
Growth Budget Recommendations

The general scope of this project is to define *safe* growth recommendations for V0 of Pocket
Network. The recommendations are determined as of November 20th, 2021 with Pocket Core release
RC-0.6.4.

Disclaimer: The guidance below is subject to drastic change given future releases and new developments.

1) Data
This section outlines the raw data used in the analysis. It does not attempt to provide any illustration of
the recommended budget.

1.1) Merkle Sum Index Tree

Test_Name:

 Merkle_Tree

Pocket Core Version:

 RC-0.6.4

Environment:

 Name: Andrew’s Macbook Pro 2017

 Specs: 2.9 GHz Intel Core i7 - 16GB RAM

 Cloud Provider: N/A

 Methodology:

 Generate Relay Structures

 Use the Relays as leafs to the tree

 Generate the Merkle Root (Method 1 ‘to build the tree’)

 Generate the Merkle Proof (Method 2 ‘to build the tree’)

 Save the maximum time/memory benchmark

Data:

 1 Million Relays; 100MB of memory ~3 seconds to compute

 3 Million Relays; 285MB of memory ~14 seconds to compute

 5 Million Relays; 500MB of memory ~25 seconds to compute

 10 Million Relays; 1GB of memory but ~60 seconds to compute

Profiling:

 Go Tool PPROF; ZIP shared in discord

1.2) Block Size

Test_Name:

 Block_Size

Pocket Core Version:

 RC-0.6.4

 Methodology:

 Read the Tendermint Block Implementation

 Apply Pocket Network parameters to code findings

Environment:

 N/A

Data:

 MaxTxBytes = 4MB (Block Size) -

 (

 653 Bytes (Header Size)

 +

 11 Bytes (Amino Overhead)

 +

 NumOfValidators * 223 Bytes (Max_Vote Size)

 +

 NumOfEvidence * 484 Bytes (Max_Evidence Size)

)

Profiling:

 N/A

1.3) Relay RPC

Test_Name:

 Relay_RPC

Pocket Core Version:

 RC-0.6.4

Environment:

 Name: Recommended Lab 2

 Specs: 4vCPU - Intel(R) Xeon(R) CPU @ 2.80GHz - 8GB RAM

 Cloud Provider: GCP

 Methodology:

 Create a Golang Relay Generator Client

 Run a Single Node / Single App Network

 Send relays at varying rates to determine ‘stability’

Data:

​ No Artificial Response Processing -> GanacheCLI:

 695235 relays in 30m0.000715745s

 = 386.241513 Relays Per Second
 = 1.39 Million Relays Per Session

 0 failed relays out of 695235 total = 100% success rate

 CPU = ~55% Stable & Memory = ~42% Growing Slightly

 Artificial Response Processing -> 5 Seconds Per Relay:

 344735 relays in 30m0.000628043s

 = 191.519378 Relays Per Second
 = 689.5 Thousand Relays Per Session

 85 failed relays out of 344735 total = 0.999753 success rate

​ Mainnet Validator

 Artificial Response Processing -> 5 Seconds Per Relay:

 62069 relays in 30m0.000628043s

 = 34.482777 Relays Per Second
 = 124,138 Thousand Relays Per Session

 0 failed relays out of 62069 total = 100% success rate

Profiling:

 htop

1.4) Claim/Proof Per Block

Test_Name:

 Claim_Proof_Per_Block

Pocket Core Version:

 RC-0.6.4

Environment:

 N/A

Methodology:

 Generated ‘Ceiling’ Structures

 Marshal into bytes using proto

 Measure bytes with Len()

 Apply Block_Size & Max_Validators

Data:

 1 Million Relay Proof = 1884 bytes

 Largest Possible Claim = 401 bytes

 Max_Validators = 1K (Predetermined)

 Block_Size = 4MB (Predetermined)

 Block_Time = 15 Min

 = 3.77700MB space for Txs Per Block

 = 1,652 Claim + Proof Per Block

 = 6,611 Per Hour

 = 6,611,000,000 Relays Per Hour

Profiling:

 N/A

1.5) Session Generation

Test_Name:

 Session_Generation

Pocket Core Version:

 RC-0.6.4

Environment:

 Name: Recommended Lab 2

 Specs: 4vCPU - Intel(R) Xeon(R) CPU @ 2.80GHz - 8GB RAM

 Cloud Provider: GCP

 Methodology:

 Using IAVL ONLY (Disabled ALL Caches)

 Create IAVL Stores (Goleveldb)

 Set Y Applications

 Set Servicers

 Run X Dispatch Requests in a row

 Observe htop for resources

 TimeTrack individual dispatch calls

Data:

 Trial 1: 100K Servicers 5 Nodes Per Session; 100 Dispatches

 AvgDuration: 120 ms

 Resources: 136% CPU 4% memory

 Trial 2: 100K Servicers 10 Nodes Per Session; 100 Dispatches

 AvgDuration: 122 ms

 Resources: 142% CPU 6% memory

 Trial 3: 100K Servicers 50 Nodes Per Session; 100 Dispatches

 AvgDuration: 123 ms

 Resources: 142% CPU 6% memory

 Trial 4: 50K Servicers 5 Nodes Per Session: 200 Dispatches

 AvgDuration 57 ms

 Resources: 135% CPU 3% Memory

 Trial 5: 50K Servicers 10 Nodes Per Session: 200 Dispatches

 AvgDuration 58 ms

 Resources: 135% CPU 3% Memory

 Trial 6: 10K Servicers 5 Nodes Per Session; 1K Dispatches

 AvgDuration 8.5 ms

 Resources: 128% CPU 2% Memory

 Trial 7: 10K Servicers 10 Nodes Per Session: 1K Dispatches

 AvgDuration 8.5 ms

 Resources: 128% CPU 2% Memory

Profiling:

 Htop

1.6) State Growth
Test_Name:

 State_Growth

Pocket Core Version:

 RC-0.6.4

Environment:

 N/A

Methodology:

 Analyze the impact of each Message

 Generated ‘Ceiling’ Structures

 Marshal into bytes using proto

 Measure bytes with Len()

Data:

 Max Validator = 1012 Bytes

-​ Keys & Values for

-​ AllVals

-​ SigningInfo

-​ ValByChains (Max Chains)

-​ StakedVals

-​ PrevValPower

 NOTE: (Each additional chain adds 51 Bytes)

 Max Application = 273

-​ Keys & Values for

-​ AllApps

-​ StakedApps

 NOTE: (Each additional chain adds 6 Bytes)

 Profiling:

 N/A

2) Analysis
This section draws conclusions and makes claims based on the raw data in section 1.

Assumptions:

-​ RC-0.6.4 Software
-​ MaxValidators = 1K
-​ 5 minute processing time for all Sessions within a block
-​ Session Generation will always be 50% or more of block processing
-​ Submission of the ClaimProof remains probabilistically uniform
-​ Service Node count will be between 6K and 1 Million

Relay Limits Ordered By Maximum Possible

-​ ClaimProof Txs Per Block
-​ Merkle Tree
-​ RPC

If RPC is the bottleneck in MaxDailyRelays, then let’s start there.

-​ 100K Relays per Node per Hour at 30 relays per second

What’s the hourly hard limit on Claim+Proof (Active Nodes Per Session Period)?

-​ 6K Active Nodes per Session period

So given these two strict limitations, what’s the MaxDailyRelays possible for V0?

-​ Theoretically, 14 Billion

How much overhead does each ServiceNodes add?

-​ ~1.2 Microseconds for Session Processing
-​ ~1KB of State Data (Every block for RC-6.4)

Why do we care about Session Processing in terms of Block Time?

-​ Each Claim+Proof requires 1 session generation to validate the tx

of Service Nodes are currently deemed limitless, what exactly does the # of nodes affect?

-​ # of ServiceNodes affects Session Processing & Blockchain Size

How quickly would the blockchain be growing at 1 Million Service Nodes

-​ ~1 GB per Block with RC-0.6.4

If 5 Minutes is the assumed Sessions processing time per block, what’s max # of Sessions per
hour?

-​ 1K simultaneous Sessions at 1 Million Service Nodes

Does NodesPerSession affect SessionGeneration times?

-​ NodesPerSession <= 100 is not statistically significant for block processing

How can NodesPerSession be leveraged for scalability?

-​ Less Apps & More Nodes Per Session is better for block processing & blockchain data
-​ 1K Apps & 6 Nodes Per Session

-​ 5 Minute Processing Per Block & 237KB of State Data
-​ 500 Apps & 12 Nodes Per Session

-​ 2.5 Minute Processing Per Block & 119 KB of State Data
-​ 250 Apps & 24 Nodes Per Session

-​ 1.25 Minute Processing Per Block & 59 KB of State Data

What is the effect to the node runner of increasing NodesPerSession and lowering apps:

-​ Gateway has more nodes to cherry-pick. Assuming the relays are NOT maxed, the
cherry-picker will likely bias even more towards higher quality nodes compared to today.

3) Growth Budget

NumberActiveServiceNodes Per Session Hard
-​ 3K

NumberActiveServiceNodes Per Session Re-Evaluate

-​ 2K

Explanation: In RC-0.6.4, the block size is ~3.7MB for transactions. The amount of simultaneous
Service Nodes active per session is limited by the block size in that each individual node must submit
claim+proof transactions to receive rewards. If there are more than 3K active ServiceNodes per Session,
the Block Size is unable to safely support the amount of Claim+Proof transactions the network is
producing.

MaxRelays Hard

-​ 3 Billion Relays

MaxRelays Re-Evaluate

-​ 1 Billion Relays

Explanation: In RC-0.6.4, the amount of relays each individual node can do is currently limited by the
RPC. The number of individual nodes submitting claim+proof transactions to receive rewards is
limited by block size. Combining these two metrics, over 3 Billion relays the network will no longer be
able to support the capacity either by exceeding the safe RPC rate-limit or exceeding block size.

App:Node Ratio Hard

-​ 1:12+ (less than or equal to 250 Active Apps)
-​ 1 App for 24 Nodes Per Session

Explanation: In RC-0.6.4, the validation of Claim+Proof requires 1 Session Generation. Any amount
of NodesPerSession less than 100 is not statistically significant for Session Generation times, this may
be leveraged for scalability. By increasing the number of NodesPerSession, a smaller amount of unique
Sessions are needed to be generated during the validation. This means blocks are able to be processed
more efficiently as Session Generation is the bottleneck in Claim+Proof validation.

	1) Data
	1.1) Merkle Sum Index Tree
	1.2) Block Size
	1.3) Relay RPC
	
	1.4) Claim/Proof Per Block
	1.5) Session Generation
	1.6) State Growth

	2) Analysis
	3) Growth Budget

