Folder Structure
express-mongo-crud/

|

— server.js

— models/

| L— Student.js
— public/

| L— index.html

L— package.json

Install Dependencies

Open VS Code terminal:

mkdir express-mongo-crud
cd express-mongo-crud
npm init -y

npm install express mongoose body-parser cors nodemon

Edit package. json and add:
"scripts": {

"start”: "nodemon server.js"

Create Mongoose Schema — models/Student. js
// models/Student.js

const mongoose = require('mongoose’);

const studentSchema = new
mongoose.Schema ({

name: { type: String, required:
true },
age: { type: Number, required: true

¥

course: { type: String, required:
true }

+)

module.exports =
mongoose.model('Student’,
studentSchema) ;

Server Code — server. js
// server.js

const express = require('express');

const mongoose = require('mongoose');

const bodyParser =
require('body-parser');

const cors = require('cors');
const path = require('path');

const Student =
require('./models/Student"');

const app = express();
const PORT = 5000;

// Middleware
app.use(bodyParser.json());
app.use(cors());

app.use(express.static(path.join(__dirnam
e, 'public')));

// MongoDB Connection

mongoose.connect('mongodb://127.0.0.1:270
17/studentDB', {

useNewUrlParser: true,

useUnifiedTopology: true,

})

mongoose.connection.on('connected’', () =>
console.log('MongoDB Connected'));

mongoose.connection.on('error', (err) =>
console.log('MongoDB Error:', err));

// ROUTES

// Create

app.post('/students', async (req, res) =>

{

try {

const student = new
Student(req.body) ;

const saved = await student.save();
res.status(201).json(saved);
} catch (err) {

res.status(400).json({ error:
err.message });

}

})

// Read all

app.get('/students', async (req, res) =>
{

try {

const students = await
Student.find();

res.json(students);
} catch (err) {

res.status(500).json({ error:
err.message });

// Update by ID

app.put('/students/:id', async (req, res)
:>{
try

const updated = await
Student.findByIdAndUpdate(req.params.id,
req.body, { new: true });

res.json(updated);
} catch (err) {

res.status(400).json({ error:
err.message });

}
})

// Delete by ID
app.delete('/students/:id', async (req,
res) =>

try {

await
Student.findByIdAndDelete(req.params.id);

res.json({ message: 'Deleted
successfully' });

} catch (err) {

res.status(500).json({ error:
err.message });

})

// Server start

app.listen(PORT, () => console.log("
Server running on

http://localhost:${PORT}"));

Frontend — public/index.html
This version displays all records in a table, allows add, update, and delete.

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<title>Student CRUD App</title>
<style>

body { font-family: Arial; background: #f4f4f4; margin:
30px; }

input, button { padding: 8px; margin: 4px; }
button { cursor: pointer; }

table { border-collapse: collapse; width: 100%; margin-top:
20px; background: white; }

th, td { border: 1px solid #ddd; padding: 8px; text-align:
left; }

th { background-color: #009879; color: white; }

</style>
</head>
<body>
<h1>@® Student Management (MongoDB + Express)</h1>

<div>
<input id="name" placeholder="Name">
<input id="age" type="number" placeholder="Age">
<input id="course" placeholder="Course">
<button onclick="addStudent()">Add Student</button>

</div>

<table>
<thead>
<tr>
<th>Name</th><th>Age</th><th>Course</th><th>Actions</th>
</tr>
</thead>
<tbody id="studentList"></tbody>
</table>

<script>

const apiUrl = '/students';

async function loadStudents() {
const res = await fetch(apiUrl);

const students = await res.json();

const tbody = document.getElementById('studentList');
tbody.innerHTML = students.map(s => °
<tr>
<td>${s.name}</td>
<td>${s.age}</td>
<td>${s.course}</td>
<td>

<button onclick="editStudent('S${s._id}",
'S{s.name}', S{s.age}, 'S{s.course}')">Edit</button>

<button
onclick="deleteStudent('S{s._id}')">Delete</button>

</td>
</tr>

). join("1);

async function addStudent() {
const name = document.getElementById('name').value;
const age = document.getElementById('age').value;

const course = document.getElementById('course').value;

await fetch(apiUrl, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ name, age, course })

1)
loadStudents();

async function deleteStudent(id) {

await fetch(S{apiUrl}/S${id} ", { method: 'DELETE' });
loadStudents();

async function editStudent(id, name, age, course) {
const newName = prompt("Edit name:", name);
const newAge = prompt("Edit age:", age);

const newCourse = prompt("Edit course:", course);

await fetch(S{apiUrl}/s${id} ", {
method: 'PUT',
headers: { 'Content-Type': 'application/json' },

body: JSON.stringify({ name: newName, age: newAge,
course: newCourse })

1)
loadStudents();

loadStudents();
</script>
</body>
</html>

	Folder Structure
	 Install Dependencies
	Create Mongoose Schema — models/Student.js
	Server Code — server.js
	Frontend — public/index.html
	

