Task Management App with Svelte, Flowbite,

Directus, and MySQL - SOP

1. Objective

The purpose of this document is to provide a comprehensive guide for setting up a task
management application using Svelte for the frontend, Flowbite for Ul components,
Directus for backend management, and MySQL as the database and create basic
functionalities such as user login and task management.

2. Setting Up the Environment

To start developing the task management application, the development environment
needs to be setup with the necessary tools and software.

Installing Node.js (Version 18) and npm

Node.js is a JavaScript runtime that allows you to run JavasScript on the server side, and
npm (Node Package Manager) is used to manage dependencies for your project. For this
project, we will be using Node.js version 18 as directus accepts Node Version of v18.20.4.

Steps to Install Node.js and npm:
. Download Node.js:

o Visit the official Node.js website.

o Download the installer for Node.js version v18.20.4 suitable for the desired
operating system (Windows, macOS, or Linux).

2. Install Node.js:
o Follow the installation instructions provided for your operating system:
» Windows: Run the downloaded installer and follow the setup wizard.
* macOS: Run the downloaded .pkg file and follow the setup wizard.

» Linux: Use a package manager to install Node.js. For example, on
Ubuntu, you can use:

curl -sL https://deb.nodesource.com/setup 18.x | sudo -E
bash -

sudo apt install -y nodejs

https://nodejs.org/

3. Verify the Installation:

o Open a terminal or command prompt and check the installed versions of

Node.js and npm:
PS C:\Users\KSSPL> node
node -v v18.20.4

PS C:\Users\KSSPL> npm
10.7.0

npm -v

o0 You should see the version numbers for Nodejs (v18.20.4) and npm,
indicating that they have been installed successfully. The npm version
which is used for this project is 10.7.0.

Installing MySQL

MySQL is a popular relational database management system used to store and manage
data for the application.

Steps to Install MySQL:
1. Download MySQL:

o Visit the official MySQL website.

o Choose the appropriate installer for your operating system (Windows,
macOs, or Linux).

2. Install MySQL:
o Follow the installation instructions provided for your operating system:

» Windows: Run the downloaded installer and follow the setup wizard.
During the setup process, you can configure MySQL with a root
password and choose the default settings.

macOS: Run the downloaded .dmg file and follow the setup wizard.
You can configure MySQL with a root password and choose the
default settings.

» Linux: Use a package manager to install MySQL. For example, on
Ubuntu, you can use:

sudo apt update
sudo apt install mysgl-server
o0 Secure your MySQL installation by running:

sudo mysgl secure installation

https://dev.mysql.com/downloads/mysql/

o Follow the prompts to set up a root password and secure your MySQL
installation.

3. Verify the Installation:
o0 Open aterminal or command prompt and check the MySQL service status:
sudo service mysgl status

0 You should see a message indicating that the MySQL service is running.
4. LogintoMysQL:

o Log in to the MySQL server using the root account to ensure everything is
working correctly:

mysgl -u root -p

o0 Enter the root password you set during the installation process. You should
see the MySQL prompt, indicating that you are logged in to the MySQL
server.

o Create a database named directus:

CREATE DATABASE directus;

o Create a new user and grant them full access to the new database using
the following commands:

CREATE USER 'your username'@'localhost'
IDENTIFIED BY 'your password';

GRANT ALL PRIVILEGES ON directus.* TO
'your username'@'localhost';

FLUSH PRIVILEGES;

0 Check Database with the MySQL prompt:

SHOW databases; to show databass and

SELECT User, Host FROM mysql.user; to check if useris created properly.

With Node.js, npm, and MySQL installed, you are now ready to proceed with setting up the
Directus backend and configuring it to work with your MySQL database.

3. Directus Setup with MysQL

Directus is a versatile open-source data platform that provides a user-friendly interface
for managing your database. This section outlines the steps to set up Directus with a
MySQL database.

Installing Directus
. Create a New Directus Project:
o Open aterminal or command prompt.

0 Run the following command to create a new Directus project:

npx create-directus-project backend

o You will be prompted to choose your database client. Use the arrow keys to
select “MySQL / MariaDB / Aurora” dnd press Enter.

2. Configure Directus with MySQL:
o You will be asked to provide the following database configuration details:

- Database Host. Enter 127.0.0.1 (default for local MySQL
installations).

= Port: Enter 3306 (default MySQL port).
- Database Name: Enter directus (the database you created earlier).

- Database User: Enter username (in my case it's pragna) (the MySQL
user).

» Database Password: Enter the password for the MySQL user.
3. Create an Admin User:
o You will be prompted to create an initial admin user for Directus:
» Email: Enter admin@example.com (or your preferred admin email).
» Password: Enter a secure password for the admin account.
4. Project Creation Confirmation:

o0 Once the project is created, you will see a confirmation message with the
path to your project directory and configuration file:

Your project has been created at F:\Task-Management-App\backend.
The configuration can be found in F:\Task-Management-App\backend/.env
5. StartDirectus:
Navigate to the project directory and start the Directus server by running:

cd backend

npx directus start

o Directus will start and you can access the admin interface through your
web browser at http://localhost:8055 (default port).

4. Configuring Directus for Task Management

After setting up Directus, the next steps involve configuring it for managing tasks and
setting up user authentication.

Configuring Directus for Task Management
. Login to Directus Admin Interface:
o Open aweb browser and navigate to http://localhost:8055.

o Log in using the admin credentials you created (admin@example.com and
the password).

2. Create a Collection for Tasks:

o In the Directus admin interface, navigate to the Settings -> Data Model
section.

o Click on the "+ Create Collection” button.
o Enter a name for the collection, e.g., tasks (in my case tasks)
O Add fields to the tasks collection:
= title: Add a field of type input for the task title.
» description: Add a field of type Textarea for the task description.

- status: Add a field of type Dropdown for task status (e.g., to-do,
in-progress, done - this can be changed by clicking on status ->
select Interface and modify data in “Choices”).

» due_date: Add a field of type Datetime for the task due date.

o Save the collection.

Tasks

Fields & Layout Saves Automatically

id

status

title

description

due_date

3. Set Up Permissions:
0 Go to the Settings -> Access Control section.

o Configure permissions for different roles (e.g, Admin, Task Manager) to
ensure they can create, read, update, and delete tasks as needed.

o For the Admin role, ensure full permissions for the tasks collection.

Access Control

Description

{2 Administrator

Task Manager

Administrator Role

Admins have all permissions

Role Name Role Icon

Administrator

Description

Initial administrative role with unrestricted App/API access.

Implementing User Authentication
Directus comes with built-in user authentication. Here’s how you can set it up:
1. Create Additional User Roles:

o In the "Access Control” section create roles if necessary, such as Manager
or Employee, depending on the needs of your application.

o Configure these roles with the appropriate permissions for managing tasks.
Task Manager Role

Permissions Saves Automatically
Collection

tasks

Role Name Role Icon

Task Manager

Description

Creates, oversees and coordinates tasks

2. Create Users:
o0 Go to the “User Directory” section.
o Click on the "+ Create Item" button.

o Enter user details such as Firstname, Lastname, email, password and assign
role based on their access needs (scroll below to see the Admin Options).

o Save the new users.

2, User Directory

Admin User Pragnasya S

3. Test Authentication:

To ensure that the authentication system in Directus works correctly, you can use
Postman to test the user login and role-based access. Follow these steps:

o Open Postman and create a new request to test user authentication.

o Use the POST method to send a request to the Directus login endpoint:
POST http://localhost:8055/auth/login

o Inthe request body, include the credentials for the user you want to test:

{
"email": "user@example.com",
"password": "userpassword"

}

O Replace user@example.com and userpassword with the credentials for the
user you are testing.

o Send the request and verify that you receive a successful response with a
token.

With Directus configured for task management and user authentication, you can now
move on to integrating the frontend using Svelte and Flowbite.

5. Frontend Integration with Svelte and Flowbite

In this section, a basic Svelte project will be setup and is integrated with Flowbite to create
a user-friendly interface. You will also use the Directus SDK to interact with the Directus API.

Setting Up a Basic Svelte Project
1. Create aNew Svelte Project:
o Open a terminal or command prompt.
O Use Vite to create a new Svelte project by running:
o npm create vite@latest frontend --template svelte
o This command sets up a new Svelte project in a directory named frontend.

2. Navigate to the Project Directory:
o Change to the newly created project directory:

cd frontend

3. Install Project Dependencies:
o Install the required npm packages:

npm install
4. Startthe Development Server:

o Start the Svelte development server:

npm run dev

o Open your browser and go to http://localhost:5173 to see your Svelte
application running.

Integrating Flowbite
1. Install Flowbite:

o Flowbite is a component library for Tailwind CSS. To use it with Svelte, first,
ensure that Tailwind CSS is installed in your Svelte project.

o Install Flowbite and Tailwind CSS using npm:

npm install tailwindcss flowbite

2. Configure Tailwind CSS:

o Initialize Tailwind CSS in your Svelte project:

npx tailwindcss init

o0 Update the tailwind.config.js file to include Flowbite and configure paths to
your CSS files:

3. Add Tailwind CSS to Your Project:

flowbitePlugin = require('flowbite/plugin’);
{import('tailwindcss').Config}
module.exports =
content: ['./src/**/*.{html,js,svelte,ts}",
'./node_modules/flowbite-svelte/**/*.{html,js,svelte,ts}'],
darkMode: ‘'class’,
theme: {
extend: {
colors: {

primary: {

50: '#FFFS5F2',

100: '#FFF1EE',
200: '#FFE4DE',
300: '#FFD5CC',
400: '#FFBCAD',
500: '#FE795D',
600: '#EF562F',
700: '#EBAF27',
800: '#CC4522',
900: '#A5371B'

¥
plugins: [flowbitePlugin]

}s

o Include the Tailwind CSS directives in your src/app.css file:

@import 'flowbite/dist/flowbite.css’;

(@tailwind base;

(@tailwind components;
(@tailwind utilities;

Implementing Directus APIs

1. Configure the Directus APIs:

o Create a file named config/auth.js in your src directory and configure the
Directus APIs:

Login - http://localhost:8055/auth/login

Logout - http://localhost:8055/auth/logout

2. AddForms for Login, Adding and Deleting Tasks:

o Implement Login form and functionality to add and delete tasks using the
Directus APIs. Example code for fetching all tasks, adding, deleting,
updating(optional) a task:

fetchTasks() {
try {
response = await fetch("http://localhost:8055/items/tasks", {
headers: {
Authorization: “Bearer ${sessionStorage.getItem("token")} ,
})
}s

if (response.ok) {
data = await response.json();
tasks = data.data || [];
} else {
console.error(
"Failed to fetch tasks",
response.status,
response.statusText
)
tasks = [];
}
catch (error) {
console.error("Error fetching tasks", error);
tasks = [];
finally {
loading =

addTask() {
try {
response = await fetch("http://localhost:8055/items/tasks"
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: " Bearer sessionStorage.getItem("token")}",

s
body: JSON.stringify(newTask),

ok

http://localhost:8055/auth/login
http://localhost:8055/auth/logout

if (response.ok) {
data = await response.json();
tasks = [...tasks, data.data];
resetEditing();
} else {
console.error(
"Failed to add task",
response.status,
response.statusText
)
¥
} catch (error) {
console.error("Error adding task", error);
}
}

updateTask(editForm) {
console.log("updateTask is called",editForm);
try {
response = await fetch(
“http://localhost:8055/items/tasks/${editForm.id}",
{
method: "PATCH",
headers: {
"Content-Type": "application/json",
Authorization: “Bearer ${sessionStorage.getItem("token")}"
¥
body: JSON.stringify(editForm),
}
)

if (response.ok) {
data = await response.json();
tasks = tasks.map((task)
task.id === newTask.id ? data.data :
)
resetEditing();
} else {
console.error(
"Failed to update task",
response.status,
response.statusText
)
}
} catch (error) {
console.error("Error updating task", error);

}

}

handleDeleteTask(taskId) {

try {
response = await fetch(

“http://localhost:8055/items/tasks/${taskId} ,

{
method: "DELETE",
headers: {

Authorization: " Bearer sessionStorage.getItem("token")}",

}J

}

)s

if (response.ok) {
tasks = tasks.filter((task) task.id !== taskId);

} else {
console.error(
"Failed to delete task",
response.status,
response.statusText
)
}
} catch (error) {
console.error("Error deleting task", error);

}

}

5. Conclusion

In this project, the task management application using Directus as the backend, MySQL as
the database, and Svelte with Flowbite for the frontend is successfully setup. Directus is
configured to handle task management with a MySQL database, enabling functionalities
for creating, updating, and deleting tasks while ensuring secure user authentication. The
frontend was built using Svelte, with Flowbite providing a modern, responsive Ul.

This setup demonstrates a complete workflow from backend configuration to frontend
implementation, delivering a fully functional task management system as per the
requirement.

