
Team and repository stats
Health metric monitoring: Google SpreadSheet
Public charts: Charts

“Management” tasks

●​ SETTING UP REGULAR COMMUNITY CALLS​
Notes:

○​ Would guide the direction of development
○​ It’s a nice way to make the community “feel closer” to the projects

​ Progress:​
​ ​ Currently scheduled to Wednesdays 9AM UTC

●​ Complete CII badge, on wiki pages
Caliper: https://bestpractices.coreinfrastructure.org/en/projects/2381
Progress: Panyu 97%
Problem Found: Missing versioning mechanism

●​ Discuss requirements for PRs to be accepted​
Notes:

○​ Number of reviewer ACKs (with 2 maintainers confirmation)
○​ Based on the impact of the PR, this should be dynamically decided, which

means that statically 2 reviews should be enough, but for a major change all
of the reviewers should approve first

○​ Meet CI requirements, like successful build (naturally) and tests (different kind
of coverage metrics) is lowest satisfaction, but reviewers should also inspect
the correctness/meaningfulness of tests.

●​ Involve more developers from non-Fabric platforms​

Notes:
○​ Even under Hyperledger, there are numerous DLT platforms that should be

supported by Caliper.
○​ It would make reviews easier if (core) developers of other platforms would be

involved
○​ Progress: Continuously invite maintainers or field experts of other projects.

Victor will make a list of known experts for HLP project, so if we met problems
on integrating with other project, we can know who we can reach out for help.

​ Progress: Victor/ Nick will add more names this week. Table at the of the document

https://docs.google.com/spreadsheets/d/1jdE8ZJNfLG4NIzEoMFNq6lywLxXWCzNbSEDqP-UJD6Q/edit?usp=sharing
https://docs.google.com/spreadsheets/d/e/2PACX-1vRZCaEWwKMZZCnHf-YVNcSpU3PYd81rozu9KVrSptg7NixRdyHp64isnLIKxq8fTJG7zg26UVpIgNaq/pubhtml?gid=1454794804&single=true
https://bestpractices.coreinfrastructure.org/en/projects/2381

Short-term development tasks

Core Caliper-related

●​ Add FAQ page to the document website​
Continue to extend the FAQ based on community questions

●​ Add instructions of versioning and releasing rules and procedures

Priority: High
Progress: Not started.
Nick suggested to think about what is critical to a new version. Victor will think about
that and make a plan for discussion in next meetings.

●​ Caliper is not running(under what configuration) correctly(what goes wrong) with high
TPS(how much)
Panyu please describe the problem by submitting an issue.
Progress: issue has been submitted, pr is on the way, 70%

●​ Add Iroha support
Priority: High
Progress: Qinghui

●​ Add Corda support
Priority: Middle
Progress: Feihu Jiang

●​ Define a simulator for high TPS Testing
Priority: High
Progress: Not started.

●​ Define a common signature for the adapters for invoking smart contracts​
Notes:

○​ Every network-related artifact should be managed by the adapter.
○​ The client callback module should reference these by names/IDs. (The WIP

Fabric adapter will follow this convention.)
○​ The Fabric Node SDK pattern seems usable: a setting parameter for the

invocation (this will be platform specific) and a timeout parameter (probably
applicable for every platform)

○​ This way the callback module code could calculate the current parameters of
the smart contract (invoking identity, targets, arguments, etc.), and assemble
these into the platform-specific invoke argument. So most of the module code
would be platform independent.

Priority: Medium

Progress: Needs look into different platforms, Attila already has a plan for Fabric.
Attila can raise an issue talking about the plan, Feihu can look from a STL pov, and invite
Iroha people for suggestion.

Not started yet(11/27)

●​ Repo/module restructuring, aka, paving the road for the npm package​
Notes:

○​ Adopt similar repo structure like the Node SDK, and other npm best practices
○​ There’re starting to be more and more examples, maybe a caliper-samples

repo would be useful later to separate the benchmarks from the code-base
Priority: Medium​

​ Progress: Nick will ask advice from nodesdk and composer team since they ‘re more
experienced in npm packaging. 30%

Not changes yet. But we can do later, it will not strongly affect the npm scripts.

●​ Align with metric definitions in PSWG whitepaper
Notes:

○​ Caliper is made before the whitepaper come out
○​ Check the current implementation to align with them
○​ By Attila: only one latency tracking method is not implemented.

​ Priority: Medium
​ Progress: NA

●​ Refactor Promise chains to async/await wherever possible
Notes:

○​ Makes the code more readable
○​ Results in clean error messages in case of unhandled exceptions
○​ Easier “task-level” error handling instead of “chain-level” catches
○​ Create issue first to collect feedback from community.

Priority: High
Progress: Attila (Github Issue), 80%(11/21), ​

​ ​ some modules (reporting, monitoring) are still not done​

●​ Introduction of the workspace concept​
Notes:

○​ Currently, most of the relative paths are resolved based on the caliper root dir.
Golang chaincode paths are resolved according to GOPATH, which can be
overwritten to the caliper root dir. But once caliper is installed as an npm
package, this will be confusing.

○​ For distributed zookeeper clients a self-contained “package” is needed that
contains every artifact needed to run a test round.

○​ Since the workspace is set explicitly, there’s no guessing/assuming on the
caliper side, the user will supply every path according to the workspace (or
absolute paths).

​ Priority: Medium
​ Progress: NA

https://github.com/hyperledger/caliper/issues/192

●​ Extract network queries to share among the Fabric adapters (channel joined or not)

Fabric-related
●​ Refactor the adapter to use the Common Connection Profile

Notes:
○​ Simplifies the code-base, as the SDK handles the assembling of object

graphs and the management of client contexts.
○​ Provides easy specification of (multiple) target nodes using only their names,

which can be easily set even by the callback modules.
○​ Fixes current shortcoming, like single channel test in a round, single

endorsement policy for every chaincode, fixed target peer selection for a
round, single orderer node support, etc.

○​ Hides a lot of complexities behind a simple API, facilitating the support of new
Fabric releases with minimal delay.

○​ Merged as a new adapter (fabric11)
Priority: High
Progress: Attila Klenik; code-base: ~70%->80%=>90%(10/24) => 95% (11.14)=>

submit PR(11.21); tests: 0%; documentation: 10% PRs pending

Medium-term development tasks

Core Caliper-related
●​ Sketch some design documents about the internal communications/structure​

Notes: These documents would help planning the modularization of the remaining
components​
Priority: High​
Progress: ​

●​ Modularize the monitoring module​
Notes:

○​ DLT deployments will probably be heterogeneous networks due to different
participating organizations. Providing monitoring capabilities for a wide range
of technology stack is cumbersome (and probably not the main purpose of
Caliper).

○​ The monitoring component should be pluggable, and wherever possible
Caliper should utilize license-compatible third-party monitoring tools.

​ Priority: Medium
​ Progress: NA

●​ Modularize the reporting module​
Notes:

○​ Currently, Caliper only supports the generation of HTML reports based on
predefined metrics. This should be an expected functionality that reports on
the different (PSWG) metrics, but Caliper should be also capable of providing
detailed analysis.

○​ Users might be interested in resource consumption during the tests, and not
just the min/max values at the end.

○​ Accordingly, the reporting module should be pluggable, and Caliper should
provide at least a CSV export functionality about the gathered transaction
data.

○​ This would open up a way for the community to integrate numerous reporting
and data analysis methods, especially in the age of big data.

​ Priority: Low
​ Progress: NA

Fabric-related
●​ Fork a separate process(es) from the Fabric adapter, that only handles event

processing, like in PR 124
Notes:

○​ Timing critical measurements are not possible under high load due to the
single threaded nature of Node.js. Event processing in a separate process

https://github.com/hyperledger/caliper/pull/124

would take off a great load from the “transaction submitting” process,
moreover, also decreasing the interference with rate controller precision.

○​ However, both end of the scale must be supported: efficient/fast event
processing by connecting to only one needed channel event hub; connecting
to every channel event hub to calculate metrics like transaction latency with a
100% network threshold, as discussed by the PSWG.

○​ Maybe a general architectural pattern can be derived and applied for the
other supported platforms as well.

○​ PR124 is merged into the current Fabric adapter
Priority: Medium/High
Progress: NA

Long-term development tasks

Core Caliper Related
●​ Extend Caliper‘s scope

○​ Add system test for consensus effectiveness
●​ Other DLT support

○​ which?

Platform supports
Here we collect the remarks about the different platform supports, for example, the missing
but desired features.

Fabric
Documentation: https://hyperledger.github.io/caliper/docs/Fabric_Configuration.html
TBD

Fabric CCP
PR in progress

Sawtooth
Documentation: https://hyperledger.github.io/caliper/docs/Sawtooth_Configuration.html
TBD

Iroha
Documentation: https://hyperledger.github.io/caliper/docs/Iroha_Configuration.html
TBD

Burrow
Documentation: https://hyperledger.github.io/caliper/docs/Burrow_Configuration.html
TBD

https://hyperledger.github.io/caliper/docs/Fabric_Configuration.html
https://hyperledger.github.io/caliper/docs/Sawtooth_Configuration.html
https://hyperledger.github.io/caliper/docs/Iroha_Configuration.html
https://hyperledger.github.io/caliper/docs/Burrow_Configuration.html

Contacts table

Project Expert Contact

Fabric Gari Singh

Yacov Manevich

Jason Yellick

Dave Kelsey @davidkel

Sawtooth Peter Schwartz

Dan Middleton

Iroha Andrei Lebedev

Sara G

Composer Nick Lincoln @nkl199

Simon Stone @sstone1

Burrow Silas Davis

Indy Alexander Shcherbakov

Sergey Khoroshavin @sergey.khoroshavin

Ethereum Nick Johnson

IOTA Dominik Schiener

Cello Baohua Yang

Explorer Nik Frunza

Quilt David Fuelling

Troubleshooting / FAQ

Note: A FAQ page already exists. Here we should collect additional entries that should be
added to it (before submitting it as a PR, since that’s a slower process).

Documentation TODOs

 Hyperledger Bootcamp Task

Improve the logging support

Difficulty: Easy

Context
Caliper utilizes the winston logging package to provide a flexible and common mechanism
for modules for logging. Winston provides some core transports/target for logging. Currently,
Caliper uses the following syntax in its default configuration file to configure targets:

core:
 log-file:
 debug: log/caliper.log
 info: console

This will result in two targets: a file logger with debug level filtering and a console logger with
info level filtering.

Goal
A more flexible approach would be to allow the definition of an arbitrary number of loggers
(denoted by a unique name/attribute in the configuration), with configurable targets and
target/winston-specific options (corresponding to the target API):

core:
 logging:
 consolelogger:
 # indicates the Console transport
 target: console
 # console transport specific options, mostly optional
 level: info
 colorize: true
 filelogger:
 # indicates the File transport
 target: file
 # file transport specific options, mostly optional
 level: debug
 filename: path/to/logfile.log

https://github.com/winstonjs/winston
https://github.com/winstonjs/winston/blob/master/docs/transports.md#winston-core
https://github.com/winstonjs/winston/blob/master/docs/transports.md#console-transport
https://github.com/winstonjs/winston/blob/master/docs/transports.md#file-transport

This is a flexible way to define as many logging targets as we want with arbitrary settings,
plus adding support for new types of logging targets (http, MongoDB, Syslog, etc) is easier,
just check the target property, and add a new transport creation code for the new target.

Corresponding documentation should also be provided, detailing the available target types
and the general logging mechanism (how to configure loggers, how to create loggers in a
module).

Guide
The logging/winston-related codes are in the src/comm/util.js file. Specifically, the
Util.getLogger function should be improved according to the above specification and
examples. Moreover, it would be nice to extract the logging-related functions into their own
utility file (src/comm/logging-util.js), similarly to src/comm/config-util.js

Improve the configuration support

Difficulty: Easy

Context
Caliper uses a hierarchical configuration mechanism provided by the nconf package. The
priority between the different configuration sources are the following:

Runtime > Environment variable > Command line > Configuration file

The provided environment variables (conventionally written in uppercase with underscore
separators) are made lowercase and the underscores are changed to dashes. For example,
CORE_SOMESETTING=10 can be queried through the “core-somesetting”
configuration key.

The configuration file allows nested objects, that are flattened to separate keys for each
“leaf” attribute. For example, the value of somesetting in

core:
 someSetting: 10

can be queried through the “core:someSetting” configuration key. These two examples
demonstrate the inconsistency of the configuration mechanism: someSetting cannot be
overridden by environment variables since CORE_SOMESETTING will be mapped to
“core:somesetting” (note the missing camel casing).

https://github.com/indexzero/nconf

Goal
The goal would be to use a common format for settings from every source. The proposed
format is the following: all lowercase letters for the setting hierarchies, separated by dashes.
So the previous examples both could be queried with the same configuration key,
“core-somesetting”, and could be overridden by the environment variable
CORE_SOMESETTING=10, or through the command line with --core-somesetting=10.

Moreover, to prevent name collisions with settings outside of Caliper (especially for
environment variables), the “caliper-” prefix should be used for every settings key.

It is also important to parse well-know string values (e.g., ‘false’, ‘true’, ‘3’, ‘5.1’ or JSON
values) as their corresponding type (e.g., boolean, number, or object), both for command line
arguments and environment variables.

Corresponding documentation should also be provided that describes the configuration
mechanism of Caliper.

Guide
Using the “caliper-” prefix requires the modification of the default configuration file.
Everything should be enclosed in a top-level “caliper” attribute. This way nconf
automatically will append the prefix, since it's part of the configuration hierarchy. For
example:

caliper:
 core:
 somesetting: 10

The environment variables are set by the users, so it's their responsibility to correctly
override, for example, the “caliper-core-somesetting” value by setting the
CALIPER_CORE_SOMESETTING environment variable.

Consistent naming can be achieved by using all lowercase names in the configuration file,
plus setting the appropriate nconf option (options.logicalSeparator), so it uses
dashes as a separator when parsing a configuration file.

Parsing well-known string values can be achieved by using the appropriate settings for
nconf.

https://github.com/indexzero/nconf#argv

Modularize the rate controllers

Difficulty: Easy

Context
Caliper uses rate controllers to signal the user callback modules when they can submit
transactions. Currently, rate controllers have to provide/export a class containing some
functions to be usable by Caliper (like a constructor, an init, apply and end functions).

Also, Caliper can only use rate controllers that are explicitly listed in the rate controller
gateway. This limits the easy extensibility of the mechanism.

Goal
The proposal is to modularize the rate controller implementations in the following way: a
module implementing a rate controller should only expose/export a factory function, like
createRateContoller(bc, opts):object, that should return an object that has the
aforementioned functions. This way the rate controller developer would have explicit control
over the lifetime of a rate controller object.

Moreover, external rate controllers also should be supported, i.e., the
src/comm/rate-control/rateControl.js class should be able to resolve paths to
external JS files, provided that they export the necessary factory function.

Corresponding documentation should also be provided that describes the general API of rate
controllers.

Guide
The existing rate controller files (in the src/comm/rate-control directory) should be
modified to export the aforementioned factory function instead of the rate controller class.
Additionally, the src/comm/rate-control/rateControl.js constructor should be
modified to create the rate controllers through the factory function.
Also, if it encounters an unknown rate controller type that is a path to a JS file, it should try to
access its factory function if it’s provided.

https://hyperledger.github.io/caliper/docs/Rate_Controllers.html#custom-controllers
https://hyperledger.github.io/caliper/docs/Rate_Controllers.html#custom-controllers
https://github.com/hyperledger/caliper/blob/master/src/comm/rate-control/rateControl.js
https://github.com/hyperledger/caliper/blob/master/src/comm/rate-control/rateControl.js

Modularize the user test modules

Difficulty: Easy

Context
Caliper uses user modules (or user test modules) to allow arbitrary workload logic to be
plugged in. The user module must export the three required functions to be able to interact
with Caliper. This design is not object-oriented and should be refactored.

Goal
The proposal is to require only an exported factory function (e.g., createUserModule)
from the user module JS file. This way the developer has more freedom to structure the
implementation and explicitly manage the life-cycle of the user module instance.

Corresponding documentation must also be provided that describes the general API of user
modules.

Guide
The src/comm/client/local-client.js/run* functions must be refactored to use
the new factory function of the referenced modules.
Additionally, the provided example user modules (in the benchmark/ directory) must also
be refactored.

Improve the adapter life-cycle management

Difficulty: Intermediate

Context
Caliper is comprised of some basic building blocks: platform adapters, rate controllers, user
modules, client processes, and the main process.
While rate controllers and user modules are only instantiated by client processes, platform
adapters can exist in two different environments: both in the main process and in the client
processes.

The current life-cycle of the platform adapters (PA) in the main process (MP) is the following:

1.​ MP creates PA
2.​ MP initializes PA

https://hyperledger.github.io/caliper/docs/2_Architecture.html#user-defined-test-module

3.​ MP instructs PA to install the (optionally) configured smart contracts
4.​ MP spawns the client processes

The current life-cycle of the platform adapters (PA) in the client processes (CP) is the
following:

1.​ CP creates PA
2.​ Before a test round, CP requests the current context from PA
3.​ CP performs a test round
4.​ After a test round, CP releases the current context through PA
5.​ If there are more test rounds, repeat from 2.

This life-cycle management/protocol is not granular enough from a resource management
point-of-view.

Goal
The proposal is to extend the introduced life-cycle of platform adapters to include additional
communication between the client/master process and the adapter. For example:

The proposed life-cycle of the platform adapters (PA) in the main process (MP):

1.​ MP creates PA
2.​ MP initializes PA
3.​ MP instructs PA to install the (optionally) configured smart contracts
4.​ MP spawns the client processes
5.​ MP disposes of PA after the clients finished their work

The proposed life-cycle of the platform adapters (PA) in the client processes (CP):

1.​ CP creates PA
2.​ CP initializes PA “in client mode”
3.​ Before a test round, CP requests the current context from PA
4.​ CP performs a test round
5.​ After a test round, CP releases the current context through PA
6.​ If there are more test rounds, repeat from 2.
7.​ CP disposes of PA “in client mode”

Guide
The adapter interfaces need to be extended to support the new life-cycle phases.
Specifically, the following classes need to be modified:

●​ src/comm/blockchain.js
●​ src/comm/blockchain-interface.js
●​ Platform adapters in src/adapters
●​ src/comm/bench-flow.js
●​ src/comm/client/local-client.js

	Team and repository stats
	
	“Management” tasks
	Short-term development tasks
	Core Caliper-related
	Fabric-related
	Medium-term development tasks
	Core Caliper-related
	Fabric-related
	
	Long-term development tasks
	Core Caliper Related
	Platform supports
	Fabric
	Fabric CCP
	Sawtooth
	Iroha
	Burrow
	Contacts table
	Troubleshooting / FAQ
	Documentation TODOs
	 Hyperledger Bootcamp Task
	Improve the logging support
	Difficulty: Easy
	Context
	Goal
	Guide

	Improve the configuration support
	Difficulty: Easy
	Context
	Goal
	Guide

	Modularize the rate controllers
	Difficulty: Easy
	Context
	Goal
	Guide

	Modularize the user test modules
	Difficulty: Easy
	Context
	Goal
	Guide

	Improve the adapter life-cycle management
	Difficulty: Intermediate
	Context
	Goal
	Guide

