
Design Doc for Shape Detection Web API 
This Document is Public 

Authors: xianglu@chromium.org, mcasas@chromium.org (TL: reillyg@chromium.org) 
Status: Draft 
Last Updated: 2018-09-13 
Link: http://tinyurl.com/shape-detection-in-chromium 
 
Objective 
Background 
Overview 
Detailed Design 

Blink 
Android 
Mac 

Project Information 
Risks and alternatives 
Core Principle Considerations 

Speed (and System Health) 
Stability 
Security 
Simplicity 

Privacy Considerations 
Testing Plan 

Objective 
Implement the WICG Shape Detection API on platforms with operating system libraries 
supporting it: 
 

Detector Android macOS Windows 10 Linux Chrome OS 

Face ✓ ✓‡ ✓ ✗ ✗ 

Barcode ✓† ✓ ✗ ✗ ✗ 

Text ✓† ✓‡ ✓ ✗ ✗ 

 
†Requires the Play support libraries. 
‡Improved accuracy using the Vision Framework in macOS 10.13 and later. 

 

mailto:reillyg@chromium.org
http://tinyurl.com/shape-detection-in-chromium
https://wicg.github.io/shape-detection-api/


Background 
Photos and images constitute the largest chunk of the Web, and many include recognisable 
features, such as human faces or QR codes. Detecting these features is computationally 
expensive, but would lead to interesting use cases e.g. face tagging or detection of high 
saliency areas. Also, users interacting with WebCams or other Video Capture Devices have 
become accustomed to camera-like features such as the ability to focus directly on human faces 
on the screen of their devices. This is particularly true in the case of mobile devices, where 
hardware manufacturers have long been supporting these features. Unfortunately, Web Apps do 
not yet have access to these hardware capabilities, which makes the use of computationally 
demanding libraries necessary. 

Overview 
End users should be able to call detect() on an source of images. Blink will extract the raw 
image data and use Mojo to call out to platform dependent APIs for analysis. 
 

 



 

Detailed Design 
Blink 
The web-exposed classes, BarcodeDetector, FaceDetector and TextDetector all 
inherit from a common (internal) ShapeDetector class. They take an 
ImageBitmapSourceUnion from the web, retrieve the raw image data as an SkBitmap and 
send a request for detection through appropriate Mojo interface. 
 
The render process requests connections to the shape detection Mojo interfaces from the 
browser process, which forwards those requests to the Shape Detection service hosted in the 
GPU process. 

Android 
The Shape Detection service on Android is implemented in Java and runs in the GPU process. 
If the Play support library is available then the detectors are implemented using the 
com.google.android.gms.vision package’s BarcodeDetector, FaceDetector and TextRecognizer 

 

https://developers.google.com/android/reference/com/google/android/gms/vision/barcode/package-summary


classes. Without this library only face detection is available using the built-in 
android.media.FaceDetector classes. 
 
It is technically possible to call into some of these platform APIs for shape detection directly from 
an Android render process via JNI (see this CL) because there is a Java runtime available 
there. However, but peter@ and palmer@ argued convincingly that we should not take this 
approach because: 
 

●​ The Java runtime in the render process is (mostly?) unused and so we would like to 
save RAM (enabling security features like Site Isolation) by disabling it. 

●​ Calling these APIs may introduce dependencies on external system resources that 
would foil later efforts to further sandbox the render process. 

macOS 
On macOS the service is implemented in C++ in the GPU process. On versions prior to macOS 
High Sierra 10.13 the CIDetector API is used for all detector types. This limits barcode detection 
to QR codes only. On High Sierra and later the Vision Framework is used for face and text 
detection which improves both accuracy and the number of barcode symbologies supported. 
These APIs are implemented by the system frameworks using GPU acceleration. 

Windows 
On Windows the service is also implemented in C++ in the GPU process. Face detection is 
implemented with using the Windows.Media.FaceAnalysis.FaceDetector class and text 
detection with Windows.Media.Ocr.OcrEngine. 

Project Information 
●​ Spec (Editor: mcasas): https://wicg.github.io/shape-detection-api/ 
●​ Bugs: 646035, 659138, bug list  
●​ Blink implementation: //src/third_party/blink/renderer/modules/shapedetection/ 
●​ Android implementation: //src/services/shape_detection/android/java/... 
●​ macOS/Windows implementation: //src/services/shape_detection/ 

Risks and alternatives 
This API is risky because it is exercising additional system interfaces which may be unstable 
and decrease the stability of Chrome or the operating system in general. The use of GPU 
acceleration in particular has been flagged as a potential risk as it may expose bugs in GPU 
drivers and hardware that are very system-specific. 
 
The alternative to this API is the status quo, where sites must implement their own image 
processing routines using either JavaScript or WebAssembly. These will necessarily be lower 

 

https://codereview.chromium.org/2508723002/
https://wicg.github.io/shape-detection-api/
https://crbug.com/646035
https://crbug.com/659138
https://bugs.chromium.org/p/chromium/issues/list?can=2&q=label%3AShapeDetection+component%3ABlink%3EImageCapture&sort=-modified&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/shapedetection/
https://cs.chromium.org/chromium/src/services/shape_detection/android/java/src/org/chromium/shape_detection/
https://cs.chromium.org/chromium/src/services/shape_detection/?q=facedetectionimpl.java&dr=C


performance because they cannot take advantage of hardware acceleration (at least until 
WebGL 2.0 Compute is available). 

Core Principle Considerations 
Speed (and System Health) 
Shape detection is performed asynchronously (so it does not block the renderer main thread). 
The image data is passed between processes using shared memory. In the GPU process the 
detection task itself is asynchronous. 

Stability 
Detection takes place inside the GPU process which is restartable in case of crashes. We have 
a feature request out to the Origin Trials team to flag GPU process crashes in browser sessions 
in which these APIs have been used so we can determine if using these platform APIs 
decreases GPU process stability. 

Security 
Potentially unsafe image data is decoded by the render process and converted to an SkBitmap 
which is safe to pass to other process. Detection itself happens in the GPU process. Since the 
browser process connects the render process’s request directly to the GPU process it 
processes neither the raw image nor the detection result. 

Simplicity 
This feature is invisible to users, providing only improved page performance. 

Privacy Considerations 
This API is an optimization of capabilities already available to web sites that ship their own 
object detection code. The privacy considerations for this API can be considered separately 
from those for the APIs from which a site gets access to the image data processed by this API, 
such as the camera. 
 
This API will not be available on all platforms and may vary in capability due to hardware or 
operating system version. This constitutes a potential fingerprinting vector but is generally low 
entropy. 
 
The API implementation leverages built-in OS features rather than external services so neither 
the raw image data nor the detection results are stored or transmitted by the browser. 

 

https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/bPD47wqY-r8
https://bugs.chromium.org/p/chromium/issues/detail?id=882655


Testing Plan 
Content browser tests: //src/content/browser/shapedetection/shapedetection_browsertest.cc 
Layout tests: ​ //src/third_party/WebKit/LayoutTests/shapedetection/ 

//src/third_party/WebKit/LayoutTests/fast/shapedetection/ 
//src/third_party/WebKit/LayoutTests/test/http/shapedetection/ 
 

 

 

https://cs.chromium.org/chromium/src/content/browser/shapedetection/shapedetection_browsertest.cc?dr&q=shapedetection_b&sq=package:chromium&l=1
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/shapedetection/
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/fast/shapedetection/
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/http/tests/shapedetection/

	Design Doc for Shape Detection Web API 
	Objective 
	Background 
	Overview 
	Detailed Design 
	Blink 
	Android 
	macOS 
	Windows 

	Project Information 
	Risks and alternatives 
	Core Principle Considerations 
	Speed (and System Health) 
	Stability 
	Security 
	Simplicity 

	Privacy Considerations 
	Testing Plan 

