This is a public document
mych@chromium.org
2023-03-14

Status: OBSOLETE

Background

In response to recent discussions and concerns (internal notes/external notes) around the API
shape of WICG/pending-beacon, instead of creating an independent PendingBeacon class
family, this document proposes class PendingRequest, a subclass of fetch’'s Request.

API Requirements

The following requirements are critical:
1. Support a reliable mechanism for delaying operation until page discard, including
unloading and bfcache eviction.
2. Support an optional timeout to allow early sending after visibility hidden or bfcached.
3. Behave like a keepalive fetch request when 1's mechanism triggers.
4. Allow pending requests to be updated to reduce network usage.

PendingRequest API

interface PendingRequest : Request {
constructor(RequestInfo input,
optional PendingRequestInit init = {});

readonly attribute boolean pending;

void sendNow();

http://shortn/_2jt2gcPZni
https://github.com/patcg-individual-drafts/private-aggregation-api/issues/42
https://github.com/WICG/pending-beacon
https://fetch.spec.whatwg.org/#dom-request

// Defaults to -1.

// TL;DR: A timeout to accelerate request sending, as the duration
// between page "hidden" & page discarded may be very long.
readonly attribute long sendAfterBeingBackgroundedTimeout;

// The following fields are mutable if “pending™ is true.
. : i -

attribute USVString url;

attribute Headers headers;

attribute ReadableStream? body;

TODO: Decide if to enforce type safety by providing PendingGetRequest/PendingPostRequest.

Details

fetch()

A PendingRequest object can be passed into fetch(), which should be extended to only kick
off sending the request on page discard.

PendingRequestlnit

// For constructing a PendingRequest.
dictionary PendingRequestInit {
// One of "GET" or "POST".
ByteString method;
HeadersInit headers;
// Can only be set when “method™ is "POST". Otherwise, throws TypeError.
BodyInit? body;
AbortSignal? signal;

// See PendingRequest.
long sendAfterBeingBackgroundedTimeout;

%

To limit the scope, PendingRequest’s constructor will only accept a subset of Requestlinit field
values, as a new dictionary PendingRequestInit:
e url:supported.
method: one of GET or POST.
headers: supported.
body: only supported for POST.
credentials: enforcing same-origin to be consistent.
cache: not supported.
redirect: enforcing follow.

referrer: enforcing same-origin URL.

referrerPolicy: enforcing same-origin.

keepalive: enforcing true.

integrity: not supported.

priority: enforcing auto;

signal: supported.

sendAfterBeingBackgroundedTimeout: equivalent to backgroundTimeout from
PendingBeacon’s proposal. We think it’s critical to support customized early sending
when the page is in BFCached. See the original backgroundTimeout discussion.

Request Size Limit

As keepalive is enforced to true, a PendingRequest object has to share the same size limit
budget as a regular keepalive request’s one: “the sum of contentLength and
inflightKeepaliveBytes <= 64 KB".

There are several options to communicate the error with API users:

1. The PendingRequest throws TypeError when the budget has exceeded. An existing
PendingRequest contributes to the size limit budget until it is sent. This error can happen
in the following places: (a) Calling PendingRequest constructor (b) Updating
PendingRequest.body. The problem is that malicious sites can easily eat up all budget to
block all other usages.

2. The browser forces sending out existing PendingRequest objects (FIFO) when the
budget has exceeded. The problem is that it’s still possible to have accumulated size
that exceeds the limit, if requests take too long to send.

TODO: Consider ignoring the size limit if BackgroundFetch Permission is enabled for the page.
But will there be privacy issues as PendingRequest is not visible in the download manager?

3P Frame

Permission-Policy to potentially allow in 3p frames.

Examples

Queue a GET beacon that will be sent on page discard

const beacon = new PendingRequest("http://example.test", {method: "GET"});
fetch(beacon).then(response => { 1)

https://github.com/WICG/pending-beacon/issues/13#issuecomment-1195861522
https://fetch.spec.whatwg.org/#http-network-or-cache-fetch
https://developer.mozilla.org/en-US/docs/Web/API/Background_Fetch_API#browser_compatibility

Queue a POST beacon that will be sent on page discard

const beacon = new PendingRequest("http://example.test”, {
method: "POST",
body: {"foo": "bar"}

1)

fetch(beacon).then(response => { /* This Promise may never be resolved! */ });

Ask UA to send out a pending beacon

const beacon = new PendingRequest("http://example.test”, {method: "GET"});
fetch(beacon).then(response => {

// Resolved after ~sendNow()".
1)

beacon.sendNow();

Update beacon data when it’s still pending

const beacon = new PendingRequest("http://example.test”, {method: "POST"});
fetch(beacon);
if (beacon.pending) {

beacon.body = "new data";

}

Cancel a pending beacon

const controller = new AbortController();

const beacon = new PendingRequest("http://example.test", {
method: "POST",
signal: controller.signal

1)

fetch(beacon);

controller.abort();

Queue a beacon that will be sent out roughly 1 minute after this page
enters "hidden’ visibility state

const beacon = new PendingRequest("http://example.test", {
method: "GET",
sendAfterBeingBackgroundedTimeout: 60000 /* 1 minute */});
fetch(beacon);

Queue a beacon that will be sent immediately after this page enters
“hidden’ visibility state

const beacon = new PendingRequest("http://example.test", {
method: "GET",
sendAfterBeingBackgroundedTimeout: @ /* immediately on “hidden” */});
fetch(beacon).then(response => {
// Resolved on "hidden”.

1)

PendingRequest VS keepalive Request in “hidden” listener

// Executes ONLY in the next "hidden" event.
const beacon = new PendingRequest("http://example.test"”, {

method: "GET",

sendAfterBeingBackgroundedTimeout: @ /* immediately on "hidden" */});
fetch(beacon);

document.addEventListener("hidden", e => {
// Repeatedly executes in EVERY "hidden" event.
fetch(new Request("http://example.test"”, {method: "GET",
keepalive: true}));

1);

Queue a beacon and update its URL if still pending

// Queue a beacon that is sent immediately on page "hidden".
let beacon = new PendingRequest("http://example.test", {

method: "GET",

sendAfterBeingBackgroundedTimeout: @ /* immediately on "hidden" */});
fetch(beacon);

// Check if it is sent before updating, as the page can be hidden anytime.
if (beacon.pending) {
// Update beacon's URL.
beacon.url = beacon.url + extraParams;
} else {
// Create a new beacon, as the previous one is gone.
beacon = new PendingRequest(beacon.url + extraParams, {
method: "GET",
sendAfterBeingBackgroundedTimeout: 0});
fetch(beacon);

}

// Send it out immediately instead.
beacon.sendNow();

(no-op if already sent by browser)

	Background
	API Requirements

	PendingRequest API
	Details
	fetch()
	PendingRequestInit
	Request Size Limit
	3P Frame

	Examples
	Queue a GET beacon that will be sent on page discard
	Queue a POST beacon that will be sent on page discard
	Ask UA to send out a pending beacon
	Update beacon data when it’s still pending
	Cancel a pending beacon
	Queue a beacon that will be sent out roughly 1 minute after this page enters `hidden` visibility state
	Queue a beacon that will be sent immediately after this page enters `hidden` visibility state
	PendingRequest VS keepalive Request in “hidden” listener
	Queue a beacon and update its URL if still pending

