
Vimacs

● Conrad Parker: “Dude, I gotta get you doing some serious hacking
projects”

● Erik de Castro Lopo: “Oh, so you’re the insane guy that K was
talking about”

● Wichert Akkerman: “Gross. Horror. Vim abuse. Mind if I include
this as an example in the Debian vim packages? :)”

● Henry Gebhardt: “Vimacs, as ridiculously as it sounds, is a great
idea”

Yep, it’s Emacs… in Vim.

André

http://www.vergenet.net/~conrad/
http://www.zip.com.au/~erikd/
http://www.wiggy.net/
https://docs.google.com/document/d/1SjFF6Iv2K96CWHD8jQiq4ftb0uKLJuN_sgXy5w_71bQ/edit


Download Vimacs
The latest version of Vimacs is 0.95.

● Unix: vimacs-0.95.tar.gz
● Windows: vimacs-0.95.zip

Vimacs hasn’t been updated in about four years, but hey, it still works.
(Thank you Vim, for having a sane notion of backwards compatibility.)

The files are essentially the same, except that the installation
instructions are a bit more tailored toward the platform that you’re
using.

What's Vimacs?

In a nutshell, Vimacs is Vim emulating Emacs. (If you’ve never heard of
Vim nor Emacs, you’re probably in the wrong place right now). Vimacs
(Vim-improved Emacs) is a Vim plugin, which brings Emacs’s extensive
key bindings and modeless editing features to the Vim world, while
retaining Vim’s powerful moded editing style.

It’s an emulation of Emacs using Vim: you get modeless editing inside
moded editing. If you’re familiar with Vim, don’t worry: Emacs emulation
only operates while you’re in Vim’s Insert mode. Vimacs is based on the
keymaps of GNU Emacs 21 and XEmacs, so if you’re familiar with
them, you’ll feel right at home in Vimacs.

Most (if not all) of the common key maps in Emacs are present in
Vimacs, such as <C-Space>, <C-w> and <C-y> to mark, kill and yank

http://www.algorithm.com.au/downloads/vimacs/vimacs-0.95.tar.gz
http://www.algorithm.com.au/downloads/vimacs/vimacs-0.95.zip
http://vim.sourceforge.net/whyvim.php#others
http://www.xemacs.org/
http://www.gnu.org/software/emacs/emacs.html
http://www.xemacs.org/


regions, <C-x><C-f> to find a file, and <C-x>2 to split a window. However,
you can now take advantage of the incredible power of Vim’s Normal
and Command modes with a touch of the <Esc> key.

Why?
If you’re a long-time Vim user, you retain Vi’s powerful moded editing
paradigm while gaining all the benefits of Emacs’s modeless editing.
You have nothing to lose! Since Vimacs only emulates Emacs when
you’re in Insert mode, you may not even notice that it’s there.

Of course, after a while, you may find that the <C-a> and <C-e> keys
become second nature to you, just as you’re used to the h, j, k, and l
keys for movement. Some of the keys familiar to you in Insert mode
have been changed, but you won’t take long to get used to Emacs’s
keys: just like Vim, Emacs’s initially obscure key layout will reward you
later on for its efficiency. Emacs experts are just as fast as Vim experts
in manipulating text, and as a bonus, you start becoming familiar with
Emacs keybindings, which are gradually becoming more pervasive in
Unix applications. (Even Mac OS X supports some Emacs keys in its
dialog boxes!)

If you’re an Emacs user, you’ll find that Vimacs offers most of the
comforts that you’re used to in Emacs, with one significant advantage:
blazing speed. Vim is optimised for efficient text editing, whereas
Emacs is optimised for extensibility, and sacrifices speed because of it.
In addition, I feel that Vim is much more straightforward to customise
than Emacs, it has better documentation, and has better cross-platform
support.



Of course, a major disadvantage of Vim compared to Emacs is that you
don’t have the enormous number of Emacs add-ons that have been
integrated into the editor over the last few decades. However, you may
be surprised at how many of those add-ons are incorporated into Vim
itself, for speed. For example, dynamic abbreviation, parenthesis
highlighting, and C indenting are all built into Vim. Even complex
add-ons, such as Emacs’ Grand Unified Debugger, have been
implemented in Vim via add-on scripts. Vim does offer its own scripting
language if you want to extend it, and if that isn’t enough, Vim 6.1
supports Perl, Python, Tcl, OLE, and Ruby as scripting languages: far
more choices than just LISP!

Ultimately, the differences between the two editors come down to
different design goals: Emacs is aimed at being everything for everyone,
and Vim is aimed at being a pure text editor. Vimacs opens up Vim to
Emacs users (and everyone else) by allowing you to work with it
without having to press <Esc> all the time, so you aren’t forced to work
with Vi’s moded editing style. If you’ve shied away from Vim because of
its Vi-style editing, give Vimacs a shot!

History
In classic open-source spirit, Vimacs was created to “scratch an itch”. I
used to use Emacs all the time; it’s a fantastic tool for doing all kinds of
things (even text editing…). However, it suffers from some problems
which I feel are unsolvable without a drastic redesign:

● Speed. Emacs doesn’t even begin to approach Vim for raw speed;
Vim can load and fully syntax-colour a file before Emacs even
displays its window. (Using gnuclient doesn’t count!) One of the
reasons for Emacs’s slow speed compared to many other text

http://vim.sourceforge.net/scripts/
http://www.emacswiki.org/cgi-bin/wiki.pl?GnuClient


editors is that it uses LISP for everything. Now, using LISP for
everything has many advantages, including making Emacs is
completely extensible. I’m all for extensibility, but in this case,
Emacs is too slow (for me) because of it. In my eyes, you use an
editor so much in the UNIX environment that you really want it to
be as fast as possible. Even though Emacs is extensible++, it’s
slow enough that I never load it for quick editing jobs.

● Customisation is too hard. Emacs exposed so much of its
complexity and internals to you that it would befuddle your
average user who just wanted to change a few settings. I didn’t
feel like learning LISP just to customise the editor a bit; M-x
customize made this much better, but it’s still still unnecessarily
hard to change something which isn’t in that list of options. Try
writing your own syntax file or colour scheme, for instance; other
editors usually make this much easier. Of course, you can argue
that learning the language of Emacs (i.e. LISP) leads to learning a
powerful generic language which can be used in many places
outside of Emacs, but hey, some of us want to get other work
done, too.

Please don’t get me wrong — I’m not flaming Emacs, and I’m definitely
not saying that it’s a bad editor. It’s a fantastic editor; it’s arguably one of
the most powerful pieces of software on the planet. It’s just not the kind
of editor that I like to use on a daily basis. I don’t need most of its
ninja-fu abilities, but some of them are incredibly helpful. I can’t live
without things like dynamic abbreviation (the magical M-/ key), and
having the editor understand the syntax of the file you’re editing. Once
you’re used to those features, life is simply miserable without them.

Vimacs was created because I was looking for an alternative to Emacs,
and I found none. I wanted a cross-platform editor, since I work a lot on



both Win32 and UNIX systems, and I wanted it to be fast and easy to
customise, yet still have most of the power that Emacs gave me when I
was editing text files, or coding. I tried every single editor I found on
Freshmeat and Ibiblio, but I still couldn’t find one that I liked. Vim would
have been perfect, but I could never get used to the moded style of
editing. Pressing <Esc> all the time drove me nuts. (I’m not saying that
moded editing sucks, mind you, I’m just saying that I personally hated
being forced into that kind of editing style.)

After toying around with Vim’s scripting language, I decided to do
something to end my misery, and I figured that Vim’s scripting
capabilities were powerful enough that it could be used to emulate
Emacs quite well. I wouldn’t be able to emulate everything, of course,
but I’d be able to emulate Emacs well enough that it’d have all the key
bindings that I was used to. So, Vimacs was born. Vim by itself is a
powerful editor; I loved everything about it except for the moded editing
paradigm. Vimacs is simply something which makes Vim more
accessible to the non-Vi crowd, and it does so in a way which impacts
existing Vim users in a very small way.

http://www.freshmeat.net/
http://www.ibiblio.org/

