FRACTURE COURSE 1

PRINCIPLES OF FRACTURE REPAIR - Humerus, Radius, Femur, Tibia

Day 1	
8:00am	Welcome & Introductions
8:05am	How Do Bones Heal?
8:30am	Fracture Repair – Anatomic Reduction or Bridging Repair?
9:00am	Rebuilding Fractures with Pins, Cerclage and Lag Screws
9:20am	Laboratory 1: Tibial Fracture Repair
	(Plastic Bone Model) – Pin, Cerclage and Lag Screw
10:00am	Locking Plates give you the Edge you Need to Succeed
10:40am	Distal Radial Fractures and Surgical Approach
11:00am	Laboratory 2: Direct Reduction of Distal Radial Fracture
	(Cadaver) – Bone Plate
12:00pm	Lunch
12:30pm	Laboratory 2 Continued: Direct Reduction of Distal Radial Fracture
	(Cadaver) – Bone Plate
2:00pm	Tibial Fractures and Surgical Approach
2:30pm	Laboratory 3: Indirect Reduction of Tibial Shaft Fracture
	(Cadaver) – Plate and Rod
5:30pm	Conclusion of Day 1

Day 2

7:30am	Review of Day 1 Radiographs
8:00am	Femoral Shaft Fractures and surgical approach
8:30am	Laboratory 4: Direct Reduction of Femoral Shaft Fracture
	(Cadaver) – Cerclage and Bone Plate
10:15am	Laboratory 5: Indirect Reduction of Femoral Shaft Fracture
	(Cadaver) – Plate and Rod or Double-Plate
11:30pm	(Cadaver) – Plate and Rod or Double-Plate Humeral Shaft Simple Fractures and surgical approach

12:30pm Laboratory 6: Indirect Reduction of Comminuted Humeral Shaft Fracture

(Cadaver) – Pin and Plate Medial Approach

2:45pm Conclusion of Course

Course Description

Do you have difficulty approaching or reducing long bone fractures? Are you interested in learning simple techniques designed for the general practitioner to repair the most common fractures in dogs and cats? This laboratory is the one for you! We will teach reliable techniques and give valuable practical tips useful in repairing simple and more challenging comminuted fractures of long bones. New implant designs have made fracture repair much simpler and more affordable. In addition, postoperative management of patients has also been simplified and complications are rare if the principles of fracture repair are followed.

This course will familiarize participants with fracture repair techniques through lecture and clinical case presentations. Following lecture and case review, participants will repair fractures on plastic bone models and cadavers. Postoperative radiographs will be taken to evaluate the participants repair technique.

Learning Objectives

- Understand the principles of bone healing and the differences between secondary and primary bone healing.
- Review fracture classification and choice of fixation.
- Discuss the concept of direct versus indirect fracture reduction and decision making on approach.
- Appreciate the biomechanics and decision making for intramedullary pins, cerclage wire, bone screws, bone plates and methods of bone plating (compression, neutralization, and bridging).