Lesson 5.6 • Logarithmic Functions

Name Period Date

1. Write-an equation for the inverse-of each function.

a. $f(x) = 5^x$

b. $f(x) = \log_3 x$

c. \f(x) = \log x^

Rewrite each logarithmic equation in exponential form using the definition of logarithm. Then solve for x.

a. $\log_2 128 = x$

b. $\log_3 \frac{1}{81} = x$

c. $x = \log 0.001$

d. $\log_{12} \sqrt[4]{12} = x$

e. $x = \log_4 32$

f. $\log 1 = x$

 $g. x = \log_5 125$

 $h. \log_8 1 = x$

i. $\log_{20} 20 = x$

j. $\log_4 \frac{1}{16} = x$

k. $x = \log_9 \sqrt[3]{9}$

1. $x = \log 0.00001$

Find the exact value of each logarithm without using a calculatus...
 Write answers as integers or fractions in lowest terms.

Color

a. log₂8

b. log₃81

c. log₇49

d. $\log_5 \sqrt{5}$

e. $\log_3 \frac{1}{3}$ h. $\log_8 4$ f. $\log_2 \frac{1}{32}$

g. log₄8

i. log1,000,000,000

 Each graph is a transformation of either y = 10x or y = log x. Write the equation for each graph.

_Sw\$

b.

¢

Use the change-of-base property to solve each equation. (Round to four decimal places.)

$$a. \log_4 9 = x$$

b.
$$\log_5 120 = x$$

c.
$$\log_3 0.9 = x$$

d.
$$3^x = 21$$

e.
$$4^x = 99$$

g.
$$2^x = 1.5$$

$$h. 7^x = 4.88$$

$$1.2^{x} = 5.75$$

- j. $5^x = 0.75$
- k. $8^x = 0.523$
- 1. $20^x = 0.04$

definition of logarithm. Then solve for x.

the equation for each graph.

5. Use the change-of-base property to équatibfi. (Round to

four decimal places.)

©2004 Key Press

Lesson 5.4 • Applications of Exponential and Power Equations

Na	me	Period	Date
	. Solve each equation. If an	swers are not exact, approximate	them to the
	nearest hundredth.	owers are not exact, approximate	
-i.W	a. $x^4 = 48$	b. $\sqrt[3]{x} = 2.6$	c. $x^{2/3} = 8.75$
Pi	a. $x^4 = 48$ d. $x^{-1/4} = 0.2$	e. $0.75x^5 - 8 = -3$	f. $4(x^{5/6} + 7) = 159$
り	g. $128.5 = 36 \cdot x^{2.5}$	h. $224 = 200 \left(1 + \frac{x}{4}\right)^9$	i. $1500\left(1 + \frac{x}{12}\right)^{6.5} = 1525$
	. Rewrite each expression is		
	a. $(8x^9)^{2/3}$	b. $(81x^{12})^{3/4}$	c. $(49x^{-10})^{1/2}$
PICH	d. $(-27x^{-9})^{4/3}$ g. $(-216x^9)^{4/3}$	e. $(100,000x^{10})^{3/5}$	f. $(-125x^{-15})^{1/3}$
5	g. $(-216x^9)^{4/3}$	h. $(16x^{28})^{-5/4}$	i. $(-32x^{-30})^{-6/5}$
. 3	. Give the average annual ra Give your answers to the	ate of inflation for each situation nearest tenth of a percent.	described.
	a. The cost of a 20-ounce over 5 years.	box of cereal increased from \$4.	25 to \$5.50
	b. The cost of a gallon of 3 years.	milk increased from \$2.75 to \$3.	40 over
	c. The cost of a movie tic 10 years.	ket increased from \$6.00 to \$8.50) over
di	d. The monthly rent for \{\frac{1}{2}} \$75% over 4 years.	lector's apartment increased fron	n \$650 to .
),	e. The starting hourly was \$7.65 over 6 years.	ge for a salesclerk increased from	\$5.85 to
	f. The value of an antique 7 years.	table increased from \$3500 to \$	5700 over
4. : R	been leaving the area. The	town has been declining because population was 23,000 in 1996 a opulation is decreasing exponen	nd 18,750
Spo	a. Define variables and wr in this town in a partic	ite an equation that models the palar year.	copulation
	b. Use your model to pred	ict the population in 2004.	
	c. According to your mod	el, in what year will the population	on first fall

Equations

Name

1.

Period Date

Solve equatioi1_." If answers are not exact, approximate them to the

. Rewrite each expression i_n the form ax".

Giiéayour answers to the nearest te1Yth_ of a percent.

. Gixfe the average annual rate of for each situation des ribed.

answers to the nearest te1Yth_ of a percent. 4/ "a. The'-cost of a 20~0unce box of cereapincreased from \$5 .25 to 535.5%

beenLle;1ving the area. fie population was 23:O00 1996 arid 18,750 in 2001. Assume thayff"the is decreasing exponentially.

c. ACCOT(ii'£g to yduf model, in what year will the population first fall

be10j;:\f"12,000?

Discovering Advanced Algebra More Practice Your Skilis"

- , CHAPTER 5
- -- K - - . ' ©2004 Key-Curriculum Press

Lesson 5.7 • Properties of Logarithms

Name		Period	Date				
•	annessian balani ii	ising properties of					
logarithms or exponents.	nange the form of each expression below using properties of garithms or exponents. Name each property you use.						
a. $\log r - \log s$	b. $(x^y)^z$		c. $\frac{1}{a^b}$				
d. log,s	e. q ^{a+b}		f. $\log_b x^m$				
S g. (cd) ^m	h. $\log_b xy$		$i_r \left(\frac{r}{s}\right)^{m}$				
j. c ^{m/n}	$k \frac{\log_a x}{\log_a y}$		1. $t \log_a y$				
Determine whether each	equation is true or						
$a. \log 45 = \log 5 + \log 9$		b. $\log 8 = \frac{\log 32}{\log 4}$					
c. $\log_5 9 - \log_5 2 = \log_5 2$	4.5	d. $\log 32 = \frac{1}{5} \log 32$	g2				
e. $\log_5 9 - \log_5 2 - \log_8 8$ e. $\log 12 - \log 4 = \log 8$ g. $\log 4 = \frac{2}{3} \log 8$		f. $\log \frac{1}{5} = \frac{1}{\log 5}$					
χ g $\log 4 = \frac{2}{3} \log 8$		h. $\log \sqrt[3]{5} = \frac{1}{3}$	og5				
i. $\log_2 \frac{1}{81} = -2 \log_2 9$		j. $\log \sqrt{6} = -2$	2 log 6				
$k. \log 75 = 3 \log 25$		L log ₃ 15 - log	₃ 5 = 1				
3. Write each expression as constants times logarithm	ns). Simplify the res	ult if possible.					
2 a. logxyz	b. $\log_2 \frac{xy}{z}$		c. $\log \frac{p^2}{q^3}$				
a. $\log xyz$ d. $\log_5 \frac{a\sqrt{b}}{c^4}$	e. $\log_4(\sqrt{r}$	$\cdot\sqrt[3]{s}\cdot\sqrt[4]{t^3}$	c. $\log \frac{p^2}{q^3}$ f. $\log_3 \left(\frac{\sqrt[3]{abc}}{\sqrt[4]{x}} \right)$				
4. Solve each equation. (Ro	und answers to the	nearest hundredt	1.)				

Name Period

b.
$$82 + 2.5^x = 130$$
 c. $32(0.87)^x = 260$

c.
$$32(0.87)^x = 260$$

d.
$$48(1.04)^x = 90$$

e.
$$32 + 16(1.035)^x = 315$$
 f. $105 + 30(0.95)^x = 210$

f.
$$105 + 30(0.95)^x = 210$$

- 1. Change the form of each expression below using properties of logarithms or exponents. Name each property you use.
- a. logr M logs
- 3. Write each expression as a sum or difference of logarithms (or constants times .1ogarith1ns). Simplify the result if possible.
- d. 1035?

Date

CHAPTER 5 33

Lesson 5.2 • Properties of Exponents and Power Functions

Name	Period	Date	
	 	 	-

1. Rewrite each expression as a fraction without exponents. Verify that your answer is equivalent to the original expression using your calculator.

d.
$$25^{-1}$$

h.
$$(-4)^{-4}$$

j.
$$\left(\frac{1}{2}\right)^{-1}$$

k.
$$-\left(\frac{3}{5}\right)^{-}$$

1.
$$\left(-\frac{5}{6}\right)^{-}$$

Rewrite each expression in the form xⁿ or axⁿ.

b.
$$x^{12} \cdot x^{-5}$$

c.
$$x^{-10} \cdot x^{-}$$

e.
$$(-10x^{-8})(-12x^{-3})$$

h. $\frac{-88x^{10}}{-8x^3}$

f.
$$(8x^{-6})(-15x^{-14})$$

$$g. \frac{x^9}{x^{-9}}$$

$$h = \frac{-88x^{10}}{-8x^3}$$

i.
$$\frac{35x^0}{25x^{-5}}$$

$$j_* \left(\frac{x^{-8}}{x^{-9}}\right)^2$$

k.
$$\left(\frac{-35x^7}{-7x^2}\right)^3$$

1.
$$\left(\frac{40x^{-8}}{-8x^{-2}}\right)^{-3}$$

a.
$$2^x = \frac{1}{32}$$

b.
$$125^x = 25$$

c.
$$3^x = \frac{1}{81}$$

$$d. \left(\frac{1}{2}\right)^x = 128$$

$$e_* \left(\frac{4}{9}\right)^x = \frac{81}{16}$$

$$f_{\cdot} \left(\frac{1}{8}\right)^x = \frac{1}{16}$$

4. Solve each equation. If answers are not exact, approximate them to two decimal places.

a.
$$x^5 = 895$$

b.
$$x^{0.8} = 45$$

c.
$$x^{-3} = 1234$$

d.
$$6x^{1.5} = 80$$

e.
$$20x^{1/2} - 8 = 4.5$$

f.
$$5x^{-1/3} = 0.06$$

$$g. 8x^9 = 6x^6$$

b.
$$15x^{-3} = 10x^{-2}$$

i.
$$200x^{-1} = 125x^{-3}$$

. Name u . . __Périoc_i l Date

- 1. Rewrite each efcpression as a fraction without exponents. Verify that your answer is equivalent to the original expression using your
- 2. Rewrite each expression in the form x" or ax".

"K ©2004 Key Curriculum Press

Lesson 5.3 · Rational Exponents and Roots

1. Identify each function as a power function, an exponential function, or neither of these. (It may be translated, stretched, or reflected.)

a.
$$f(x) = 2^x$$

b.
$$f(x) = x^2 - 2x + 3$$

c.
$$f(x) = 0.5x^3 - 4$$

d.
$$f(x) = \frac{1}{3^x}$$

e.
$$f(x) = \frac{1}{x} + 2$$

b.
$$f(x) = x^2 - 2x + 3$$
 c. $f(x) = 0.5x^3 - 4$ e. $f(x) = \frac{1}{x} + 2$ f. $f(x) = \frac{1}{2x^2 - x}$

2. Rewrite each expression in the form b^x in which x is a rational

a.
$$\sqrt[4]{b}$$

b.
$$\sqrt{c^3}$$

d.
$$\frac{1}{\sqrt[3]{a}}$$

e.
$$(\sqrt[3]{d})^4$$

f.
$$\frac{1}{\sqrt{r^5}}$$

3. Solve each equation. If answers are not exact, approximate them to the nearest hundredth.

a.
$$\sqrt[5]{x} = 12$$

b.
$$\sqrt[3]{x^2} = 5.5$$

c.
$$\sqrt[5]{x^3} = 27$$

$$d. \frac{1}{\sqrt{x}} = 0.77$$

e.
$$\sqrt{8x^3} = 20$$

b.
$$\sqrt[3]{x^2} = 5.5$$
 c. $\sqrt[5]{x^3} = 27$
e. $\sqrt{8x^3} = 20$ f. $4\sqrt[3]{x} + 18 = 32$
e -15 h. $\sqrt[3]{4x^2} + 8.5 = 19.8$ i. $\sqrt[8]{x^5} = 12.75$

g.
$$\sqrt[5]{x^3} - 23 = -15$$

h.
$$\sqrt[3]{4x^2} + 8.5 = 19.8$$

i.
$$\sqrt[8]{x^5} = 12.75$$

4. Each of the following graphs is a transformation of the power function $y = x^{3/2}$. Write the equation for each curve.

- 1. Identify each Tunction as a power function, an exponential function, or neither of these. (It may be 'translated, stretched, or reflected.)
- 2. Rewrite each expression in the form bx x is a rational exponent.

nearest hundredth.

C. I 27

4. Each of the following graphs is a transformation of the power

function y = x3/2. Write the equation for each curve.

©2004 Key Curriculum Press

29