10. ФЕНОЛЫ

10.1. ГОМОЛОГИЧЕСКИЙ РЯД. ФИЗИЧЕСКИЕ СВОЙСТВА. НОМЕНКЛАТУРА И ИЗОМЕРИЯ

- 1. НАИБОЛЕЕ ПОЛНАЯ И ТОЧНАЯ ХАРАКТЕРИСТИКА ФЕНОЛОВ. ФЕНОЛЫ ЭТО
- 1) производные аренов с гидроксильными группами в боковой цепи
- 2) гидроксопроизводные аренов с гидроксильными группами в ароматическом карбоцикле
- 3) гидроксопроизводные бензола
- 4) производные алканолов, углеводородные радикалы которых включают фенильный радикал
- 2. СХЕМА, ПРАВИЛЬНО ИЗОБРАЖАЮЩАЯ СПОСОБ ОБРАЗОВАНИЯ ВОДОРОДНОЙ СВЯЗИ В МОЛЕКУЛАХ ФЕНОЛОВ
- 1) 2) 3) 4)

УСТАНОВИТЕ СООТВЕТСТВИЕ

- 3. ФОРМУЛА ЭФИРА СИММЕТРИЧНОГО СТРОЕНИЯ
- А) АРОМАТИЧЕСКОГО
- Б) АЛИФАТИЧЕСКОГО
- 1) 2) 3) 4) 5)
- 6)
- 4. ТЕМПЕРАТУРА КИПЕНИЯ CH_3 -OH = $+65^{\circ}$ C, $t_{\text{КИП}}$. CH_3 -O- CH_3 = $-23,7^{\circ}$ C. ОТНОСИТЕЛЬНО НИЗКАЯ ТЕМПЕРАТУРА КИПЕНИЯ ДИМЕТИЛОВОГО ЭФИРА ДОКАЗАТЕЛЬСТВО ТОГО ФАКТА, ЧТО ВОДОРОДНАЯ СВЯЗЬ В ПРОСТЫХ ЭФИРАХ ОТСУТСТВУЕТ. НЕВЕРНОЕ РАССУЖДЕНИЕ
- 1) Силы взаимодействия между молекулами вещества малы вещества летучи
- 2) Простые эфиры не растворяются в воде
- 3) Измеренные в газообразном состоянии молекулярные массы эфиров соответствуют массе одной молекулы
- 4) Диэтиловый эфир плохо растворяется в малополярных растворителях
- 5. ЧИСЛО ИЗОМЕРНЫХ ФЕНОЛОВ, КОТОРОЕ МОЖЕТ БЫТЬ У ВЕЩЕСТВА, СОСТАВА $C_8H_{10}O$
- 1) три
- четыре
- 3) пять
- 4) шесть
- 5) больше шести
- 6. ФОРМУЛА 1,3-ДИГИДРОКСИ-4,5-ДИМЕТИЛБЕНЗОЛА
- 1) 2) 3) 4) 5)
- 7. ЧИСЛО ИЗОМЕРОВ, ПРЕДСТАВЛЕННЫХ СЛЕДУЮЩИМИ НАЗВАНИЯМИ:
- 2-МЕТИЛФЕНОЛ, МЕТА-КРЕЗОЛ, ОРТО-КРЕЗОЛ, ПИРОКАТЕХИН, ГИДРОХИНОН,
- 3-МЕТИЛФЕНОЛ, ОРТО-ГИДРОКСИФЕНОЛ, ПАРА-ГИДРОКСИФЕНОЛ РАВНО
- 1) четырем
- 2) пяти
- 3) шести
- 4) семи
- 5) восьми
- 8. ЧИСЛО ГИДРОКСИПРОИЗВОДНЫХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ СОСТАВА С $_7$ Н $_8$ О РАВНО
- 1) трем
- 2) четырем
- 3) пяти
- 4) шести
- 5) семи

9. ФОРМУЛА ИЗОПРОПИЛ-ОРТО-ТОЛУИЛОВОГО ЭФИРА

1) 2) 3) 4) 5)

10.2. СТРОЕНИЕ

- 10. УТВЕРЖДЕНИЕ, НЕВЕРНО ОПИСЫВАЮЩЕЕ СТРОЕНИЕ ФЕНОЛА
- 1) Атом водорода гидроксогруппы может не лежать в плоскости молекулы это результат осевого вращения ?-С-О-связи
- 2) Неподеленная пара кислорода участвует в образовании единой 👼 -системы
- 3) С-О-связь не способна к осевому вращению и атом Н занимает фиксированное положение в пространстве относительно других частей молекулы
- 4) Длина С-О-связи в феноле меньше, чем в алканолах
- 5) Электроотрицательность атома кислорода больше, чем атома углерода, поэтому ОН-группа оказывает на ароматическое кольцо отрицательный индуктивный эффект. На атоме кислорода сосредоточен значительный отрицательный заряд ОН-группа является сильным центром основности фенола. Фенол проявляет свойства основания
- 6) По причине образования сопряженной системы (6 ≒ -электронная система кольца + неподеленная электронная пара атома кислорода) электронная плотность ароматического кольца увеличена за счет положительного мезомерного эффекта гидроксильной группы
- 7) Положительный мезомерный эффект ОН-группы больше отрицательного индуктивного эффекта, поэтому ОН связь более поляризована, чем в алканолах. Фенол кислота
- 8) Повышенная электронная плотность в кольце облегчает протекание реакций электрофильного замещения

11. ОШИБКА В ОПИСАНИИ ВЗАИМНОГО ВЛИЯНИЯ АТОМОВ В МОЛЕКУЛЕ АРОМАТИЧЕСКОГО ЭФИРА

- 1) Атом кислорода проявляет отрицательный индуктивный эффект
- 2) Радикал СН₃ проявляет положительный индуктивный эффект
- 3) Эффективный заряд **●** на атоме кислорода меньше, чем у алифатических эфиров. Поэтому основные свойства у ароматических эфиров выражены слабее, чем у алифатических эфиров
- 4) Негибридная p-орбиталь атома кислорода входит в сопряжение с 6 = электронной системой кольца. Атом кислорода проявляет положительный мезомерный эффект
- 5) Образование оксониевых соединений характерное свойство ароматических простых эфиров

10.3. ХИМИЧЕСКИЕ СВОЙСТВА НАХОЖДЕНИЕ В ПРИРОДЕ. ПОЛУЧЕНИЕ. СВЯЗЬ С ДРУГИМИ КЛАССАМИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

12. ФОРМУЛА ВЕЩЕСТВА, ЛЕГЧЕ РЕАГИРУЮЩЕГО С МЕТАЛЛИЧЕСКИМ НАТРИЕМ

- 1) CH₃CH₂CH₂OH 4)
- 2) 5)
- 3) CH₃-O-CH₃

13. ФОРМУЛА ВЕЩЕСТВА С НАИБОЛЕЕ ВЫРАЖЕННЫМИ КИСЛОТНЫМИ

СВОЙСТВАМИ 1) 2) 3) 4)	
14. СОКРАЩЕННОЕ ИОННОЕ УРАВНЕН СУТЬ ВЗАИМОДЕЙСТВИЯ	THE $C_6H_5OH + OH^- \otimes C_6H_5-O^- + H_2O$ OTPAWAET
1) фенола с натрием	3) фенола с гидроксидом калия
2) фенола с оксидом калия	4) фенола с гидроксидом меди
15. УСЛОВИЕ, КОТОРОЕ СДЕЛАЕТ ГИД Н ₂ О □ + NaOH	РОЛИЗ ФЕНОЛЯТА НАТРИЯ НЕОБРАТИМЫМ
1) нагревание раствора	3) пропускание через смесь водорода
2) добавление щелочи	4) пропускание через раствор углекислого газа
16. В РЕЗУЛЬТАТЕ РЕАКЦИИ + СН ₃ -СН ₂	-Br OFPA3VETCЯ
	$C_6H_5Br + CH_3CH_2ONa$
	$_{0}$ винилбензол + NaBr + H ₂ O
3) орто-этилфенол + NaBr	2
17 OTHACHHIODHŮ OAHD OCDAWICT	
17. ЭТИФЕНИЛОВЫЙ ЭФИР ОБРАЗУЕТО	
1) $CH_3CH_2OH + C_6H_5OH$ 3) $C_6H_5ONa + (C_6H_5OH + CH_2=CH_2)$ 4) $C_6H_5OH + CH_2=CH_2$	
$2) C_5 \Pi_5 O \Pi + C \Pi_2 - C \Pi_2$ 4) $C_6 \Pi_5 O \Pi - C \Pi_2 - C \Pi_2$	r Cn ₃ Cn ₃ · · · · · · · · · · · · · · · · · · ·
18. ФЕНИЛПРОПИОНАТ МОЖНО ПОЛУ ВЕЩЕСТВО С ФОРМУЛОЙ	ЧИТЬ В РЕАКЦИИ + X №, ГДЕ X – ЭТО
,	CH ₃ -CH ₂ -CClO (T)
2) (H ₂ SO ₄ , T) 5) (T)	
3) CH ₃ -CH ₂ -NH ₂	
19. ВЕЩЕСТВА, ЯВЛЯЮЩИЕСЯ ПРОДУ	ТКТАМИ РЕАКЦИИ С Н ОН + PCL
1) $(C_6H_5O)_3P=O+3HC1$ 3) + I	
2) $C_6H_5Cl + POCl_3 + HCl$	11 014
	ы ФЕНОЛА С ИЗБЫТКОМ БРОМНОЙ ВОДЫ
	- 3HBr
2) $C_6Br_6O + 6HBr$ 3) + 2HBr	5)
5) + 21151	
21. ПРИ НИТРОВАНИИ ФЕНОЛА НА ХО	ЛОДУ ОБРАЗУЕТСЯ СМЕСЬ
	/КТОВ РЕАКЦИИ БУДУТ ПРЕОБЛАДАТЬ
ВЕЩЕСТВА	
1) 4) только мета- нитрофенол	5)
2) пара- и мета- нитрофенолы	5) только пара-нитрофенол
3) пара- и орто- нитрофенолы22. ПРОДУКТ РЕАКЦИИ ФЕНОЛА С ПРО	ОПЕНОМ + CH.=CH-CH.
1) 2) 3) 4)	5112116W1 + C112 C11 C113
23. РЕАКЦИЯ КОНДЕНСАЦИИ ФЕНОЛА	. С ФОРМАЛЬДЕГИДОМ ПРИВОДИТ К
ОБРАЗОВАНИЮ ГИДРОКСИБЕНЗИЛОВ	
КОНДЕНСАЦИИ ФЕНОЛА С ФОРМАЛЬ,	

- 1) 2) 3) 4)
- 24. ФЕНОЛЫ ЛЕГКО ОКИСЛЯЮТСЯ. ФОРМУЛА ПРОДУКТА ОКИСЛЕНИЯ 1,4-ДИГИДРОКСИБЕНЗОЛА НЕЙТРАЛЬНЫМ РАСТВОРОМ ПЕРМАНГАНАНАТА КАЛИЯ
- 1) 2) 3) 4) $CO_2 + H_2O$
- 25. ПРОДУКТ СПЛАВЛЕНИЯ НАТРИЕВОЙ СОЛИ БЕНЗОЛСУЛЬФОКИСЛОТЫ С ИЗБЫТКОМ ГИДРОКСИДА НАТРИЯ + NaOH
- 1) 2) 3) 4) 5) $+ Na_2SO_4$

26. ИЗ ФЕНОЛЯТА НАТРИЯ МОЖНО ПОЛУЧИТЬ ФЕНОЛ + Х 🗞 ДЕЙСТВИЕМ

1) $H_2O(T)$

2) CH₃Cl (T)

3) H_2SO_4 (p-p)

4) O_2

ОТВЕТЫ

1	2	3	4	5	6	7	8	9	10
2	2	А3,Б2	4	5	1	1	2	2	3
11	12	13	14	15	16	17	18	19	20
3	5	1	3	4	1	1	5	2	4,5
21	22	23	24	25	26				
3	2	2	3	2	3		·		·