Namo			Physics 11	
Name:		Friction Activity	Filysics 11	
Purpose of this Activity:	1) How does changing the normal force affect friction?2) How does changing the contact area affect friction?3) How does changing the speed affect friction?			
Procedure: Measure the length, width, a	and height of the bloo	ck. Calculate the area of the 2 largest	faces.	
Length:	Width:	Height:		
Area of Largest Face =		Area of 2 nd Largest Face =		
Find the weight of the block, then calculating the weight.	either by measuring	; it in Newtons, or by measuring the b	llock's mass and	
F _g =	_·			
_	•	and use the spring scale to pull it <i>slow</i> 1 cm/s. What was the average force t	, -	
F _{app} =	·			
Fill out the table for case 1 o	n the last page. Ignor	re the last column for now.		
Case 2: Now, add another 1 l Repeat the experiment.	kg of masses to the b	olock. You should now have a total of	2 kg on your block.	
F _{app} =	·			
Below, draw a free body diag	gram for the block in	your experiment.		
When you add mass to the b force? Answer by circling the		to the normal force? What happens w.	to the friction	

The normal force... goes up / goes down / stays pretty much the same (circle one)

The friction force goes up / goes down / stays pretty much the same (circle one) Fill out the table for case 2 on the last page. Ignore the last column for now.							
Case 3: Now go back to only 1 kg of masses. This time, orient the block so that the 2^{nd} largest face is against the table. Repeat the experiment.							
F _{app} =							
Fill out the table for case 3 on the last page. Ignore the last column for now.							
Does the area in contact with the desk affect the force of friction significantly? Explain.							
Case 4: Place the block back on the largest face again with 1 kg of masses on top. Repeat the experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> !							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at constant velocity!							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \underline{\hspace{1cm}}.$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! $\mathbf{F}_{app} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$							
Experiment, but pull much faster (aim for about 10 cm/s). Make sure you still pull at <i>constant velocity</i> ! Fapp= Fill out the table for case 4 on the last page. Ignore the last column for now. Does the speed of the block have a significant effect on the force of friction? Explain. Case 5: Finally, without moving the block, and leaving the 1 kg of masses on top, see how hard you can pull on it <i>before it starts to move</i> . Try this a few times and see how big of a force you can get. When an							

calculated by dividing the force of friction by the normal for each of the situations you measured. Show your work.	rce. Below, calculate the coefficient of frictior
Case 1: Starting Point	
	μ=
Case 2: Increased F _n	
	μ=
Case 3: Decreased Area	
	μ=
Case 4: Increased Speed	
	μ=
Case 5: Static	
	μ=

Add the values of $\boldsymbol{\mu}$ that you calculated to the last column of the table.

The coefficient of friction, represented by the greek letter μ , tells us how "grippy" something is. It is

Calculations:

Summary Table

	Fg	F _n	F _{app}	F _f	μ
Case 1					
(Starting point)					
Ca					
Case 2					
(Increased F _n)					
Case 3					
(Decreased area)					
Case 4					
(Increased Speed)					
Case 5					
(Static)					