
Folder Structure
express-mongo-crud/

│

├── server.js

├── models/

│ └── Student.js

├── public/

│ └── index.html

└── package.json

 Install Dependencies

Open VS Code terminal:

mkdir express-mongo-crud

cd express-mongo-crud

npm init -y

npm install express mongoose body-parser cors nodemon

Edit package.json and add:

"scripts": {

 "start": "nodemon server.js"

}

Create Mongoose Schema — models/Student.js
// models/Student.js

const mongoose = require('mongoose');

const studentSchema = new
mongoose.Schema({

 name: { type: String, required:
true },

 age: { type: Number, required: true
},

 course: { type: String, required:
true }

});

module.exports =
mongoose.model('Student',
studentSchema);

Server Code — server.js
// server.js

const express = require('express');

const mongoose = require('mongoose');

const bodyParser =
require('body-parser');

const cors = require('cors');

const path = require('path');

const Student =
require('./models/Student');

const app = express();

const PORT = 5000;

// Middleware

app.use(bodyParser.json());

app.use(cors());

app.use(express.static(path.join(__dirnam
e, 'public')));

// MongoDB Connection

mongoose.connect('mongodb://127.0.0.1:270
17/studentDB', {

 useNewUrlParser: true,

 useUnifiedTopology: true,

});

mongoose.connection.on('connected', () =>
console.log('MongoDB Connected'));

mongoose.connection.on('error', (err) =>
console.log('MongoDB Error:', err));

// ROUTES

// Create

app.post('/students', async (req, res) =>
{

 try {

 const student = new
Student(req.body);

 const saved = await student.save();

 res.status(201).json(saved);

 } catch (err) {

 res.status(400).json({ error:
err.message });

 }

});

// Read all

app.get('/students', async (req, res) =>
{

 try {

 const students = await
Student.find();

 res.json(students);

 } catch (err) {

 res.status(500).json({ error:
err.message });

 }

});

// Update by ID

app.put('/students/:id', async (req, res)
=> {

 try {

 const updated = await
Student.findByIdAndUpdate(req.params.id,
req.body, { new: true });

 res.json(updated);

 } catch (err) {

 res.status(400).json({ error:
err.message });

 }

});

// Delete by ID

app.delete('/students/:id', async (req,
res) => {

 try {

 await
Student.findByIdAndDelete(req.params.id);

 res.json({ message: 'Deleted
successfully' });

 } catch (err) {

 res.status(500).json({ error:
err.message });

 }

});

// Server start

app.listen(PORT, () => console.log(`
Server running on
http://localhost:${PORT}`));

Frontend — public/index.html

This version displays all records in a table, allows add, update, and delete.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Student CRUD App</title>

 <style>

 body { font-family: Arial; background: #f4f4f4; margin:
30px; }

 input, button { padding: 8px; margin: 4px; }

 button { cursor: pointer; }

 table { border-collapse: collapse; width: 100%; margin-top:
20px; background: white; }

 th, td { border: 1px solid #ddd; padding: 8px; text-align:
left; }

 th { background-color: #009879; color: white; }

 </style>

</head>

<body>

 <h1>🎓 Student Management (MongoDB + Express)</h1>

 <div>

 <input id="name" placeholder="Name">

 <input id="age" type="number" placeholder="Age">

 <input id="course" placeholder="Course">

 <button onclick="addStudent()">Add Student</button>

 </div>

 <table>

 <thead>

 <tr>

 <th>Name</th><th>Age</th><th>Course</th><th>Actions</th>

 </tr>

 </thead>

 <tbody id="studentList"></tbody>

 </table>

 <script>

 const apiUrl = '/students';

 async function loadStudents() {

 const res = await fetch(apiUrl);

 const students = await res.json();

 const tbody = document.getElementById('studentList');

 tbody.innerHTML = students.map(s => `

 <tr>

 <td>${s.name}</td>

 <td>${s.age}</td>

 <td>${s.course}</td>

 <td>

 <button onclick="editStudent('${s._id}',
'${s.name}', ${s.age}, '${s.course}')">Edit</button>

 <button
onclick="deleteStudent('${s._id}')">Delete</button>

 </td>

 </tr>

 `).join('');

 }

 async function addStudent() {

 const name = document.getElementById('name').value;

 const age = document.getElementById('age').value;

 const course = document.getElementById('course').value;

 await fetch(apiUrl, {

 method: 'POST',

 headers: { 'Content-Type': 'application/json' },

 body: JSON.stringify({ name, age, course })

 });

 loadStudents();

 }

 async function deleteStudent(id) {

 await fetch(`${apiUrl}/${id}`, { method: 'DELETE' });

 loadStudents();

 }

 async function editStudent(id, name, age, course) {

 const newName = prompt("Edit name:", name);

 const newAge = prompt("Edit age:", age);

 const newCourse = prompt("Edit course:", course);

 await fetch(`${apiUrl}/${id}`, {

 method: 'PUT',

 headers: { 'Content-Type': 'application/json' },

 body: JSON.stringify({ name: newName, age: newAge,
course: newCourse })

 });

 loadStudents();

 }

 loadStudents();

 </script>

</body>

</html>

	Folder Structure
	 Install Dependencies
	Create Mongoose Schema — models/Student.js
	Server Code — server.js
	Frontend — public/index.html
	

