Design Doc for Shape Detection Web API

This Document is Public

Authors: xianglu@chromium.org, mcasas@chromium.org (TL: reillyg@chromium.org)

Status: Draft

Last Updated: 2018-09-13
Link: http:/tinyurl.com/shape-detection-in-chromium

Objective
Background
Overview

Detailed Design
Blink
Android
Mac

Project Information

Risks and alternatives

Core Principle Considerations

Speed (and System Health)

Stabilit
Security
Simplicity

Privacy Considerations

Testing Plan

Objective

Implement the WICG Shape Detection APl on platforms with operating system libraries

supporting it:

Detector Android macOS Windows 10 Linux Chrome 0OS
Face v Ve v X X
Barcode Ve v X X X
Text Ve i v/ X X

"Requires the Play support libraries.

*Improved accuracy using the Vision Framework in macOS 10.13 and later.



mailto:reillyg@chromium.org
http://tinyurl.com/shape-detection-in-chromium
https://wicg.github.io/shape-detection-api/

Background

Photos and images constitute the largest chunk of the Web, and many include recognisable
features, such as human faces or QR codes. Detecting these features is computationally
expensive, but would lead to interesting use cases e.g. face tagging or detection of high
saliency areas. Also, users interacting with WebCams or other Video Capture Devices have
become accustomed to camera-like features such as the ability to focus directly on human faces
on the screen of their devices. This is particularly true in the case of mobile devices, where
hardware manufacturers have long been supporting these features. Unfortunately, Web Apps do
not yet have access to these hardware capabilities, which makes the use of computationally
demanding libraries necessary.

Overview

End users should be able to call detect() on an source of images. Blink will extract the raw
image data and use Mojo to call out to platform dependent APlIs for analysis.



Script

————

Image source

BarcodeDetector

TextDetector

FaceDetector

olopy

oo

alop

Render process

Interface requests forwarded by RendererinterfaceBinders

Browser process
R N D
v Wl w1
-
Y Y Y
BarcodeDetection ) FaceDetectionimpl
Imgl TextDetectionlmpl {GMSCore)
Java runtime (Android only)
W w1
\ L ]
BarcodeDetection TextDetectionimpl FacaDetectionimpl
Implkac|Vision) Mac Mac{Vision)

'

'

TextDetectionImpl
Win

FaceDetectionlmpl
Win

GPU process

Detailed Design

Blink

The web-exposed classes, BarcodeDetector, FaceDetector and TextDetector all
inherit from a common (internal) ShapeDetector class. They take an
ImageBitmapSourceUnion from the web, retrieve the raw image data as an SkBitmap and
send a request for detection through appropriate Mojo interface.

The render process requests connections to the shape detection Mojo interfaces from the
browser process, which forwards those requests to the Shape Detection service hosted in the
GPU process.

Android

The Shape Detection service on Android is implemented in Java and runs in the GPU process.
If the Play support library is available then the detectors are implemented using the
com.google.android.gms.vision package’s BarcodeDetector, FaceDetector and TextRecognizer


https://developers.google.com/android/reference/com/google/android/gms/vision/barcode/package-summary

classes. Without this library only face detection is available using the built-in
android.media.FaceDetector classes.

It is technically possible to call into some of these platform APIs for shape detection directly from
an Android render process via JNI (see this CL) because there is a Java runtime available
there. However, but peter@ and palmer@ argued convincingly that we should not take this
approach because:

e The Java runtime in the render process is (mostly?) unused and so we would like to
save RAM (enabling security features like Site Isolation) by disabling it.

e Calling these APIs may introduce dependencies on external system resources that
would foil later efforts to further sandbox the render process.

macOS

On macOS the service is implemented in C++ in the GPU process. On versions prior to macOS
High Sierra 10.13 the ClDetector APl is used for all detector types. This limits barcode detection
to QR codes only. On High Sierra and later the Vision Framework is used for face and text
detection which improves both accuracy and the number of barcode symbologies supported.
These APIs are implemented by the system frameworks using GPU acceleration.

Windows

On Windows the service is also implemented in C++ in the GPU process. Face detection is
implemented with using the Windows.Media.FaceAnalysis.FaceDetector class and text
detection with Windows.Media.Ocr.OcrEngine.

Project Information

Spec (Editor: mcasas): https://wicg.github.io/shape-detection-api/

Bugs: 646035, 659138, bug list

Blink implementation: //src/third party/blink/renderer/modules/shapedetection/
Android implementation: //src/services/shape detection/android/javal...
macOS/Windows implementation: //src/services/shape detection/

Risks and alternatives

This APl is risky because it is exercising additional system interfaces which may be unstable
and decrease the stability of Chrome or the operating system in general. The use of GPU
acceleration in particular has been flagged as a potential risk as it may expose bugs in GPU
drivers and hardware that are very system-specific.

The alternative to this API is the status quo, where sites must implement their own image
processing routines using either JavaScript or WebAssembly. These will necessarily be lower


https://codereview.chromium.org/2508723002/
https://wicg.github.io/shape-detection-api/
https://crbug.com/646035
https://crbug.com/659138
https://bugs.chromium.org/p/chromium/issues/list?can=2&q=label%3AShapeDetection+component%3ABlink%3EImageCapture&sort=-modified&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/shapedetection/
https://cs.chromium.org/chromium/src/services/shape_detection/android/java/src/org/chromium/shape_detection/
https://cs.chromium.org/chromium/src/services/shape_detection/?q=facedetectionimpl.java&dr=C

performance because they cannot take advantage of hardware acceleration (at least until
WebGL 2.0 Compute is available).

Core Principle Considerations

Speed (and System Health)

Shape detection is performed asynchronously (so it does not block the renderer main thread).
The image data is passed between processes using shared memory. In the GPU process the
detection task itself is asynchronous.

Stability

Detection takes place inside the GPU process which is restartable in case of crashes. We have
a feature request out to the Origin Trials team to flag GPU process crashes in browser sessions
in which these APIs have been used so we can determine if using these platform APIs
decreases GPU process stability.

Security

Potentially unsafe image data is decoded by the render process and converted to an SkBitmap
which is safe to pass to other process. Detection itself happens in the GPU process. Since the
browser process connects the render process’s request directly to the GPU process it
processes neither the raw image nor the detection result.

Simplicity
This feature is invisible to users, providing only improved page performance.

Privacy Considerations

This APl is an optimization of capabilities already available to web sites that ship their own
object detection code. The privacy considerations for this APl can be considered separately
from those for the APIs from which a site gets access to the image data processed by this API,
such as the camera.

This API will not be available on all platforms and may vary in capability due to hardware or
operating system version. This constitutes a potential fingerprinting vector but is generally low
entropy.

The API implementation leverages built-in OS features rather than external services so neither
the raw image data nor the detection results are stored or transmitted by the browser.


https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/bPD47wqY-r8
https://bugs.chromium.org/p/chromium/issues/detail?id=882655

Testing Plan

Content browser tests: //src/content/browser/shapedetection/shapedetection_browsertest.cc
Layout tests: rc/thir Kit/L T h ion

[[src/third_party/WebKit/LayoutTests/fast/shapedetection/
) WebKit/l T I I I .


https://cs.chromium.org/chromium/src/content/browser/shapedetection/shapedetection_browsertest.cc?dr&q=shapedetection_b&sq=package:chromium&l=1
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/shapedetection/
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/fast/shapedetection/
https://cs.chromium.org/chromium/src/third_party/WebKit/LayoutTests/http/tests/shapedetection/

	Design Doc for Shape Detection Web API 
	Objective 
	Background 
	Overview 
	Detailed Design 
	Blink 
	Android 
	macOS 
	Windows 

	Project Information 
	Risks and alternatives 
	Core Principle Considerations 
	Speed (and System Health) 
	Stability 
	Security 
	Simplicity 

	Privacy Considerations 
	Testing Plan 

