MODULE HANDBOOK

Module Name	Mathematics for Computer Science			
Module level, if	Undergraduate			
applicable	Ondergraduate			
Code, if applicable	02143142004			
Subtitle, if applicable	-			
Courses, if applicable	-			
Semester(s) in which	1			
the module is taught				
Person responsible for	Dwi Maryono, S.Si., M.Kom (dwimarus@yahoo.com)			
the module	, , , , , , , , , , , , , , , , , , , ,			
Lecturer	Dwi Maryono, S.Si., M.Kom			
Language	Indonesian and English			
Relation to curriculum	Undergraduate degree program, compulsory course in 1st semester			
Type of teaching,	Undergraduate degree program, < 40 students			
contact hours				
Workload	Lectures: 2 x 50 = 100 minutes (1 hours 40 minutes) per week			
	Exercise and Assignments: 2 x 60 = 120 minutes (2 hours) per week			
	Private study: 2 x 60 = 120 minutes (2 hours) per week			
Credit points	2 SKS			
Requirements	A student must have attended at least 75% of the lectures to sit in the			
according to the	exams			
examination				
regulations				
Recommended	-			
Prerequisites Module	After completing this module, a student is expected to:			
objectives/intended	After completing this module, a student is expected to: No Course Learning Outcome PLO			
learning outcomes	1 Through problem-based learning, students PLO-4			
	can apply the basics of logic and draw			
	conclusions and problems in the computer			
	field.			
	2 Through problem-based learning, students PLO-4			
	can apply combinatorial principles in real life			
	3 Through problem-based learning students PLO-4			
	can apply the principles of set theory in real			
	life			
Content	This course contains applied mathematics material, namely discrete			
	mathematics related to computer science such as logic, combinatorics,			
	set theory and recursive relations.			

Study and	Forms of examination:			
examination	No	Course Learning Outcome	Examination	
requirements and forms of Examination	1	Through problem-based learning, students can apply the basics of logic and draw conclusions and problems in the computer field.	Students Activity (10%) Presentation (10%) Cognitive Test (10%)	
	2	Through problem-based learning, students can apply combinatorial principles in real life	Students Activity (10%) Presentation (10%) Cognitive Test (15%)	
	3	Through problem-based learning students can apply the principles of set theory in real life	Students Activity (10%) Presentation (10%) Cognitive Test (15%)	
Media employed	LCD, Whiteboard, PowerPoint Slide Presentation, Practical Guidance Video, websites, etc.			
Reading list	 Grimaldi, R.P. Discrete and Combinatorial Mathematics 5th Ed. Pearson Education Inc. 2004 Rosen. K.H. Discret Mathematics and Its Application. The McGraw Hills Company. 1998 			