In this section of the documentation, the problem of license plate recognition will be 
thoroughly discussed. Starting from the motives behind choosing an algorithm over the other, 
theory of operation, specification of the implemented algorithm, obtained results and 
limitations.  

3.2 Algorithm choice 

The recent surge in computer vision resulted in a myriad of object detection algorithms that 
rely on machine learning. That being said, the same task was achieved in the past using 
traditional image processing, however, this section is focused only on recent technologies 
and algorithms. 
 
Any detection task should, conventionally, be divided into two sub-tasks; detection of possible 
object regions - it’s also called object localization - and classification of these regions. For 
example, RCNNs demonstrate this concept clearly. They typically use a Region Proposal 
Network (RPN) that proposes regions of interest (ROIs) that might contain objects. The 
output from the RPN is then fed to a classifier which in turn classifies the regions into classes. 
While RCNNs, and many other algorithms of the same category, give very accurate results 
with high mean Average Precision (mAP), they possess high latency in real-time detection 
due to the fact that they’re two-stage/proposal networks.  
 
As a result, a greater attention was given to a more recent algorithm called YOLO. YOLO is a 
shorthand for You Only Look Once. Compared to the approaches taken by object detection 
algorithms before YOLO, which repurpose classifiers to perform detection, YOLO proposes 
the use of an end-to-end neural network that makes predictions of bounding boxes and class 
probabilities all at once. Following a fundamentally different approach to object detection, 
YOLO achieves state-of-the-art results beating other real-time object detection algorithms by 
a large margin. In other words, YOLO only requires a single forward pass to be able to predict 
all possible bounding boxes and classify them with confidence to each class. The figure 
below shows the distinction between the two types of detectors discussed until now. 
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Figure 3.1​
Comparison between one and two stage detectors. One-stage detectors, sometimes called 

proposal-free detectors owing to the lack of a proposal network, offer better performance, hence, 
are more preferable to real-time detection.    

3.3 Theory behind YOLO 

The first version of the YOLO algorithm works by dividing the image into N grids, each having 
an equal dimensional region of SxS. Each of these N grids is responsible for the detection 
and localization of the object it contains. Correspondingly, these grids predict B bounding box 
coordinates relative to their cell coordinates, along with the object label and confidence of the 
object being present in the cell. Formally confidence is defined as Pr(Object) ∗ IoUPred./truth , 
where IoU stands for Intersection over Union. The way IoU is computed is demonstrated in 
figures 3.2(a) and 3.2(b). Typically, an IoU value above 0.5 is considered true for a class 
prediction. This process greatly lowers the computation as both detection and recognition are 
handled by cells from the image as opposed to the previously discussed algorithms. [7] 
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Figure 3.2(a) shows the formula used to compute the 
IoU value. It’s the division of the area of overlap 

between the predicted bounding box and the ground 
truth over the area of union. 

Figure 3.2(b) shows different bounding boxes 
alignments relative to the ground truth boxes yielding 

different values for IoU.  

 

 

Figure 3.3​
An image containing multiple objects is used to demonstrate how YOLOv1 works. The image to the left is the input 
image with an S x S grid drawn on top of it. Bounding boxes are refined according to IoU and class probabilities to 

obtain the final detection result shown on the right. 
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Since 2015 modifications to the original algorithm were introduced in a series of papers by 
the same authors. These modifications were necessary to tackle issues such as localization 
errors and low recall compared to competing technologies like Fast-RCNN.[8] The changes 
made from YOLOv1 until YOLOv4 resulted in substantial improvements in mAP and recall 
that even starting from YOLOv2 you could obtain better results than other state-of-the-art 
algorithms in much less time. The figure below shows the effect of applying batch 
normalization after each convolutional layer in YOLOv1, using anchor boxes for object 
detection aided with k-means clustering for optimal prior sizes and the utilization of 
Darknet-19. 

Despite the huge improvement in YOLOv2 we decided to use YOLOv4 as our license plate 
detector due to further improvements in AP and FPS.  

 

 

Figure 3.4 shows mAP versus FPS for various 
object detection methods. It also shows the quick 

improvement of YOLOv2 compared to its first 
version 
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3.4 Training the model 

The different aspect ratio and details between foreign and Egyptian license plates affected 
the detection of local license plates using pre-trained models. When testing these models, the 
accuracy was below 50% rendering them useless to our use case. 

Due to privacy concerns, it was very hard to find online datasets that match the pattern of 
local license plates to train the model on. In cooperation with Logitime Egypt, we were able to 
obtain 1000 images from installed parking systems in Egypt and 300 scrapped images from 
the internet. The size of this dataset is very tiny compared to other datasets used in computer 
vision literature, however, the detector shows impressive results on the testset and novel 
samples captured by the group individuals. Figures 3.5(a) and 3.5(b) show random samples 
from the dataset used to train the model. 

 

 

 

Figure 3.5(a)​
A random sample from the images obtained 

from installed parking systems in cooperation 
with Logitime Egypt 

Figure 3.5(b)​
A random sample from scrapped images 

 
Using Darknet - we used the official implementation by Alexey Bochkovskiy - we successfully 
completed the training on YOLOv4. The model accepts input samples of size 416 x 416 as 
recommended by paper authors. Darknet weights were then converted to tensorflow format 
and the model ran with a frame rate of 5 FPS on CPU. Frame rate was improved after using 
CUDA on NVIDIA’s GTX-1050 Ti to approximately 15 FPS. Deploying the model on the same 
machine running the face module and both the front-end and backend servers was not 
possible due to insufficient resources. Fortunately, the authors offered a lightweight version of 
YOLOv4 called YOLOv4-tiny. YOLOv4-tiny utilizes the same technology of YOLOv4 but with 
fewer learnable parameters, less inference time and inference memory usage. 
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Figure 3.5 
Performance metrics show that YOLOv4 tiny is roughly 8X as fast at 

inference time as YOLOv4 and roughly 2/3 as performant on MS COCO 
(a very hard dataset). On small custom detection tasks that are more 

tractable, you will see even less of a performance degradation. On the 
custom object detection model of ours, we see almost no degradation of 

performance as a result of decrease in model size. This image was 
published by Alexey Bochkovskiy on github. 

Thanks to YOLO’s augmentation methods, the model manages to generalize to novel input 
samples in almost every case. Although, one out of five frames can go undetected in some 
lighting conditions without majorly affecting the function of the detector. 

 

Figure 3.6 shows the mAP and model loss versus iteration count. 
Signs of quick convergence as well as overfitting are present in the 
graph. However, the detector behaves as expected most of the time  
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 3.5 Assumptions for optimal OCR results 

The distance between the camera and the front side of the car is one of the detrimental 
factors that affect the ability of the next component in the pipeline, a symbols extractors 
followed by a classifier, to function properly. As previously mentioned, the input video frame 
should be of dimensions 416 x 416 and in order to extract any usable information from the 
frame at hand the area of the license plate should be at least 2% of the frame area, i.e. of 
dimensions 68 x 34 taking into consideration that Egyptian license plates have an aspect ratio 
of 2:1.  

This condition is met at a certain distance from the car front. Keeping a single device as the 
only source for sample videos captured at a resolution of 1280 x 720.1 It’s found that a 
distance of 1 meter is optimal for the rest of the pipeline to function as intended. It’s also 
worth mentioning that a camera system has to be directly facing the car front, images that 
had skewed or rotated license plates were successfully detected by the detector but are not 
expected nor handled by the following components. This limitation stems from the adopted 
technique to extract symbols from images and the next section offers more in depth 
explanation. 

                                                    

Figure 3.7(a)​
Detected license plate with the accepted 

conditions of dimensions and orientation. Note 
that slight tiltation do not really affect the 

symbols extraction stage 

Figure 3.7(b) 
Detected license plate that doesn’t meet the 

conditions stated above. Despite being detected 
and classified correctly it’s not possible to go 

forward with it 
 

 
 

  

1 Each frame of the input video is cropped and resized to reach the target input size  
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Chapter 4: Optical Character Recognition 

4.1 OCR Pipeline 
OCR systems transform a two-dimensional image of text, that could contain machine printed 
or handwritten text from its image representation into machine-readable text. OCR as a 
process generally consists of several sub-processes to perform as accurately as possible. 
The subprocesses are: 

●​ Preprocessing of the Image 
●​ Text detection 
●​ Character Segmentation 
●​ Character Recognition 
●​ Post Processing 

 
Figure 4.1 OCR pipeline 

 
The sub-processes in the list above of course can differ, but these are roughly steps needed 
to approach automatic character recognition. OCR faces many challenges like  complex 
backgrounds, diverse fonts and handwritten texts.  
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4.2 Image preprocessing 
Before recognizing the individual characters, the plate obtained from the detector has to go 
through multiple preprocessing steps. 
 
First, we discuss the objective of image preprocessing: 
 

1.​ Eliminate different lightning effects: 
An image captured in daylight will have different brightness and contrast levels than one 
taken at night in artificial lights. Though the installed hardware has a substantial role in 
ensuring as good lighting conditions as possible for the system, we also need to make sure 
the software module can deal with different lighting conditions. 
 

2.​ Crop the exact characters region: 
Each plate has a color code indicating the vehicle type. We are not interested in this part for 
now, but it can be a part of more future work. We have tried two approaches to crop the 
character region only. 

a.​ Canny edge detection approach: 
This approach gave 53% accuracy. It was greatly affected by the noise. Any 
sharp noise outside the plate (in the car frame) is detected as an edge. 
 

 
Figure 4.2(a) Original image 

 
Figure 4.2(b) Edge detection by canny. 

 
Figure 4.2(c) Output of edge detection. 

 
Figure 4.2(d) Characters region. 

 
Figure(4.2) Edge detection by canny. 
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Figure 4.3(a) Original image. 

 
Figure 4.3(b) How noise affects edge detection. 

 
Figure 4.3(c) Output of edge detection under 

noise. 

 
Figure 4.3(d) Characters region under noise. 

Figure(4.3) How noise affects edge detection. 
 
 

b.​ Find contours approach: 
This approach gave more accurate results. We tested this approach on 300 
frames. We need to mention that it didn’t work on all frames and far frames 
were discarded. Up to 95% of the undiscarded frames were cropped correctly. 

 

 
Figure 4.4(a) Original image. 

 
Figure 4.4(b) Applying find contours. 

 
Figure 4.4(c) Find contours output. 
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3.​ Clean the noise: 

The detected plate won't always be perfect. It can be distorted, dirty or has partially erased 
characters. Applying back-to-back operations of opening (erosion, then dilation) and closing 
(dilation, then erosion) can be useful in sharpening edges. 
 
 

  

Figure 4.5 Partially erased characters before and after opening and closing operations. 
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4.3 Segmentation 
Segmentation as defined in the original article published in 2013 [6] is one of the most 
important phases of the OCR system. It is an intermediate step between detecting the plate 
and OCRing the character. Simply, segmentation is applied on the ROI obtained from the 
previous step (image preprocessing) to break the whole image into subparts to process them 
further. For our application, we’re going to use the Vertical Project Profile technique. 
 
Vertical Project Profile 
Once the colored image is converted to the binary image, only black and white pixels are 
present in the image. In a binary image, pixels representing useful information are called 
Foreground pixels, and the pixels that are not foreground pixels are called Background pixels. 
We choose whether a foreground pixel should be white or black while binarizing the image. 
We either apply this projection horizontally or vertically. 
 

 
Figure 4.6 example of horizontal and vertical projections 

 
To separate license plate characters, we only care for the vertical histogram projection. In this 
method, we count the No.of foreground pixels along the image columns. The result is an 
array of the size equal to No.of columns in the image (Width of the image). 
 
In the above image: 

●​ Foreground pixels are black pixels, and background pixels are white. 
●​ Columns that represent the text have high No.of foreground pixels, which correspond 

to higher peaks in the histogram. 
●​ Columns that represent the gaps in-between the words have high No.of background 

pixels, which correspond to lower peaks in the histogram. 
●​ Columns that correspond to lower peaks in the histogram can be selected as the 

segmenting lines to separate the words. 
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Results 

 
Figure 4.7(a) original image 

 

 
Figure 4.7(b) crop & resize 

 
Figure 4.7(c) Blur, Threshold, Dilation and binarization 

 

 

        
Figure 4.7(d) Finally, Draw vertical projection and crop the original image based on the peaks. 

 
We tested the segmentation on 129 different plates with different angels in various lightning 
conditions. These plates contained 776 characters. Accuracy of segmentation was 92% with 
a chance of 4% that a character got recognised twice. This problem can be solved with 
further smoothing to the histogram. 
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4.4 Character Recognition 

4.4.1 Tesseract 
We started our work by testing a widely used model for OCR text documents, Tesseract OCR 
[5]. Tesseract gained popularity as there weren’t too many free and powerful OCR 
alternatives on the market for the longest time. Tesseract began as a Ph.D. research project 
in HP Labs, Bristol. It was developed by HP between 1984 and 1994. In 2005 HP released 
Tesseract as an open-source software. Since 2006 it has been developed by Google. 
Tesseract is a lightweight library that can recognize more than 100 languages, including 
Arabic. Being an open-source project, Tesseract promised an easy-to-retrain process, which 
by experiment, it wasn’t entirely true. 
 
Results 
Using Tesseract to recognise individual Arabic characters as in the license plates, gave 60% 
accuracy for letters and 73% for Indic-Arabic numbers. But this accuracy was obtained by 
preprocessing each plate individually to clean the noise as much as possible, while 
automating the process significantly decreases the accuracy and makes the tesseract 
unreliable.  

 

 
➡ 

 
➡  

Figure 4.8 results of tesseract on individual Arabic characters 
 
Limitations of tesseract 
Tesseract works best when there is a clean segmentation of the foreground text from the 
background such as textbooks which tesseract is mainly trained for. The better the image 
quality (size, contrast, lightning) the better the recognition result. It requires a bit of 
preprocessing to improve the OCR results, images need to be scaled appropriately, have as 
much image contrast as possible, and the text must be horizontally aligned. In practice, we 
can’t guarantee to get an image clean enough for tesseract to work on. 
 
Tesseract limitations summed in the list: 

●​ Doesn’t do well with images affected by distorted perspective and complex 
background. 

●​ It may find gibberish and report this as OCR output. 
●​ It is not always good at analyzing the natural reading order of documents. For 

example, it may fail to recognize that a document contains separate characters, and 
may try to join these characters. 

This disappointing result shifted our decision to build an OCR model from scratch customized 
for our problem of recognising individual Arabic characters. 
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4.4.2 Classifier 
The success in building a functional classifier capable of predicting the symbol class from 
segmented images depends on two factors. First, an adequate dataset that contains diverse 
examples and suitable distribution in terms of number of samples per each class. Second, a 
good model architecture. We’ll discuss these two factors thoroughly in the section below 

 

4.4.2.1 Dataset collection and preparation 
In our application we are only interested in 26 characters: 

●​ 17 letters: ى و هـ ن م ل ق ف ع ط ص س ر د ج ب أ   
●​ 9 numbers: ١٢٣٤٥٦٧٨٩ 

At first we used a very tiny dataset of 1,300 sample images. Part of this dataset was manually 
extracted from the dataset used to train the license plate detector and the other part was 
obtained from the segmentation part discussed above. The reader might be wondering why 
we didn’t use the entire dataset used in training the license plate detector to obtain sample 
images for this part. Most of the images used to train the license plate detector are not 
suitable to run them through the segmentation component to extract useful data.  

Afterwards, a dataset of approximately 14,000 sample images was provided to us by a 
colleague of ours. This dataset came along with another idea to increase the number of 
training samples – that is data augmentation. Each sample image underwent 9 augmentation 
methods. These methods included random image rotation, distortion, brightness, contrast and 
saturation manipulation. The augmented dataset contained 53,437 sample images. 

4.4.2.2 Building the classifier model 
We used two different classifiers throughout the development of this project. A SVM was used 
first with the initial dataset. When a larger dataset was obtained, we decided to train a CNN to 
better handle the problem. 

 

SVM 

This model worked fine whenever the prediction was made on a sample image that the SMV 
has seen before, but when testing how the model generalizes, it didn’t give very promising 
results. This is due to the tiny dataset it was trained on. 
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CNN classifier 

Model architecture was inspired by other CNN classifiers used to classify handwritten greek 
letters. Here’s a quick overview on the architecture 

1.​ An input image of dimensions 75 x 25 is fed to the first convolutional layer 
2.​ The first convolutional layer has a kernel of 3 x 3 and 32 filters. Batch normalization is 

applied after the first layer 
3.​ The second convolutional layer has a kernel of 3 x 3 and 64 filters. Batch normalization 

and 2D Max Pooling are applied after the second layer 
4.​ The third convolutional layer has a kernel of 4 x 4 and 128 filters. Batch normalization 

and 2D Max Pooling are applied after the third layer 
5.​ Output is flattened and inputted to a fully connected dense layer of 128 nodes followed 

by 26 nodes that represent the final prediction. 
6.​ The nonlinearity used throughout the entire network is tanh except for the final dense 

layer that uses softmax. 
7.​ L1 and L2 regularization were applied on the last convolutional layer and the first 

dense one 

 The model has a total of 940,954 trainable parameters. A schematic diagram visualizing 
model architecture is shown below. 

Figure 4.9​
CNN model architecture used 
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4.4.2.3 Training results 

The model was trained for 10 epochs. In the two training metrics visualized below, you will 
notice the following: 

●​ Training loss decreases greatly on the first epoch only. 
●​ Validation loss diverges at the end of the 7th epoch as a sign of overfitting. 
●​ After the 7th epoch, validation accuracy drops greatly as a sign of overfitting. 

We used the weights produced after the end of the 7th epoch. On a test set the model shows 
a fair accuracy level of 85%. 

 

Figure 4.10(a) shows training and validation loss in blue and orange lines respectively 

 

Figure 4.10(b) shows training and validation accuracy in blue and orange lines respectively 
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Chapter 5: Our website 

5.1 Why choose a web application over a desktop one? 

●​ For the user, it saves the hassle of downloading and installing updates as we can add 
new features or fix bugs without the user even noticing. He will always open the 
website to find the latest stable version. 

●​ Web applications are not reliant on the hardware or system specifications to run. 
●​ Cross-platform availability and mobility: it gives us the convenience to switch to a 

mobile app. 
●​ Light on system resources: web services consume less processing power compared to 

desktop apps.  
●​ A desktop app is downloaded once, which means there's no waiting for the web pages 

to load. However, using Single Page Approach compensated for this lag. 

5.2 Frontend 

In this part we will discuss components and stack of our front-end part. We will talk about the 
following: 

●​ Tech stack. 
●​ Admin panel architecture. 
●​ High level architecture. 

Tech stack 

Our tech stack was chosen to be flexible and reliable. We are using React 17 with Material UI 
from Google. We are also using Axios for asynchronous requests over RESTful API. This 
allows us to build a continuous experience without reloading pages and pressuring the server. 

Admin pages 

1.​  Profile 
○​ Contains profile information for the current user as his Email, Role, etc.. 

2.​ System Users 
○​ Contains a list of all system users and the ability to add new users. 

3.​  Customers 
○​ Contains a list of registered customers and ability to register new ones. 

4.​ Cars 
○​ Contains a list of all cars registered in the system with their information and 

ability to register new cars. 
5.​ Control 

○​ Includes adding cameras and hardware configuration required to connect with 
each of them. 
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5.2.1 High level architecture  

 

Figure 5.1 High level architecture  

According to the previous figure our app is separated into different UI components to have 
our ui decoupled from business logic. 

Business logic in our app is centered in the “Mobx store” which provides reactivity to our 
components based on any changes in the data, also responsible for communication between 
the UI and the services where requests to the API are made. 

Till the moment we have 5 stores as follows: 

1.​ Authentication Store 
○​ Responsible for handling the logic for Login, Logout, Signup, users’ data. 

2.​ Car’s store 
○​  Handling the current list of cars and any logic related to it. 

3.​ Customers store 
○​ Handling the current list of customers and any logic related to it. 

4.​ System users store 
○​ Handling the current list of system users and any logic related to it. 

5.​ Control store 
○​ Handling all hardware connections and configs (Cameras). 
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5.2.2 Interface 
 

●​ System User Sign-In Interface 

 
 

Figure 5.2 SystemUser Sign-In Page 
 

A system user who manages and operates the Parking System should provide his credentials 
to sign in. Therefore, he can have access to the platform functionality. 
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●​ System User Profile interface 

 
Figure 5.3 

This interface shows details of a System User (the admin who manages and operates the 
Parking System). 

 
●​ SystemUser interface 

 
Figure 5.4 

This interface shows the list of all System Users (admins who manage and operate the parking 
system), that are held by the system. 
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●​ Add new customer Interface 

 
Figure 5.5 

A System User (who manages and operates the parking system) can add new customers 
through this interface. To add a new customer, the customer’s name, email, national ID, and 

the list of license plates of vehicles should be provided. 
 
 

●​ Customers list 

 
Figure 5.6 

This Interface shows the list of customers held by the system. 
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●​ Add video of new customer 

 
Figure 5.7 

By pressing the “Select file” button displayed for each customer in the customers list, we can 
select a video to train the model on. 

 
 

●​ Add new vehicle 

 
Figure 5.8 

We can add a new vehicle using this form. The car brand, model (sub-brand), color, license 
plate, and start and end subscription dates must be provided. 
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●​ Vehicles list 

 
Figure 5.9 

This Interface shows the list of vehicles held by the system. 
 

●​ Gate Control interface 

 
Figure 5.10 

This interface has the simulation for the entrance or exit process performed. 
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●​ Select plate video 

 
Figure 5.11 

This dropping list is to simulate when the car is at the entrance or exit. We select a recorded 
video of the front or back part of a car showing the license plate region. 

 
●​ Logs 

 
Figure 5.12 

On the Logs page, we can see all previous logs for any user. It contains the date and time of 
his visits, which gate he used, and his plate number. 
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5.3 Backend 
In this part we will have a look at the backend part. 
There are 2 main parts in the Backend: 

1.​ Web Server 
2.​ Database Server 

 
Figure 5.13 Frontend, backend, APIs 

5.3.1 Web Server 
This part is developed using ASP.NET Core (Web API). Since the front-end deals with the 
backend through the API. 
 
APIs are classified into controllers according to the entity it is dealing with. 
For instance , System Users controller is the part to deal with all that concerns System Users 
Entity such as: 

-​ https://<HOST-NAME>/api/SystemUsers/login: is used to login System Users Account. 
-​ https://<HOST-NAME>/api/SystemUsers/me: is used to show data about logged 

accounts. 
 

Some APIs may have access to the database to do its functionality such as Adding a new 
long-term Participant. This is done through Entity Framework as it provides an easy way and 
already-built methods to deal with the database and retrieve data from there instead of writing 
SQL Operations. This had some advantages : 

1.​ Prevent some issues like SQL injection attacks. 
2.​ Easy way for development among peers since by using the classical way it was 

necessary to share more documents -SQL Scripts- holding SQL operations so 
that it is used at every local machine. 
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5.3.2 Database Server 
This part is implemented using Microsoft SQL Server Database Management System as it is 
the most compatible with C# and ASP.Net Core. 
 

●​ ERD Diagram 

 
Figure 5.14 Entity-Relationship Diagram 
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●​ Relational Scheme 

 

 
Figure 5.15 Relational Diagram 
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5.3.3 Security 
 

-​ Using Password + Salt [Used in Authentication] 
1)​ At the SignUp Event, A random Salt is generated and saved as Plain in 

Database. 
2)​ This salt is padded to the end of the password then the yield is hashed and 

Hash is stored in the database. 
3)​ At every Login Event, The Password is provided as plain. 
4)​ The salt is retrieved from the Database using the ID of the User. 
5)​ The salt is padded to the Password provided , then the yield is hashed. 
6)​ The hash already-stored in the Database is retrieved and compared to the hash 

resulted at the login event. 
7)​ If they are similar, then Authentication takes place. 

Otherwise, User is not authenticated. 
 
 

-​ Using Json Web Token (JWT) Token while Login [Used in Authorization] 
A JSON web token(JWT) is a JSON Object which is used to securely transfer information 
over the web(between two parties). It can be used for an authentication system and can also 
be used for information exchange.The token is mainly composed of header, payload, and 
signature. These three parts are separated by dots(.). JWT defines the structure of 
information we are sending from one party to the another 
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5.3.4 SignalR 

 
SignalR is a library for ASP.NET developers that simplifies the process of adding real-time 
web functionality to applications. Real-time web functionality is the ability to have server code 
push content to connected clients instantly as it becomes available, rather than having the 
server wait for a client to request new data. You can refer to (SignalR Intro)[9] and 
(Comparison between Http requests and SignalR)[10] for more info. 
 
In our process when a client arrives at the gate the gate sends a signal to backend server 
which in turn it sends requests to both the face recognition model and plate recognition 
model, then they send back their response which can be a failure or success, then the 
backend server checks the validation of all the given data to decide if the access is allowed or 
not. All those stages happen without any info given for the user. So we want a way to send 
info to the frontend about what is happening before ending the request. Here we have to use 
realtime sockets, which get initialized when the frontend sends a request then we have a 
channel to send any info from the backend to the frontend without having to wait for a 
request. We use the channel created to send that the face or plate models have started 
detection, then we send the response of each model that has been received in the backend 
to the frontend on the channel, And any other info needed are sent on the channel. Before 
ending the request we close the connection of the hub. 
 
 

  

Figure 5.16 Normal Http requests and responses Figure 5.17 SignalR Connection 

 
 
 
 
 

53 



 

Chapter 6: Future Work 

6.1 The causal parker (one-time visitor) scenario 
The main difference between season parker and casual visitor is that the casual visitor 
is neither stored in the database (Face and Plate Number) nor the Face Model. 
 
Therefore, the scenario is: 

-​ Entrance Scenario: 
1)​ Casual Parker passes at the entrance 
2)​ Face Model tries to recognize the driver and search for the face in classes 

stored . 
3)​ OCR reads the plate Number. 
4)​ Since the driver data nor the Plate Number are found in Database, A video is 

captured for the driver’s face. 
5)​ Driver is allowed to enter (gate is opened) and at the same moment model 

trains using the video to store the casual parker in classes. 
6)​ Plate Number and details of Casual Parker are stored temporarily in the 

Database. 
 

-​ Exit Scenario: 
1)​ Casual Parker passes at the exit. 
2)​ The Face Model recognizes the driver as well as the OCR reads Plate Number. 
3)​ Check for the pairing held at the entrance before (Meaning that the casual 

parker is already allowed to drive the vehicle) 
4)​ If it is allowed : 

a)​ Temporary details of Casual Parker are deleted. 
b)​ Gate is opened 

     5) If it is not allowed : Gate is not open. 
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6.2 Real time architecture 

●​ The current architecture  
○​ Frontend is responsible for detecting if a vehicle is waiting to enter the parking 

or not by a button simulating the wired loop, and send this info to backend. 
○​ Then the backend invokes the face recognition and the plate recognition models 

to run and return their results. 
○​ This architecture is a bit slow because of the time consumed during operating 

the two models. 
○​ This architecture is for simulation and developing purposes, Not suitable for a 

real time system. 
●​ The real time system architecture  

○​ The face and plate models will be operating on a microprocessor like fpga. 
○​ There will be two flags, one inside the face model and another inside the plate 

model. 
○​ The backend server will be hosted on the cloud. 
○​ When the face model or plate model detects a face or plate they send their info 

to the backend server. 
○​ The backend server then checks if both flags are true which indicates that there 

is actually a car. 
○​ It then validates the info received (face id - plate id - subscription). 
○​ Then through a socket the backend invokes the gate to be open. 

​ ​ ​  
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6.3 OCR pipeline enhancement 

 
●​ Collecting more real world data 

We already faced a lack of outsourcing data of Egyptian license plate images, let alone video 
data which is a time-consuming process and a cooperative task rather than individuals. 
 
The images we trained and tested on so far are captured from different distances and various 
setups. We predict better results by having a fixed set up to collect data.  
 
The required set-up to collect more data 

 
Figure 6.1 The required setup where the height of the LPR camera h is 3 meters, and the 

distance x is between 1 meter to 3 meters. 
 

Same processes discussed in Chapter 3: License Plate Detector and Chapter 4: Optical 
Character Recognition can be easily applied and modified with the futurely collected data. 
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GitHub Repo 
https://github.com/mohamed-samy2499/Smart-Authenticating-Parking-System  
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