
FSS

Factory Statistics

1

FSS

 ABSTRACT

 Factory Statistics System is a web tool for maintaining factories in the

globe. This system has been designed to maintain a comprehensive database of factories, including the

details of workers employed, accidents, poisoning and diseases, safety measures adopted, etc. Monitor

implementation of Factories Act .Produce statistical reports on the functioning of factories.

 These Applications provide information you won't find elsewhere because

these companies are not obligated to report this information to anyone. We provide profiles on more

private companies than any other information provider on the web.

Public Company Profiles - Every public company worldwide is profiled in the Goliath database. We are

unique in that we offer profiles by company and by subsidiaries within those companies, vs. our

competitors who provide profiles by individual office. Our profiles aggregate offices by subsidiary to

save you money and time.

2

FSS

INDEX

 S. No CONTENTS

​ ​

1. INTRODUCTION​

 2. ANALYSIS

 2.1 SYSTEM ANALYSIS

 2.2 SYSTEM SPECIFICATIONS

 3. DESIGN APPROACH

​​​ ​ 3.1 INTRODUCTION TO DESIGN

​​ 3.2 UML DIAGRAMS

​​ 3.3 DATA FLOW DIAGRAMS

​​ 3.4 E-R DIAGRAMS

 4. PROJECT MODULES

 5. IMPLEMENTATION

​​ 5.1 CONCEPTS AND TECHNIQUES

​​ 5.2 TESTING

​​ 5.2.1 TEST CASES

 6. OUTPUT SCREENS​

 7. CONCLUSION

 8. FUTURE ENHANCEMENTS

3

FSS

 9. BIBILIOGRAPHY

4

FSS

 INTRODUCTION:

 Factory Statistics System consists of list of records about the management of

the factories .This is a web-based application. The project has three modules namely-Administrator,

Reports, Factory information.

 As the modern organizations are automated and computers are working as per the

instructions, it becomes essential for the coordination of human beings, commodity and computers in a

modern organization. Administrators of the project need to maintain the information of the factories

very accurately and up to date. This information helps the other officer to handle and complete their

works very efficiently.

 The administrators and all the others can communicate with the system through

this projects, thus facilitating effective implementation and monitoring of various activities of the

project. This project consists the details of various factories.

 In this system we are maintaining the Director login and how to factory

registration, no of factories, Add accident & Inception, closed &Remove factories, Add conventions,

and Add annual returns.

5

FSS

6

FSS

 SYSTEM ANALYSIS:

Existing System:

 The present system deals with day to day work of factory system. So monitoring the

stock levels is very difficulty. Maintain the necessary activity schedule of different maintenance works

in the factories and other related structures is also very difficult. It is very difficulties calculate the

amount of work to be done under each maintenance cost of various activities.Retrieving previous data

is quite difficult and also the cost involved in maintaining the records is very costly. So computerization

is very much necessary.

Proposed System:

 The proposed system maintains the necessary activity schedule of different

maintenance works in the factories and other related structures. It also keeps track of various

maintenance activities carried out in the past by the responsible maintenance authority at various levels.

This System will also facilitate the user to draw a schematic and calculate the amount of work to be

done under each maintenance cost of various activities and facilitates the user to add, modify, query,

delete and prioritize the maintenance activities

Objective of The System:

 This system has been designed to maintain a comprehensive database of factories,

including the details of workers employed, accidents, poisoning and diseases, safety measures adopted,

7

FSS

etc. Monitor implementation of Factories Act .Produce statistical reports on the functioning of

factories.

 System Specifications

 Hardware Requirements:

▪​ Pentium-IV(Processor).

▪​ 256 MB Ram

▪​ 512 KB Cache Memory

▪​ Hard disk 10 GB

▪​ Microsoft Compatible 101 or more Key Board

Software Requirements:

▪​ Operating System : Windows XP

▪​ Programming language: C#

▪​ Web-Technology: ASP.NET 2.0

▪​ Back-End: SQL-SERVER 2005

8

FSS

▪​ Web Server: IIS

.

9

FSS

 INTRODUCTION:

 Design is the first step in the development phase for any techniques and

principles for the purpose of defining a device, a process or system in sufficient detail to permit its

physical realization.

 Once the software requirements have been analyzed and specified the

software design involves three technical activities - design, coding, implementation and testing that are

required to build and verify the software.

 The design activities are of main importance in this phase, because in this

activity, decisions ultimately affecting the success of the software implementation and its ease of

maintenance are made. These decisions have the final bearing upon reliability and maintainability of

the system. Design is the only way to accurately translate the customer’s requirements into finished

software or a system.

 Design is the place where quality is fostered in development. Software

design is a process through which requirements are translated into a representation of software.

10

FSS

Software design is conducted in two steps. Preliminary design is concerned with the transformation of

requirements into data.

UML Diagrams:

 Actor:​

 ​ A coherent set of roles that users of use cases play when interacting with the use

`cases.

 Use case:

 A description of sequence of actions, including variants, that a

system performs that yields an observable result of value of an actor.​

11

FSS

UML stands for Unified Modeling Language. UML is a language for specifying, visualizing and

documenting the system. This is the step while developing any product after analysis. The goal from

this is to produce a model of the entities involved in the project which later need to be built. The

representation of the entities that are to be used in the product being developed need to be designed.

​ ​

There are various kinds of methods in software design:

They are as follows:

�​ Use case Diagram

�​ Sequence Diagram

�​ Collaboration Diagram

�​ Activity Diagram

�​ State chat Diagram

USECASE DIAGRAMS:​

​ ​

Use case diagrams model behavior within a system and helps the developers understand of

what the user require. The stick man represents what’s called an actor.

12

FSS

​ ​ Use case diagram can be useful for getting an overall view of the system and

clarifying who can do and more importantly what they can’t do.

​ ​ Use case diagram consists of use cases and actors and shows the interaction

between the use case and actors.

●​ The purpose is to show the interactions between the use case and actor.

●​ To represent the system requirements from user’s perspective.

●​ An actor could be the end-user of the system or an external system.

USECASE DIAGRAM:

A Use case is a description of set of sequence of actions. Graphically it is rendered as an

ellipse with solid line including only its name. Use case diagram is a behavioral diagram

that shows a set of use cases and actors and their relationship. It is an association

between the use cases and actors. An actor represents a real-world object. Primary Actor

– Sender, Secondary ActorReceiver.

13

FSS

SEQUENCE DIAGRAM:

Sequence diagram and collaboration diagram are called INTERACTION

DIAGRAMS. An interaction diagram shows an interaction, consisting of set of objects

and their relationship including the messages that may be dispatched among them.

​ A sequence diagram is an introduction that empathizes the time ordering of

messages. Graphically a sequence diagram is a table that shows objects arranged along

the X-axis and messages ordered in increasing time along the Y-axis

14

FSS

15

FSS

COLLABORATION DIAGRAM:

16

FSS

A collaboration diagram is an introduction diagram that emphasizes the structural organization

of the objects that send and receive messages. Graphically a collaboration diagram is a collection of

vertices and arcs.

CLASS DIAGRAM:

​ Class is nothing but a structure that contains both variables and methods. The Class Diagram shows

a set of classes, interfaces, and collaborations and their relating ships. There is most common diagram

in modeling the object oriented systems and are used to give the static view of a system. It shows the

dependency between the classes that can be used in our system.

The interactions between the modules or classes of our projects are shown below. Each block

contains Class Name, Variables and Methods.

CLASS:

 A description of set of objects that share the same attributes, operations,

relationships, and semantics.

State Chart Diagram

17

FSS

DATA FLOW DIAGRAMS:

18

FSS

 The DFD takes an input-process-output view of a system i.e. data objects flow into the

software, are transformed by processing elements, and resultant data objects flow out of the software.

 Data objects represented by labeled arrows and transformation are represented by

circles also called as bubbles. DFD is presented in a hierarchical fashion i.e. the first data flow model

represents the system as a whole. Subsequent DFD refine the context diagram (level 0 DFD), providing

increasing details with each subsequent level.

 The DFD enables the software engineer to develop models of the information domain &

functional domain at the same time. As the DFD is refined into greater levels of details, the analyst

perform an implicit functional decomposition of the system. At the same time, the DFD refinement

results in a corresponding refinement of the data as it moves through the process that embody the

applications.

 A context-level DFD for the system the primary external entities produce information

for use by the system and consume information generated by the system. The labeled arrow represents

data objects or object hierarchy.

RULES FOR DFD:

�​ Fix the scope of the system by means of context diagrams.

�​ Organize the DFD so that the main sequence of the actions

19

FSS

�​ Reads left to right and top to bottom.

�​ Identify all inputs and outputs.

�​ Identify and label each process internal to the system with Rounded circles.

�​ A process is required for all the data transformation and Transfers. Therefore, never

connect a data store to a data Source or the destinations or another data store with just

a Data flow arrow.

�​ Do not indicate hardware and ignore control information.

�​ Make sure the names of the processes accurately convey everything the process is

done.

�​ There must not be unnamed process.

�​ Indicate external sources and destinations of the data, with Squares.

�​ Number each occurrence of repeated external entities.

20

FSS

�​ identify all data flows for each process step, except simple Record retrievals.

�​ Label data flow on each arrow.

�​ Use details flow on each arrow.

�​ Use the details flow arrow to indicate data movements.

E-R Diagrams:

 The Entity-Relationship (ER) model was originally proposed by Peter in 1976 [Chen76] as a way to

unify the network and relational database views. Simply stated the ER model is a conceptual data

model that views the real world as entities and relationships. A basic component of the model is the

Entity-Relationship diagram which is used to visually represents data objects. Since Chen wrote his

paper the model has been extended and today it is commonly used for database design For the database

designer, the utility of the ER model is:

●​ it maps well to the relational model. The constructs used in the ER model can easily be transformed

into relational tables.

●​ it is simple and easy to understand with a minimum of training. Therefore, the model can be used by

the database designer to communicate the design to the end user.

●​ In addition, the model can be used as a design plan by the database developer to implement a data

model in a specific database management software.

21

FSS

Connectivity and Cardinality

The basic types of connectivity for relations are: one-to-one, one-to-many, and many-to-many. A

one-to-one (1:1) relationship is when at most one instance of a entity A is associated with one instance

of entity B. For example, "employees in the company are each assigned their own office. For each

employee there exists a unique office and for each office there exists a unique employee.

A one-to-many (1:N) relationships is when for one instance of entity A, there are zero, one, or

many instances of entity B, but for one instance of entity B, there is only one instance of entity A. An

example of a 1:N relationships is

a department has many employees

each employee is assigned to one department

A many-to-many (M:N) relationship, sometimes called non-specific, is when for one instance of

entity A, there are zero, one, or many instances of entity B and for one instance of entity B there are

zero, one, or many instances of entity A. The connectivity of a relationship describes the mapping of

associated

ER Notation

 There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation. The original notation used by Chen is widely used in academics

texts and journals but rarely seen in either CASE tools or publications by non-academics. Today, there

are a number of notations used, among the more common are Bachman, crow's foot, and IDEFIX.

 All notational styles represent entities as rectangular boxes and relationships as lines

connecting boxes. Each style uses a special set of symbols to represent the cardinality of a connection.

The notation used in this document is from Martin. The symbols used for the basic ER constructs are:

22

FSS

●​ entities are represented by labeled rectangles. The label is the name of the entity. Entity names

should be singular nouns.

●​ relationships are represented by a solid line connecting two entities. The name of the relationship is

written above the line. Relationship names should be verbs

●​ attributes, when included, are listed inside the entity rectangle. Attributes which are identifiers are

underlined. Attribute names should be singular nouns.

●​ cardinality of many is represented by a line ending in a crow's foot. If the crow's foot is omitted, the

cardinality is one.

●​ existence is represented by placing a circle or a perpendicular bar on the line. Mandatory existence

is shown by the bar (looks like a 1) next to the entity for an instance is required. Optional existence

is shown by placing a circle next to the entity that is optional

23

FSS

 PROJECT MODULES

There are seven modules involved in this project:

�​ Administration

�​ Reports

�​ Factory Info

MODULE DESCRIPTION

24

FSS

Name of the module-1: Administration

Description: This module deals with registering the director or the administrator where he

can process and update factory info regularly.

Submodules:

▪​ Registration

▪​ Factories List

▪​ Add Or Remove Factories

Registration:

 In this sub module the admin/director must be register. Only the register users

can access the information for others the access will be denied.

Factories List:

 In this sub module the list of factories is displayed. The admin will update the

factories list.

 Add or Remove Factories:

 In this sub module the admin will remove the closed factories

and will add the newely opened factories.

Name of the module-2: Reports

25

FSS

Description:

 This module helps in having detailed statistical reports of the factory based

on the performance level or time period and profit based charts.

Reports:

●​ List of Factories registered and workers employed in these factories.
●​ List of factories carrying on dangerous processes and the no. of workers employed in

these factories.
●​ Statement showing the no. of working factories and the employment in these factories.
●​ Statement of distribution of working factories submitting the returns and their working

strength.
●​ Statement of the distribution of working factories submitting the returns based on the no.

of days worked.
●​ Statement of the fatal and non fatal accidents in factories.
●​ Statement of accidents by causes.
●​ Statement of accidents by age and sex
●​ Statement of Number of cases of poisoning & disease notified under section 89
●​ Statement of distribution of factories and employment based on the average no. of

hours/week worked.
●​ Statement of inspections carried out.
●​ Statement of convictions.
●​ Statement showing the facilities available at each factory like the rest room,

ambulance, canteens etc.

Name of the module-3: Factory Info

Description:

This module is the main module where we maintain the total information of

different factories like profit/ loss since 5 years ,shares info,etc,.

Submodules: .

●​ Details of annual returns.

26

FSS

●​ Details of half yearly returns

●​ Convictions

●​ Inspections carried out at different factories.

Details Of Annual Returns:

 In this submodule the details of annual returns of a factory

are displayed. Based on this we can know the condition of the factory whether it is in

profit/loss.

 Details Of Half Yearly Returns:

 In this submodule the details of annual returns of a

factory are displayed. Based on this we can know the condition of the factory whether it is

in profit/loss.

Convictions:

 In this submodule we can see the conviction details of a certain factory.

27

FSS

 OVERVIEW OF TECHNOLOGIES USED

 3.1 Front End Technology

Microsoft .NET Framework

The .NET Framework is a new computing platform that simplifies application

development in the highly distributed environment of the Internet. The .NET Framework is designed to

fulfill the following objectives:

●​ To provide a consistent object-oriented programming environment whether

object code is stored and executed locally, executed locally but Internet-distributed, or executed

remotely.

●​ To provide a code-execution environment that minimizes software deployment

and versioning conflicts.

●​ To provide a code-execution environment that guarantees safe execution of

code, including code created by an unknown or semi-trusted third party.

●​ To provide a code-execution environment that eliminates the performance

problems of scripted or interpreted environments.

●​ To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based applications.

●​ To build all communication on industry standards to ensure that code based on

the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and the

.NET Framework class library. The common language runtime is the foundation of the .NET

Framework. You can think of the runtime as an agent that manages code at execution time, providing

core services such as memory management, thread management, and remoting, while also enforcing

strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the

28

FSS

concept of code management is a fundamental principle of the runtime. Code that targets the runtime is

known as managed code, while code that does not target the runtime is known as unmanaged code. The

class library, the other main component of the .NET Framework, is a comprehensive, object-oriented

collection of reusable types that you can use to develop applications ranging from traditional

command-line or graphical user interface (GUI) applications to applications based on the latest

innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language

runtime into their processes and initiate the execution of managed code, thereby creating a software

environment that can exploit both managed and unmanaged features. The .NET Framework not only

provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side

environment for managed code. ASP.NET works directly with the runtime to enable Web Forms

applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the

runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables

you to embed managed components or Windows Forms controls in HTML documents. Hosting the

runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible,

but with significant improvements that only managed code can offer, such as semi-trusted execution

and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the

class library to your applications and to the overall system. The illustration also shows how managed

code operates within a larger architecture.

29

FSS

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code

safety verification, compilation, and other system services. These features are intrinsic to the managed

code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of

trust, depending on a number of factors that include their origin (such as the Internet, enterprise

network, or local computer). This means that a managed component might or might not be able to

perform file-access operations, registry-access operations, or other sensitive functions, even if it is

being used in the same active application.

The runtime enforces code access security. For example, users can trust that an

executable embedded in a Web page can play an animation on screen or sing a song, but cannot access

their personal data, file system, or network. The security features of the runtime thus enable legitimate

Internet-deployed software to be exceptionally featuring rich.

The runtime also enforces code robustness by implementing a strict type- and

code-verification infrastructure called the common type system (CTS). The CTS ensures that all

managed code is self-describing. The various Microsoft and third-party language compilers generate

managed code that conforms to the CTS. This means that managed code can consume other managed

types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common

software issues. For example, the runtime automatically handles object layout and manages references

to objects, releasing them when they are no longer being used. This automatic memory management

resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write

applications in their development language of choice, yet take full advantage of the runtime, the class

library, and components written in other languages by other developers. Any compiler vendor who

30

FSS

chooses to target the runtime can do so. Language compilers that target the .NET Framework make the

features of the .NET Framework available to existing code written in that language, greatly easing the

migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today

and yesterday. Interoperability between managed and unmanaged code enables developers to continue

to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime

provides many standard runtime services, managed code is never interpreted. A feature called

just-in-time (JIT) compiling enables all managed code to run in the native machine language of the

system on which it is executing. Meanwhile, the memory manager removes the possibilities of

fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications,

such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables

you to use managed code to write your business logic, while still enjoying the superior performance of

the industry's best enterprise servers that support runtime hosting.

.NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with

the common language runtime. The class library is object oriented, providing types from which your

own managed code can derive functionality. This not only makes the .NET Framework types easy to

use, but also reduces the time associated with learning new features of the .NET Framework. In

addition, third-party components can integrate seamlessly with classes in the .NET Framework.

31

FSS

For example, the .NET Framework collection classes implement a set of interfaces that you

can use to develop your own collection classes. Your collection classes will blend seamlessly with the

classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework

types enable you to accomplish a range of common programming tasks, including tasks such as string

management, data collection, database connectivity, and file access. In addition to these common tasks,

the class library includes types that support a variety of specialized development scenarios. For

example, you can use the .NET Framework to develop the following types of applications and services:

●​Console applications.

●​Scripted or hosted applications.

●​Windows GUI applications (Windows Forms).

●​ASP.NET applications.

●​XML Web services.

●​Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable

types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form

application, you can use the Web Forms classes.

Client Application Development

Client applications are the closest to a traditional style of application in Windows-based

programming. These are the types of applications that display windows or forms on the desktop,

enabling a user to perform a task. Client applications include applications such as

word processors and spreadsheets, as well as custom business applications such as

data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus,

32

FSS

buttons, and other GUI elements, and they likely access local resources such as the file system and

peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the

managed Windows Forms control) deployed over the Internet as a Web page. This application is much

like other client applications: it is executed natively, has access to local resources, and includes

graphical elements.

In the past, developers created such applications using C/C++ in conjunction with

the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment

such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing

products into a single, consistent development environment that drastically simplifies the development

of client applications. The Windows Forms classes contained in the .NET Framework are designed to

be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and

other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated

with forms. In some cases the underlying operating system does not support changing these attributes

directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many

ways in which the .NET Framework integrates the developer interface, making coding simpler and

more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's

computer. This means that binary or natively executing code can access some of the resources on the

user's system (such as GUI elements and limited file access) without being able to access or

compromise other resources. Because of code access security, many applications that once needed to be

installed on a user's system can now be safely deployed through the Web. Your applications can

implement the features of a local application while being deployed like a Web page.

33

FSS

Server Application Development

Server-side applications in the managed world are implemented through runtime

hosts. Unmanaged applications host the common language runtime, which allows your custom

managed code to control the behavior of the server. This model provides you with all the features of the

common language runtime and class library while gaining the performance and scalability of the host

server.

The following illustration shows a basic network schema with managed code

running in different server environments. Servers such as IIS and SQL Server can perform standard

operations while your application logic executes through the managed code.

Server-side managed code

ASP.NET is the hosting environment that enables developers to use the .NET Framework

to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete

architecture for developing Web sites and Internet-distributed objects using managed code. Both Web

Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and

both have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distributed,

server-side application components similar to common Web sites. However, unlike Web-based

applications, XML Web services components have no UI and are not targeted for browsers such as

Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software

components designed to be consumed by other applications, such as traditional client applications,

Web-based applications, or even other XML Web services. As a result, XML Web services technology

is rapidly moving application development and deployment into the highly distributed environment of

the Internet.

If you have used earlier versions of ASP technology, you will immediately notice the

improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages

34

FSS

in any language that supports the .NET Framework. In addition, your code no longer needs to share the

same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages

execute in native machine language because, like any other managed application, they take full

advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted.

ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because

they interact with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in

development and consumption of XML Web services applications. XML Web services are built on

standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and

WSDL (the Web Services Description Language). The .NET Framework is built on these standards to

promote interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the .NET

Framework SDK can query an XML Web service published on the Web, parse its WSDL description,

and produce C# or Visual Basic source code that your application can use to become a client of the

XML Web service. The source code can create classes derived from classes in the class library that

handle all the underlying communication using SOAP and XML parsing. Although you can use the

class library to consume XML Web services directly, the Web Services Description Language tool and

the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework provides a

set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and

XML. Using those classes enables you to focus on the logic of your service, without concerning

yourself with the communications infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web service will

run with the speed of native machine language using the scalable communication of IIS.

35

FSS

Active Server Pages.NET

ASP.NET is a programming framework built on the common language runtime that can

be used on a server to build powerful Web applications. ASP.NET offers several important advantages

over previous Web development models:

●​ Enhanced Performance. ASP.NET is compiled common language runtime code

running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early

binding, just-in-time compilation, native optimization, and caching services right out of the box. This

amounts to dramatically better performance before you ever write a line of code.

●​ World-Class Tool Support. The ASP.NET framework is complemented by a rich

toolbox and designer in the Visual Studio integrated development environment. WYSIWYG editing,

drag-and-drop server controls, and automatic deployment are just a few of the features this powerful

tool provides.

●​ Power and Flexibility. Because ASP.NET is based on the common language runtime,

the power and flexibility of that entire platform is available to Web application developers. The .NET

Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the

Web. ASP.NET is also language-independent, so you can choose the language that best applies to your

application or partition your application across many languages. Further, common language runtime

interoperability guarantees that your existing investment in COM-based development is preserved

when migrating to ASP.NET.

●​ Simplicity. ASP.NET makes it easy to perform common tasks, from simple form

submission and client authentication to deployment and site configuration. For example, the ASP.NET

page framework allows you to build user interfaces that cleanly separate application logic from

presentation code and to handle events in a simple, Visual Basic - like forms processing model.

Additionally, the common language runtime simplifies development, with managed code services such

as automatic reference counting and garbage collection.

36

FSS

●​ Manageability. ASP.NET employs a text-based, hierarchical configuration system,

which simplifies applying settings to your server environment and Web applications. Because

configuration information is stored as plain text, new settings may be applied without the aid of local

administration tools. This "zero local administration" philosophy extends to deploying ASP.NET

Framework applications as well. An ASP.NET Framework application is deployed to a server simply

by copying the necessary files to the server. No server restart is required, even to deploy or replace

running compiled code.

●​ Scalability and Availability. ASP.NET has been designed with scalability in mind,

with features specifically tailored to improve performance in clustered and multiprocessor

environments. Further, processes are closely monitored and managed

By the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can

be created in its place, which helps keep your application constantly available to handle requests.

●​ Customizability and Extensibility. ASP.NET delivers a well-factored architecture

that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or

replace any subcomponent of the ASP.NET runtime with your own custom-written component.

Implementing custom authentication or state services has never been easier.

●​ Security. With built in Windows authentication and per-application configuration,

you can be assured that your applications are secure.

Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#,

Visual Basic, and JScript.

37

FSS

What is ASP.NET Web Forms?

The ASP.NET Web Forms page framework is a scalable common language runtime

programming model that can be used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with

existing pages), the ASP.NET Web Forms framework has been specifically designed to address a

number of key deficiencies in the previous model. In particular, it provides:

●​ The ability to create and use reusable UI controls that can encapsulate common

functionality and thus reduce the amount of code that a page developer has to write.

●​ The ability for developers to cleanly structure their page logic in an orderly fashion

(not "spaghetti code").

●​ The ability for development tools to provide strong WYSIWYG design support for

pages (existing ASP code is opaque to tools).

ASP.NET Web Forms pages are text files with an .aspx file name extension. They can be

deployed throughout an IIS virtual root directory tree. When a browser client requests .aspx resources,

the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can

then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the

first time it is accessed; the compiled type instance is then reused across multiple requests).

An ASP.NET page can be created simply by taking an existing HTML file and changing

its file name extension to .aspx (no modification of code is required). For example, the following

sample demonstrates a simple HTML page that collects a user's name and category preference and then

performs a form post back to the originating page when a button is clicked:

ASP.NET provides syntax compatibility with existing ASP pages. This includes support

for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These

code blocks execute in a top-down manner at page render time.

38

FSS

Code-Behind Web Forms

ASP.NET supports two methods of authoring dynamic pages. The first is the method

shown in the preceding samples, where the page code is physically declared within the originating

.aspx file. An alternative approach--known as the code-behind method--enables the page code to be

more cleanly separated from the HTML content into an entirely separate file.

Introduction to ASP.NET Server Controls

In addition to (or instead of) using <% %> code blocks to program dynamic content,

ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are

declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server"

attributes value. Intrinsic HTML tags are handled by one of the controls in the

System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls

is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips to

the server. This control state is not stored on the server (it is instead stored within an <input

type="hidden"> form field that is round-tripped between requests). Note also that no client-side script

is required.

In addition to supporting standard HTML input controls, ASP.NET enables developers to

utilize richer custom controls on their pages. For example, the following sample demonstrates how the

<asp:adrotator> control can be used to dynamically display rotating ads on a page.

39

FSS

1.​ ASP.NET Web Forms provide an easy and powerful way to build dynamic

Web UI.

2.​ ASP.NET Web Forms pages can target any browser client (there are no script

library or cookie requirements).

3.​ ASP.NET Web Forms pages provide syntax compatibility with existing ASP

pages.

4.​ ASP.NET server controls provide an easy way to encapsulate common

functionality.

5.​ ASP.NET ships with 45 built-in server controls. Developers can also use

controls built by third parties.

6.​ ASP.NET server controls can automatically project both up level and down

level HTML.

7.​ ASP.NET templates provide an easy way to customize the look and feel of list

server controls.

8.​ ASP.NET validation controls provide an easy way to do declarative client or

server data validation.

40

FSS

 Crystal Reports

Crystal Reports for Visual Basic .NET is the standard reporting tool for Visual

Basic.NET; it brings the ability to create interactive, presentation-quality content — which has been the

strength of Crystal Reports for years — to the .NET platform.

With Crystal Reports for Visual Basic.NET, you can host reports on Web and Windows

platforms and publish Crystal reports as Report Web Services on a Web server.

To present data to users, you could write code to loop through record sets and print them inside

your Windows or Web application. However, any work beyond basic formatting can be complicated:

consolidations, multiple level totals, charting, and conditional formatting are difficult to program.

With Crystal Reports for Visual Studio .NET, you can quickly create complex and

professional-looking reports. Instead of coding, you use the Crystal Report Designer interface to create

and format the report you need. The powerful Report Engine processes the formatting, grouping, and

charting criteria you specify.

 Report Experts

Using the Crystal Report Experts, you can quickly create reports based on your

development needs:

●​ Choose from report layout options ranging from standard reports to form letters, or

build your own report from scratch.

●​ Display charts that users can drill down on to view detailed report data.

●​ Calculate summaries, subtotals, and percentages on grouped data.

●​ Show TopN or BottomN results of data.

●​ Conditionally format text and rotate text objects.

41

FSS

3.2​ BACK END TECHNOLOGY:

About Microsoft SQL Server 2000

Microsoft SQL Server is a Structured Query Language (SQL) based, client/server

relational database. Each of these terms describes a fundamental part of the architecture of SQL Server.

Database

A database is similar to a data file in that it is a storage place for data. Like a data file, a

database does not present information directly to a user; the user runs an application that accesses data

from the database and presents it to the user in an understandable format.

A database typically has two components: the files holding the physical database and the

database management system (DBMS) software that applications use to access data. The DBMS is

responsible for enforcing the database structure, including:

●​ Maintaining the relationships between data in the database.

●​ Ensuring that data is stored correctly and that the rules defining data relationships are

not violated.

●​ Recovering all data to a point of known consistency in case of system failures.

42

FSS

 Relational Database

There are different ways to organize data in a database but relational databases are one of

the most effective. Relational database systems are an application of mathematical set theory to the

problem of effectively organizing data. In a relational database, data is collected into tables (called

relations in relational theory).

When organizing data into tables, you can usually find many different ways to define

tables. Relational database theory defines a process, normalization, which ensures that the set of tables

you define will organize your data effect

Client/Server:-

In a client/server system, the server is a relatively large computer in a central location that

manages a resource used by many people. When individuals need to use the resource, they connect

over the network from their computers, or clients, to the server.

Examples of servers are: In a client/server database architecture, the database files and

DBMS software reside on a server. A communications component is provided so applications can run

on separate clients and communicate to the database server over a network. The SQL Server

communication component also allows communication between an application running on the server

and SQL Server.

Server applications are usually capable of working with several clients at the same time. SQL Server

can work with thousands of client applications simultaneously. The server has features to prevent the

logical problems that occur if a user tries t read or modify data currently being used by others.

While SQL Server is designed to work as a server in a client/server network, it is also

capable of working as a stand-alone database directly on the client. The scalability and ease-of-use

features of SQL Server allow it to work efficiently on a client without consuming too many resources.

43

FSS

 Structured Query Language (SQL)

To work with data in a database, you must use a set of commands and statements

(language) defined by the DBMS software. There are several different languages that can be used with

relational databases; the most common is SQL. Both the American National Standards Institute (ANSI)

and the International Standards Organization (ISO) have defined standards for SQL. Most modern

DBMS products support the Entry Level of SQL-92, the latest SQL standard (published in 1992).

SQL Server Features

Microsoft SQL Server supports a set of features that result in the following benefits:

Ease of installation, deployment, and use

SQL Server includes a set of administrative and development tools that improve your

ability to install, deploy, manage, and use SQL Server across several sites.

Scalability

The same database engine can be used across platforms ranging from laptop computers

running Microsoft Windows® 95/98 to large, multiprocessor servers running Microsoft Windows

NT®, Enterprise Edition.

Data warehousing

SQL Server includes tools for extracting and analyzing summary data for online

analytical processing (OLAP). SQL Server also includes tools for visually designing databases and

analyzing data using English-based questions.

System integration with other server software

SQL Server integrates with e-mail, the Internet, and Windows.

44

FSS

 Databases

A database in Microsoft SQL Server consists of a collection of tables that contain data,

and other objects, such as views, indexes, stored procedures, and triggers, defined to support activities

performed with the data. The data stored in a database is usually related to a particular subject or

process, such as inventory information for a manufacturing warehouse.

SQL Server can support many databases, and each database can store either interrelated

data or data unrelated to that in the other databases. For example, a server can have one database that

stores personnel data and another that stores product-related data. Alternatively, one database can store

current customer order data, and another; related database can store historical customer orders that are

used for yearly reporting. Before you create a database, it is

important to understand the parts of a database and how to design these parts to ensure

that the database performs well after it is implemented.

Normalization theory:

Relations are to be normalized to avoid anomalies. In insert, update and delete operations.

Normalization theory is built around the concept of normal forms. A relation is said to be in a particular

form if it satisfies a certain specified set if constraints. To decide a suitable logical structure for given

database design the concept of normalization, which are briefly described below.

1.​ 1 st Normal Form (1 N.F): A relation is said to be in 1 NF is and only if all unaligned

domains contain values only. That is the fields of an n-set should have no group items and no repeating

groups.

2.​ 2 nd Normal Form (2 N.F) : A relation is said to be in 2 NF is and only if it is in 1 NF

and every non key attribute is fully dependent on primary key. This normal takes care of functional

dependencies on non-key attributes.

45

FSS

3.​ 3 rd Normal Form (3 N.F) : A relation is said to be in 3 NF is and only if it is in 2 NF

and every non key attribute is non transitively dependent on the primary key. This normal form avoids

the transitive dependencies on the primary key.

4.​ Boyce code Normal Form (BCNF) : This is a stronger definition than that of NF. A

relation is said to be in BCNF if and only if every determinant is a Candidate key.

5. 4 th Normal Form (4 NF) : A relation is said to be in 4 NF if and only if whenever

there exists a multi valued dependency in a relation say A->->B then all of the relation are also

functionally dependent on A(i.e. A->X for all attributes x of the relation.).

6. 5 th Normal Form (5 NF) OR Projection Join Normal Form (PJNF): A relation R

is in 5 NF .if and only if every join dependency in R is implied by the candidate key on R . A relation

can’t be non-loss split into two tables but can be split into three tables. This is called Join Dependency.

46

FSS

1.3​Middleware Technology

 Activex Data Objects.Net Overview

 ADO.NET is an evolution of the ADO data access model that directly addresses user

requirements for developing scalable applications. It was designed specifically for the web with

scalability, statelessness, and XML in mind.

ADO.NET uses some ADO objects, such as the Connection and Command objects, and

also introduces new objects. Key new ADO.NET objects include the Dataset, Data Reader, and Data

Adapter.

 The important distinction between this evolved stage of ADO.NET and

previous data architectures is that there exists an object -- the Dataset -- that is separate and distinct

from any data stores. Because of that, the Dataset functions as a standalone entity. You can think of the

Dataset as an always disconnected record set that knows nothing about the source or destination of the

data it contains. Inside a Dataset, much like in a database, there are tables, columns, relationships,

constraints, views, and so forth.

A Data Adapter is the object that connects to the database to fill the Dataset. Then, it

connects back to the database to update the data there, based on operations performed while the Dataset

held the data. In the past, data processing has been primarily connection-based. Now, in an effort to

make multi-tiered apps more efficient, data processing is turning to a message-based approach that

revolves around chunks of information. At the center of this approach is the Data Adapter, which

provides a bridge to retrieve and save data between a Dataset and its source data store. It accomplishes

this by means of requests to the appropriate SQL commands made against the data store.

The XML-based Dataset object provides a consistent programming model that works

with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge'

47

FSS

of the source of its data, and by representing the data that it holds as collections and data types. No

matter what the source of the data within the Dataset is, it is manipulated through the same set of

standard APIs exposed through the Dataset and its subordinate objects.

While the Dataset has no knowledge of the source of its data, the managed provider has

detailed and specific information. The role of the managed provider is to connect, fill, and persist the

Dataset to and from data stores. The OLE DB and SQL Server .NET Data Providers

(System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four

basic objects: the Command, Connection, Data Reader and Data Adapter. In the remaining sections of

this document, we'll walk through each part of the Dataset and the OLE DB/SQL Server .NET Data

Providers explaining what they are, and how to program against them. The following sections will

introduce you to some objects that have evolved, and some that are new. These objects are:

●​ Connections. For connection to and managing transactions against a database.

●​ Commands. For issuing SQL commands against a database.

●​ Data Readers. For reading a forward-only stream of data records from a SQL

Server data source.

●​ Datasets. For storing, removing and programming against flat data, XML data and

relational data.

●​ Data Adapters. For pushing data into a Dataset, and reconciling data against a

database.

 When dealing with connections to a database, there are two different options: SQL

Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider

(System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are

written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to

any OLE DB provider (as it uses OLE DB underneath).

48

FSS

Connections :

Connections are used to 'talk to' databases, and are represented by provider-specific

classes such as SQLConnection. Commands travel over connections and result sets are returned in the

form of streams which can be read by a Data Reader object, or pushed into a Dataset object.

Commands

Commands contain the information that is submitted to a database, and are represented by

provider-specific classes such as SQLCommand. A command can be a stored procedure call, an

UPDATE statement, or a statement that returns results. You can also use input and output parameters,

and return values as part of your command syntax. The example below shows how to issue an INSERT

statement against the North wind database.

Data Readers

The Data Reader object is somewhat synonymous with a read-only/forward-only cursor

over data. The Data Reader API supports flat as well as hierarchical data. A Data Reader object is

returned after executing a command against a database. The format of the returned Data Reader object

is different from a record set. For example, you might use the Data Reader to show the results of a

search list in a web page.

Datasets

The Dataset object is similar to the ADO Record set object, but more powerful, and with

one other important distinction: the Dataset is always disconnected. The Dataset object represents a

cache of data, with database-like structures such as tables, columns, relationships, and constraints.

However, though a Dataset can and does behave much like a database, it is important to remember that

Dataset objects do not interact directly with databases, or other source data. This allows the developer

to work with a programming model that is always consistent, regardless of where the source data

resides. Data coming from a database, an XML file, from code, or user input can all be placed into

49

FSS

Dataset objects. Then, as changes are made to the Dataset they can be tracked and verified before

updating the source data. The Get Changes method of the Dataset object actually creates a second

Dataset that contains only the changes to the data. This Dataset is then used by a Data Adapter (or other

objects) to update the original data source. The Dataset has many XML characteristics, including the

ability to produce and consume XML data and XML schemas. XML schemas can be used to describe

schemas interchanged via Web Services. In fact, a Dataset with a schema can actually be compiled for

type safety and statement completion.

Data Adapters (OLEDB/SQL)

The Data Adapter object works as a bridge between the Dataset and the source data.

Using the provider-specific SqlDataAdapter (along with its associated SqlCommand and

SqlConnection) can increase overall performance when working with a Microsoft SQL Server

databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and

its associated OleDbCommand and OleDbConnection objects. The Data Adapter object uses

commands to update the data source after changes have been made to the Dataset. Using the Fill

method of the Data Adapter calls the SELECT command; using the Update method calls the INSERT,

UPDATE or DELETE command for each changed row. You can explicitly set these commands in order

to control the statements used at runtime to resolve changes, including the use of stored procedures. For

ad-hoc scenarios, a Command Builder object can generate these at run-time based upon a select

statement. However, this run-time generation requires an extra round-trip to the server in order to

gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at

design time will result in better run-time performance.

1.​ ADO.NET is the next evolution of ADO for the .Net Framework.

2.​ ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new

objects, the Dataset and Data Adapter, are provided for these scenarios. ADO.NET

can be used to get data from a stream, or to store data in a cache for updates.

3.​ There is a lot more information about ADO.NET in the documentation.

50

FSS

4.​ Remember, you can execute a command directly against the database in order to do

inserts, updates, and deletes. You don't need to first put data into a Dataset in order to insert, update, or

delete it.

5.​ Also, you can use a Dataset to bind to the data, move through the data, and navigate

data relationships

Client-side Script(JAVASCRIPT):-

JavaScript:

JavaScript is a new scripting language for WebPages. Scripts written with java script can

be embedded into your HTML pages. With java script you have many possibilities for enhancing your

HTML page with interesting elements. For example you are able to respond to user-initiated events

quite easily. Some effects that are now possible with java script were some time ago only possible with

CGI. So you can create really sophisticated pages with the helps of java script on the Internet.

How can Java Script scripts run?

The first browser to support java script was the Netscape Navigator 2.0 of course the

higher versions do have java script as well. You might know that java does not run on all Netscape

Navigators 2.0 (or higher versions) versions. But this is not true for java script -although there are

some problems with the different versions.

The Mac version for example seems to have many bugs. In the near future there are

going to be some other browsers, which support java script. The Microsoft Internet explorer 3.0 is

going to support java script. JavaScript enabled browsers are going to spread soon - it is worth learning

51

FSS

this new technique now. You might realize that is really easy to write Java Script scripts. We have to

know is some basic techniques and some work-around for problems you might encounter. Of course

we need a basic. Understanding HTML before reading this tutorial you can find many really good

online resources about HTML. Best you make an online search about ‘html’ at yahoo if you want to

get informed about HTML. Now I want to show some small scripts so you can learn how they are

implemented into HTML-documents and to show which possibilities you have with the new scripting

language. The following is a very small script, which will only print a text into an HTML document.

<html>

<head>

 My first JavaScript

</head>

<body>

This is a normal HTML document

<script language=”JavaScript”>

Document.write (“this is a java script”)

</script><b r>

Backing HTML again

</body>

</html>

If you are using a java script enabled-browser at the moment then you will have the

possibility to see this script working. If your browser doesn’t support Java Script then this output might

be some kind of strange…

This is a normal HTML document

This is java script!

Back in HTML again.

52

FSS

Functions

Functions are bet declared between the <Head> tag of HTML page. Functions are called

by user-initiated events. Seems reasonable to keep the functions between the <Head> tags. They are

loaded first before a user can do anything that might call a function. Scripts can be placed between

inside comment fields to ensure that older browser do not display the script itself.

<html>

<head>

<script language=”JavaScript”>

 function pushbutton (){

​ alert (“Hello!”);

}

</script>

</head>

<body>

<form>

<input type=”button” name=”Button1” value=”push me” onclick=”pushbutton ()”>

</form>

</body>

</html>

 If we want to test this one immediately and you are using a Java Script enabled

browser then please go ahead and push the button.

 This script will create a button and when you press it a window will pop up saying

“hello!”. In fact we have a lot of possibilities just by adding functions to our scripts.

 The common browsers transmit the form information by either method: here’s the

complete tag including the GET transmission method attribute for the previous form

53

FSS

 Example

<Form method =GET action=http://www.mycompany.com/cgi-bin/upfdate.pl>

………

</form>

Input elements.

 Use the <input> tag to define any one of a number of common form elements including

text fields multiple choice lists click able images and submission buttons. There are many attributers

for this tag only that types and name attributes are required for each element, each type of input

element uses only a subset of the followed attributes. Additional <input> attributes may be required

based upon which type of the form element you specify.

Submit button:

The submit button (<input type=submit>) does what its name implies, settings in motion

the form’s submission to the server from the browser. We many have more than submit buttons will be

added to the parameter list the browser sends along to the server.

Example

< Input type =”submit”>

<Input type=”submit” value=”submit” name=”name”>

Reset button:

54

FSS

 The reset button if firm <input> button is nearly self- explanatory; it lets the user reset

erase or set to some default value all elements in the form. By default the browser displays a reset

button worth the label “reset”. We can change that by specifying a value attribute with tour own button

label.

DATABASE MODELS

ADO.NET and accessing the database through applets and ADO.NET API via an

intermediate server resulted server resulted in a new type of database model which is different from the

client-server model. Based on number of intermediate server through the request should go it is named

as single tire, two tire and multi tire architecture

Single Tier

In a single tier the server and client are the same in the sense that a client program that

needs information (client) and the source of this type of architecture is also possible in java, in case flat

files are used to store the data. However this is useful only in case of small applications. The advantage

with this is the simplicity and portability of the application developed.

 Database

55

FSS

Two Tier (client-server)

 In two tier architecture the database resides in one machine and client in different

machine they are connected through the network. In this type of architecture a database management

takes control of the database and provides access to clients in a network. This software bundle is also

called as the server. Software in different machines, requesting for information are called as the clients.

 Database

56

FSS

Three Tier and N-Tier

 ​ In the three-tier architecture, any number servers can access the database that resides

on server. Which in turn serve clients in a network. For example, you want to access the database using

java applets, the applet running in some other machine, can send request only to the server from which

it is down loaded. For this reason we will need to have a intermediate server which will accept the

requests from applets and them to the actual database server. This intermediate server acts as a two-way

communication channel also. This is the information or data from the database is passed on to the

applet that is requesting it. This can be extended to make n tiers of servers, each server carrying to

specific type of request from clients, however in practice only 3 tiers architecture is popular.

 C# Language

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses

functional, imperative, generic, object-oriented (class-based), and component-oriented programming

disciplines. It was developed by Microsoft as part of the .NET initiative and later approved as a

standard by ECMA (ECMA-334) and ISO (ISO/IEC 23270). C# is one of the 44 programming

languages supported by the .NET Framework's Common Language Runtime.

C# is intended to be a simple, modern, general-purpose, object-oriented programming

language. Anders Hejlsberg, the designer of Delphi, leads the team which is developing C#. It has an

object-oriented syntax based on C++ and is heavily influenced by other programming languages such

as Delphi and Java. It was initially named Cool, which stood for "C like Object Oriented Language".

However, in July 2000, when Microsoft made the project public, the name of the programming

language was given as C#. The most recent version of the language is C# 3.0 which was released in

conjunction with the .NET Framework 3.5 in 2007. The next proposed version, C# 4.0, is in

development.

57

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft_.NET
http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Java_%28programming_language%29

FSS

History:-

In 1996, Sun Microsystems released the Java programming language with Microsoft soon

purchasing a license to implement it in their operating system. Java was originally meant to be a

platform independent language, but Microsoft, in their implementation, broke their license agreement

and made a few changes that would essentially inhibit Java's platform-independent capabilities. Sun

filed a lawsuit and Microsoft settled, deciding to create their own version of a partially compiled,

partially interpreted object-oriented programming language with syntax closely related to that of C++.

During the development of .NET, the class libraries were originally written in a

language/compiler called Simple Managed C (SMC). In January 1999, Anders Hejlsberg formed a

team to build a new language at the time called Cool, which stood for "C like Object Oriented

Language".Microsoft had considered keeping the name "Cool" as the final name of the language, but

chose not to do so for trademark reasons. By the time the .NET project was publicly announced at the

July 2000 Professional Developers Conference, the language had been renamed C#, and the class

libraries and ASP.NET runtime had been ported to C#.

C#'s principal designer and lead architect at Microsoft is Anders Hejlsberg, who was

previously involved with the design of Visual J++, Borland Delphi, and Turbo Pascal. In interviews and

technical papers he has stated that flaws in most major programming languages (e.g. C++, Java,

Delphi, and Smalltalk) drove the fundamentals of the Common Language Runtime (CLR), which, in

turn, drove the design of the C# programming language itself. Some argue that C# shares roots in other

languages.

58

http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/ASP.NET
http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Visual_J%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Smalltalk

FSS

Features of C#:-

By design, C# is the programming language that most directly reflects the underlying

Common Language Infrastructure (CLI). Most of C#'s intrinsic types correspond to value-types

implemented by the CLI framework. However, the C# language specification does not state the code

generation requirements of the compiler: that is, it does not state that a C# compiler must target a

Common Language Runtime (CLR), or generate Common Intermediate Language (CIL), or generate

any other specific format. Theoretically, a C# compiler could generate machine code like traditional

compilers of C++ or FORTRAN; in practice, all existing C# implementations target CIL.

Some notable C# distinguishing features are:

●​ There are no global variables or functions. All methods and members must be

declared within classes. It is possible, however, to use static methods/variables within public classes

instead of global variables/functions.

●​ Local variables cannot shadow variables of the enclosing block, unlike C and C++.

Variable shadowing is often considered confusing by C++ texts.

●​ C# supports a strict Boolean data type, bool. Statements that take conditions, such as

while and if, require an expression of a boolean type. While C++ also has a boolean type, it can be

freely converted to and from integers, and expressions such as if(a) require only that a is convertible

to bool, allowing a to be an int, or a pointer. C# disallows this "integer meaning true or false" approach

on the grounds that forcing programmers to use expressions that return exactly bool can prevent

certain types of programming mistakes such as if (a = b) (use of = instead of ==).

●​ In C#, memory address pointers can only be used within blocks specifically marked as

unsafe, and programs with unsafe code need appropriate permissions to run. Most object access is done

through safe object references, which are always either pointing to a valid, existing object, or have the

well-defined null value; a reference to a garbage-collected object, or to random block of memory, is

impossible to obtain. An unsafe pointer can point to an instance of a value-type, array, string, or a block

of memory allocated on a stack. Code that is not marked as unsafe can still store and manipulate

pointers through the System.IntPtr type, but cannot dereference them.

59

FSS

●​ Managed memory cannot be explicitly freed, but is automatically garbage collected.

Garbage collection addresses memory leaks. C# also provides direct support for deterministic

finalization with the using statement (supporting the Resource Acquisition Is Initialization idiom).

●​ Multiple inheritance is not supported, although a class can implement any number of

interfaces. This was a design decision by the language's lead architect to avoid complication, avoid

dependency hell and simplify architectural requirements throughout CLI.

●​ C# is more type safe than C++. The only implicit conversions by default are those

which are considered safe, such as widening of integers and conversion from a derived type to a base

type. This is enforced at compile-time, during JIT, and, in some cases, at runtime. There are no implicit

conversions between booleans and integers, nor between enumeration members and integers (except

for literal 0, which can be implicitly converted to any enumerated type). Any user-defined conversion

must be explicitly marked as explicit or implicit, unlike C++ copy constructors (which are implicit by

default) and conversion operators (which are always implicit).

●​ Enumeration members are placed in their own scope.

●​ C# provides syntactic sugar for a common pattern of a pair of methods, accessor

(getter) and mutator (setter) encapsulating operations on a single attribute of a class, in form of

properties.

●​ Full type reflection and discovery is available.

●​ C# currently (as of 3 June 2008) has 77 reserved words.

60

FSS

Common Type system (CTS)

C# has a unified type system. This unified type system is called Common Type System

(CTS).

A unified type system implies that all types, including primitives such as integers, are

subclasses of the System.Object class. For example, every type inherits a ToString() method. For

performance reasons, primitive types (and value types in general) are internally allocated on the stack.

Categories of datatypes

CTS separates datatypes into two categories:

●​ Value types

●​ Reference types

Value types are plain aggregations of data. Instances of value types do not have

referential identity nor a referential comparison semantics - equality and inequality comparisons for

value types compare the actual data values within the instances, unless the corresponding operators are

overloaded. Value types are derived from System.ValueType, always have a default value, and can

always be created and copied. Some other limitations on value types are that they cannot derive from

each other (but can implement interfaces) and cannot have a default (parameterless) constructor.

Examples of value types are some primitive types, such as int (a signed 32-bit integer), float (a

32-bit IEEE floating-point number), char (a 16-bit Unicode codepoint), and System.DateTime

(identifies a specific point in time with millisecond precision).

In contrast, reference types have the notion of referential identity - each instance of reference

type is inherently distinct from every other instance, even if the data within both instances is the same.

This is reflected in default equality and inequality comparisons for reference types, which test for

referential rather than structural equality, unless the corresponding operators are overloaded (such as

the case for System.String). In general, it is not always possible to create an instance of a reference

61

FSS

type, nor to copy an existing instance, or perform a value comparison on two existing instances, though

specific reference types can provide such services by exposing a public constructor or implementing a

corresponding interface (such as ICloneable or IComparable). Examples of reference types are

object (the ultimate base class for all other C# classes), System.String (a string of Unicode

characters), and System.Array (a base class for all C# arrays).

Both type categories are extensible with user-defined types.

 Boxing and unboxing

Boxing is the operation of converting a value of a value type into a value of a

corresponding reference type.

Example:

int foo = 42; // Value type...

object bar = foo; // foo is boxed to bar.

Unboxing is the operation of converting a value of a reference type (previously boxed)

into a value of a value type.

Example:

int foo = 42; // Value type.

object bar = foo; // foo is boxed to bar.

int foo2 = (int)bar; // Unboxed back to value type.

Features of C# 2.0

New features in C# for the .NET SDK 2.0 (corresponding to the 3rd edition of the

ECMA-334 standard) are:

62

FSS

Partial class

Partial classes allow implementation of a class to be spread between several files, with

each file containing one or more class members. It is primary useful when parts of a class are

automatically generated. For example, the feature is heavily used by code-generating user interface

designers in Visual Studio.

file1.cs:

public partial class MyClass

{

 public void MyMethod1()

 {

 // Manually written code

 }

}

file2.cs:

public partial class MyClass

{

 public void MyMethod2()

 {

 // Automatically generated code

 }

}

Generics

Generics, or parameterized types, or parametric polymorphism is a .NET 2.0 feature

supported by C#. Unlike C++ templates, .NET parameterized types are instantiated at runtime rather

than by the compiler; hence they can be cross-language whereas C++ templates cannot. They support

some features not supported directly by C++ templates such as type constraints on generic parameters

by use of interfaces. On the other hand, C# does not support non-type generic parameters. Unlike

63

FSS

generics in Java, .NET generics use reification to make parameterized types first-class objects in the

CLI Virtual Machine, which allows for optimizations and preservation of the type information.

Static classes

Static classes are classes that cannot be instantiated or inherited from, and that only allow

static members. Their purpose is similar to that of modules in many procedural languages.

A new form of iterator providing generator functionality

A new form of iterator that provides generator functionality, using a yield return

construct similar to yield in Python.

// Method that takes an iterable input (possibly an array)

// and returns all even numbers.

public static IEnumerable<int> GetEven(IEnumerable<int> numbers)

{

 foreach (int i in numbers)

 {

 if (i % 2 == 0) yield return i;

 }

}

Anonymous delegates

Anonymous delegates provide closure functionality in C#. Code inside the body of an

anonymous delegate has full read/write access to local variables, method parameters, and class

members in scope of the delegate, excepting out and ref parameters. For example:-

int SumOfArrayElements(int[] array)

{

 int sum = 0;

 Array.ForEach(

 array,

64

FSS

 delegate(int x)

 {

 sum += x;

 }

);

 return sum;

}

Delegate covariance and contravariance

Conversions from method groups to delegate types are covariant and contravariant in

return and parameter types, respectively.

The accessibility of property accessors can be set independently

Example:

string status = string.Empty;

public string Status

{

 get { return status; } // anyone can get value of

this property,

 protected set { status = value; } // but only derived classes

can change it

}

Nullable types

Nullable value types (denoted by a question mark, e.g. int? i = null;) which add

null to the set of allowed values for any value type. This provides improved interaction with SQL

databases, which can have nullable columns of types corresponding to C# primitive types: an SQL

INTEGER NULL column type directly translates to the C# int?.

65

FSS

Nullable types received an eleventh-hour improvement at the end of August 2005, mere

weeks before the official launch, to improve their boxing characteristics: a nullable variable which is

assigned null is not actually a null reference, but rather an instance of struct Nullable<T> with

property HasValue equal to false. When boxed, the Nullable instance itself is boxed, and not the

value stored in it, so the resulting reference would always be non-null, even for null values. The

following code illustrates the corrected flaw:

int? i = null;

object o = i;

if (o == null)

 Console.WriteLine("Correct behaviour - runtime version from

September 2005 or later");

else

 Console.WriteLine("Incorrect behaviour - pre-release runtime

(from before September 2005)");

When copied into objects, the official release boxes values from Nullable instances, so

null values and null references are considered equal. The late nature of this fix caused some

controversy , since it required core-CLR changes affecting not only .NET2, but all dependent

technologies (including C#, VB, SQL Server 2005 and Visual Studio 2005).

66

FSS

 DATABASE TABLES:

Accidents Table

Annual Returns Table

Closed Table

67

FSS

Committee Table

Convictions Table

Emp Details Table

68

FSS

Financial Details Table

Partner Details Table

Productor Details Table

69

FSS

Registration Table

.

70

FSS

 FEASIBILITY STUDY:

 Feasibility study is conducted once the problem is clearly understood.

Feasibility study is a high level capsule version of the entire system analysis and design process. The

objective is to determine quickly at a minimum expense how to solve a problem. The purpose of

feasibility is not to solve the problem but to determine if the problem is worth solving.

 The system has been tested for feasibility in the following points.

​ 1. Technical Feasibility

​ 2. Economical Feasibility

​ 3. Operational Feasibility.

1. Technical Feasibility

 The project entitles "Courier Service System” is technically feasibility because of the below

mentioned feature. The project was developed in Java which Graphical User Interface.

 It provides the high level of reliability, availability and compatibility. All these make Java an

appropriate language for this project. Thus the existing software Java is a powerful language.

2. Economical Feasibility

 The computerized system will help in automate the selection leading the profits

and details of the organization. With this software, the machine and manpower utilization are expected

to go up by 80-90% approximately. The costs incurred of not creating the system are set to be great,

because precious time can be wanted by manually.

71

FSS

3. Operational Feasibility

​ ​ ​ ​ In this project, the management will know the details of each project

where he may be presented and the data will be maintained as decentralized and if any inquires for that

particular contract can be known as per their requirements and necessaries.

Implementation:

 Implementation is the stage where the theoretical design is turned into a working system. The most

crucial stage in achieving a new successful system and in giving confidence on the new system for the

users that it will work efficiently and effectively.

The system can be implemented only after thorough testing is done and if it is found to work according

to the specification.

It involves careful planning, investigation of the current system and its constraints on implementation,

design of methods to achieve the change over and an evaluation of change over methods a part from

planning. Two major tasks of preparing the implementation are education and training of the users and

testing of the system.

 The more complex the system being implemented, the more involved will be the systems analysis and

design effort required just for implementation.

 The implementation phase comprises of several activities. The required hardware and software

acquisition is carried out. The system may require some software to be developed. For this, programs

72

FSS

are written and tested. The user then changes over to his new fully tested system and the old system is

discontinue

 TESTING:

 The testing phase is an important part of software development. It is the puterized system will

help in automate process of finding errors and missing operations and also a complete verification to

determine whether the objectives are met and the user requirements are satisfied.

Software testing is carried out in three steps:

 1. The first includes unit testing, where in each module is tested to provide its correctness,

validity and also determine any missing operations and to verify whether the objectives have been met.

Errors are noted down and corrected immediately. Unit testing is the important and major part of the

project. So errors are rectified easily in particular module and program clarity is increased. In this

project entire system is divided into several modules and is developed individually. So unit testing is

conducted to individual modules.

 2. The second step includes Integration testing. It need not be the case, the software whose

modules when run individually and showing perfect results, will also show perfect results when run as

a whole. The individual modules are clipped under this major module and tested again and verified the

results. This is due to poor interfacing, which may results in data being lost across an interface. A

module can have inadvertent, adverse effect on any other or on the global data structures, causing

serious problems.

 3.The final step involves validation and testing which determines which the software functions

as the user expected. Here also some modifications were. In the completion of the project it is satisfied

fully by the end user.

73

FSS

 Maintenance and environment:

AS the number of computer based systems, grieve libraries of computer software began to expand. In

house developed projects produced tones of thousand soft program source statements. Software

products purchased from the outside added hundreds of thousands of new statements. A dark cloud

appeared on the horizon. All of these programs, all of those source statements-had to be corrected when

false were detected, modified as user requirements changed, or adapted to new hardware that was

purchased. These activities were collectively called software Maintenance.

 The maintenance phase focuses on change that is associated with error correction, adaptations

required as the software's environment evolves, and changes due to enhancements brought about by

changing customer requirements. Four types of changes are encountered during the maintenance phase.

Correction

Adaptation

Enhancement

Prevention

Correction:

 Even with the best quality assurance activities is lightly that the customer will uncover defects in

the software. Corrective maintenance changes the software to correct defects.

 Maintenance is a set of software Engineering activities that occur after software has been delivered

to the customer and put into operation. Software configuration management is a set of tracking and

control activities that began when a software project begins and terminates only when the software is

taken out of the operation.

74

FSS

 We may define maintenance by describing four activities that are undertaken after a program is

released for use

Corrective Maintenance

Adaptive Maintenance

Perfective Maintenance or Enhancement

Preventive Maintenance or reengineering

Only about 20 percent of all maintenance work are spent "fixing mistakes". The remaining 80 percent

are spent adapting existing systems to changes in their external environment, making enhancements

requested by users, and reengineering an application for use.

 ADAPTATION:

 Over time, the original environment (E>G., CPU, operating system, business rules, external

product characteristics) for which the software was developed is likely to change. Adaptive

maintenance results in modification to the software to accommodate change to its external

environment.

ENHANCEMENT:

 As software is used, the customer/user will recognize additional functions that will provide benefit.

Perceptive maintenance extends the software beyond its original function requirements.

PREVENTION :

 Computer software deteriorates due to change, and because of this, preventive maintenance, often

called software re engineering, must be conducted to enable the software to serve the needs of its end

75

FSS

users. In essence, preventive maintenance makes changes to computer programs so that they can be

more easily corrected, adapted, and enhanced. Software configuration management (SCM) is an

umbrella activity that is applied throughout the software process. SCM activities are developed to

76

FSS

 Testing is a process of executing a program with the indent of finding an error.

Testing is a crucial element of software quality assurance and presents ultimate review of specification,

design and coding.

System Testing is an important phase. Testing represents an interesting anomaly for the software. Thus

a series of testing are performed for the proposed system before the system is ready for user acceptance

testing.

A good test case is one that has a high probability of finding an as undiscovered error. A successful test

is one that uncovers an as undiscovered error.

Testing Objectives:

1.​ Testing is a process of executing a program with the intent of finding an error

2.​ A good test case is one that has a probability of finding an as yet undiscovered error

3.​ A successful test is one that uncovers an undiscovered error

Testing Principles:

�​ All tests should be traceable to end user requirements

�​ Tests should be planned long before testing begins

�​ Testing should begin on a small scale and progress towards testing in large

�​ Exhaustive testing is not possible

77

FSS

�​ To be most effective testing should be conducted by a independent third party

​ The primary objective for test case design is to derive a set of tests that has the highest

livelihood for uncovering defects in software. To accomplish this objective two different categories of

test case design techniques are used. They are

White box testing.

Black box testing.

White-box testing:

White box testing focus on the program control structure. Test cases are derived to ensure that all

statements in the program have been executed at least once during testing and that all logical conditions

have been executed.

Block-box testing:

Black box testing is designed to validate functional requirements without regard to the internal

workings of a program. Black box testing mainly focuses on the information domain of the software,

deriving test cases by partitioning input and output in a manner that provides through test coverage.

Incorrect and missing functions, interface errors, errors in data structures, error in functional logic are

the errors falling in this category.

Testing strategies:

A strategy for software testing must accommodate low-level tests that are necessary to verify that all

small source code segment has been correctly implemented as well as high-level tests that validate

major system functions against customer requirements.

78

FSS

Testing fundamentals:

Testing is a process of executing program with the intent of finding error. A good test case is one that

has high probability of finding an undiscovered error. If testing is conducted successfully it uncovers

the errors in the software. Testing cannot show the absence of defects, it can only show that software

defects present.

Testing Information flow:

Information flow for testing flows the pattern. Two class of input provided to test the process. The

software configuration includes a software requirements specification, a design specification and

source code.

Test configuration includes test plan and test cases and test tools. Tests are conducted and all the results

are evaluated. That is test results are compared with expected results. When erroneous data are

uncovered, an error is implied and debugging commences.

Unit testing:

Unit testing is essential for the verification of the code produced during the coding phase and hence the

goal is to test the internal logic of the modules. Using the detailed design description as a guide,

important paths are tested to uncover errors with in the boundary of the modules. These tests were

carried out during the programming stage itself. All units of ViennaSQL were successfully tested.

Integration testing :

Integration testing focuses on unit tested modules and build the program structure that is dictated by the

design phase.

System testing:

79

FSS

System testing tests the integration of each module in the system. It also tests to find discrepancies

between the system and it’s original objective, current specification and system documentation. The

primary concern is the compatibility of individual modules. Entire system is working properly or not

will be tested here, and specified path ODBC connection will correct or not, and giving output or not

are tested here these verifications and validations are done by giving input values to the system and by

comparing with expected output. Top-down testing implementing here.

Acceptance Testing:

This testing is done to verify the readiness of the system for the implementation. Acceptance testing

begins when the system is complete. Its purpose is to provide the end user with the confidence that the

system is ready for use. It involves planning and execution of functional tests, performance tests and

stress tests in order to demonstrate that the implemented system satisfies its requirements.

Tools to special importance during acceptance testing include:

Test coverage Analyzer – records the control paths followed for each test case.

Timing Analyzer – also called a profiler, reports the time spent in various regions of the code are areas

to concentrate on to improve system performance.

Coding standards – static analyzers and standard checkers are used to inspect code for deviations from

standards and guidelines.

Test Cases:

Test cases are derived to ensure that all statements in the program have been executed at least once

during testing and that all logical conditions have been executed.

Using White-Box testing methods, the software engineer can drive test cases that

●​ Guarantee that logical decisions on their true and false sides.

●​ Exercise all logical decisions on their true and false sides.

80

FSS

●​ Execute all loops at their boundaries and with in their operational bounds.

●​ Exercise internal data structure to assure their validity.

The test case specification for system testing has to be submitted for review before system testing

commences.

 CODE

Closed & Remove Factories

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Closed_and_Removed_Factories : System.Web.UI.Page
{
 private SqlConnection cnn=new
SqlConnection("server=dataserver;database=factorystatistics;uid=sa;passwo
rd=sqlserver");
 protected void Page_Load(object sender, EventArgs e)
 {
 cnn.Open();
 SqlCommand cmd = new SqlCommand("select fname,fcode from

Registeration ",cnn);
 SqlDataReader dr = cmd.ExecuteReader();
 dr.Read();
 DropDownList1.Items.Add(dr[0].ToString());
 DropDownList2.Items.Add(dr[1].ToString());
 dr.Close();
 cnn.Close();
 }
 protected void Button1_Click(object sender, EventArgs e)
 {
 cnn.Open();
 SqlCommand cmd1 = new SqlCommand("insert into
closed(fname,fcode,doc,dor)

81

FSS

values('"+DropDownList1.SelectedItem.ToString()+"','"+DropDownList2.Selec
tedItem.ToString()+"','"+TextBox1.Text+"','"+TextBox2.Text+"')",cnn);
 cmd1.ExecuteNonQuery();
 Response.Redirect("Closed and Removed Factories.aspx");
 }
}

Annual Returns:
using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Annul_Return_Details : System.Web.UI.Page
{
 private SqlConnection cnn = new
SqlConnection("server=dataserver;database=factorystatistics;uid=sa;passwo
rd=sqlserver");
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cnn.Open();
 SqlCommand cmd = new SqlCommand("select fname,fcode from
annulreturns ", cnn);
 SqlDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 DropDownList1.Items.Add(dr[0].ToString());
 DropDownList2.Items.Add(dr[1].ToString());
 }
 dr.Close();
 cnn.Close();
 }
 }
 protected void DropDownList1_SelectedIndexChanged(object sender,
EventArgs e)
 {

 }
 protected void DropDownList2_SelectedIndexChanged(object sender,
EventArgs e)

82

FSS

 {
 //// keep Auto PostBack = true
 cnn.Open();
 SqlDataAdapter da = new SqlDataAdapter("select
fname,fcode,product,capital,workersnum,profit,loss,tax from annulreturns
where fname='" + DropDownList1.SelectedItem.ToString() + "' and fcode ='"
+ DropDownList2.SelectedItem.ToString() + "'", cnn);
 DataSet ds = new DataSet();
 da.Fill(ds);
 GridView1.DataSource = ds;
 GridView1.DataBind();
 }
}

Conviction Details:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Conviction_details : System.Web.UI.Page
{
 private SqlConnection cnn = new
SqlConnection("server=dataserver;database=factorystatistics;uid=sa;passwo
rd=sqlserver");
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 cnn.Open();
 SqlCommand cmd = new SqlCommand("select fname,fcode from
convictions ", cnn);
 SqlDataReader dr = cmd.ExecuteReader();
 while (dr.Read())
 {
 DropDownList1.Items.Add(dr[0].ToString());
 DropDownList2.Items.Add(dr[1].ToString());
 }
 dr.Close();
 cnn.Close();
 }
 }
 protected void DropDownList2_SelectedIndexChanged(object sender,
EventArgs e)
 {

 //// keep Auto PostBack = true

83

FSS

 cnn.Open();
 SqlDataAdapter da = new SqlDataAdapter("select
fname,fcode,reason,trail from convictions where
fname='"+DropDownList1.SelectedItem.ToString()+"' and fcode ='" +
DropDownList2.SelectedItem.ToString() + "'", cnn);
 DataSet ds = new DataSet();
 da.Fill(ds);
 GridView1.DataSource = ds;
 GridView1.DataBind();
 }

}

84

FSS

85

FSS

HOME PAGE

ADMIN LOGIN

86

FSS

FACTORY REGISTRATION

87

FSS

ENTERING VALUES

88

FSS

LIST OF FACTORIES

89

FSS

INSPECTION DETAILS

90

FSS

ACCIDENT DETAILS

91

FSS

CONVICTION DETAILS

92

FSS

FINANCIAL DETAILS

93

FSS

ANNUAL RETURNS DETAILS

94

FSS

HALF YEARLY RETURNS DETAILS

95

FSS

COMMITTEE DETAILS

96

FSS

PARTNERS DETAILS

97

FSS

EMPLOYEE DETAILS

98

FSS

ORDERS DETAILS

99

FSS

ADDING FACTORY ACCIDENT & INSPECTION

100

FSS

ADDING CONVICTIONS OF FACTORY

101

FSS

ADDING FINANCIAL DETAILS

102

FSS

ADDING CLOSED & REMOVED FACTORIES

103

FSS

ADDING ANNUAL RETURNS

104

FSS

ADDING HALF YEARLY RETURNS

105

FSS

ADDING COMMITTEE DETAILS

106

FSS

ADDING PARTNERS DETAILS

107

FSS

ADDING EMPLOYEE DETAILS

108

FSS

OREDERS FOR A FACTORY

109

FSS

110

FSS

 CONCLUSION:

The package was designed in such a way that future modifications can be

done easily. The following conclusions can be deduced from the development of the project.

�​ Automation of the entire system improves the efficiency

�​ It provides a friendly graphical user interface which proves to be better when compared to the

existing system.

�​ It gives appropriate access to the authorized users depending on their permissions.

�​ It effectively overcomes the delay in communications.

�​ Updating of information becomes so easier.

�​ System security, data security and reliability are the striking features.

�​ The System has adequate scope for modification in future if it is necessary.

111

FSS

112

FSS

FUTURE ENHANCEMENTS:

 This application avoids the manual work and the problems concern with it. It is an

easy way to obtain the information regarding the various products information that are present in the

Super markets.

Well I and my team members have worked hard in order to present an improved website better

than the existing one’s regarding the information about the various activities. Still ,we found out that

the project can be done in a better way. Primarily, when we request information about a particular

product it just shows the company, product id, product name and no. of quantities available. So, after

getting the information we can get access to the product company website just by a click on the product

name .

 The next enhancement that we can add the searching option. We can directly search to the

particular product company from this site .These are the two enhancements that we could think of at

present.

113

FSS

114

FSS

BIBLIOGRAPHY

The following books were referred during the analysis and execution phase of the
project

MICROSOFT .NET WITH C#
Microsoft .net series

ASP .NET 2.0 PROFESSIONAL
Wrox Publishers

ASP .NET WITH C# 2005
Apress Publications

C# COOK BOOK
O reilly Publications

PROGRAMMING MICROSOFT ASP .NET 2.0 APPLICATION
Wrox Professional Guide

​ ​ ​ ​ ​
​ BEGINNING ASP .NET 2.0 E-COMMERCE IN C# 2005
​ Novice to Professional.

WEBSITES:
 www.google.com
 www.microsoft.com

115

http://www.google.com
http://www.microsoft.com

FSS

116

	Connectivity and Cardinality
	ER Notation
	 OVERVIEW OF TECHNOLOGIES USED
	
	 3.1 Front End Technology
	Microsoft .NET Framework
	Features of the Common Language Runtime
	
	.NET Framework Class Library
	Client Application Development
	Server Application Development
	Language Support
	SQL Server Features
	Ease of installation, deployment, and use
	Scalability
	Data warehousing
	System integration with other server software
	 Databases

	DATABASE MODELS
	Common Type system (CTS)
	Categories of datatypes
	 Boxing and unboxing

	Features of C# 2.0
	Partial class
	Generics
	Static classes
	A new form of iterator providing generator functionality
	Anonymous delegates
	Delegate covariance and contravariance
	The accessibility of property accessors can be set independently
	Nullable types

	White-box testing:
	Block-box testing:
	
	Acceptance Testing:

