17.10.2022 гр. ХКМ 3/1

МДК.01.03. Управление обслуживанием холодильного оборудования (по отраслям) и контроль за ним

Тема 5.2. Холодильное технологическое оборудование для охлаждения пищевых продуктов

2. Оборудование для охлаждения рыбы

Существующие устройства (рыбоохладители), предназначенные для охлаждения рыбы на судах, отличаются большим разнообразием. Совокупность машин, аппаратов и трубопроводов называется системой предварительного охлаждения.

В зависимости от способа охлаждения рыбы (льдом, водой или льдо-водяной смесью, а также в вакууме) применяют баки и ванны, оборудование для охлаждения рыбы водой и льдо-водяной смесью, судовые вакуумные рыбоохладители.

Баки и ванны. При охлаждении рыбы льдом используют баки, ванны или брезентовые чаны вместимостью 2—5 м³. В них рыбу пересыпают мелкодробленым или чешуйчатым льдом, изготовленным в льдогенераторе из пресной или морской воды.

Иногда в качестве емкости используют трюмы судна. Рыба, послойно пересыпанная мелкодробленым льдом, охлаждается и хранится в трюме при температуре 0÷ -4°C.

Количество льда, необходимого для охлаждения рыбы, определяют из выражения

$$G_{\pi} = \frac{G_{\rm p} \, c_{\rm p} \, (t_{\rm HBH} - t_{\rm KOH}) \, 1, 2 \, a'}{r_{\pi}}$$

где $G_{\mbox{\tiny Π}}$ — количество льда, кг; $G_{\mbox{\tiny p}}$ —масса рыбы, кг;

 $c_{\rm p}$ — удельная теплоемкость рыбы, Дж/(кг·K);

1,2 — коэффициент запаса льда, остающийся в конце процесса охлаждения и хранения;

a' — коэффициент, учитывающий дополнительные теплопритоки и производственные потери льда (1,5—2);

 $r_{_{II}}$ — теплота плавления льда, Дж/кг.

Оборудование для охлаждения рыбы водой или льдо-водяной смесью. Оборудование, предназначенное для охлаждения рыбы путем погружения ее в воду или в льдо-водяную смесь, часто применяют на судах.

Оборудование систем предварительного охлаждения рыбы судна РБ-150 состоит из циркуляционного насоса рыбоохладителя, испарителя, перекачивания хладоносителя и водяного насоса (рис.5.21).

С помощью лотка мелкую рыбу направляют в трубчатый рыбоохладитель, выполненный из трубы диаметром 362×2,5 мм с гидравлическим завихрителем (рис.5.22), через который вода подается в трубчатый рыбоохладитель. Вода придает рыбо-водяной смеси вращательное движение. Рыба, продвигаясь в трубе и интенсивно перемешиваясь с холодной водой, температура которой в рыбоохладителе -2°C, за 5—6 мин охлаждается до 1—2°C. Трубчатый рыбоохладитель с системой обслуживающих трубопроводов размещают под палубой.

Достоинством трубчатого рыбоохладителя является быстрое охлаждение улова. Однако необходимость перемещения большого количества воды (соотношение воды и рыбы 10: 1) приводит к возраста расхода электроэнергии на привод водяных насосов.

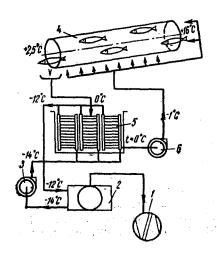


Рисунок 5.21. Система предварительного охлаждения рыбы с трубчатым рыбоохладителем: 1 — компрессор; 2 — испаритель; 3 — циркуляционный насос; 4 — трубчатый рыбоохладитель; 5 — водоохладитель; 6 — водяной

насос

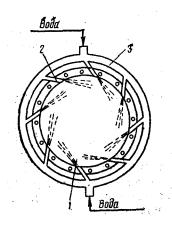


Рисунок 5.22. Гидравлический завихритель: 1 — трубопровод рыбной пульпы; 2— тангенциальные отверстия; 3 — кольцевая камера

Система предварительного охлаждения рыбы с рыбоохладителями выполнёнными в виде цистерн, представлена на рис.5.23. В состав системы входят две цистерны (вместимость по 4,5 м³), фильтры грубой и тонкой очистки воды, водоохладитель, циркуляционные насосы, солеконцентратор и водонагреватель.

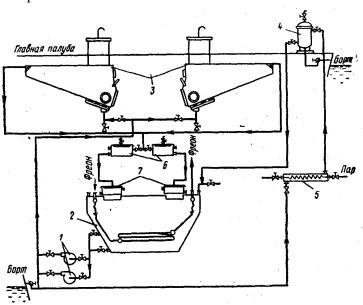


Рисунок 5.23. Система предварительного охлаждения рыбы с рыбоохладителем, выполненным в виде цистерн: 1 — циркуляционные насосы; 2 — водоохладитель; 3 — цистерны для охлаждения рыбы; 4 — солеконцентратор; 5 — водонагреватель; 6 — фильтры грубой очистки; 7 — фильтры тонкой очистки

Крупную рыбу (треска, морской окунь) направляют в цистерны для охлаждения, где холодная морская вода циркулирует со скоростью 0.2-0.4 м/с. Уклон днищ цистерн 23° по направлению к разгрузочным люкам. После охлаждения рыбы воду спускают в водоохладитель объемом 6.2 м³ с охлаждающими змеевиками. В цистернах для охлаждения рыбы и водоохладителе вода циркулирует с помощью двух насосов производительностью 22 м³/ч.

Солеконцентратор и водоподогреватель забортной воды необходимы для повышения концентрации соли в морской воде.

Продолжительность охлаждения рыбы составляет 45 мин; производительность системы 1,5—2 т/ч. После охлаждения рыбы ее укладывают в ящики и помещают в трюмы или в твиндеки, температура воздуха в которых 0° С.

Недостатками такой системы являются сложная эксплуатация (фильтры быстро засоряются и их необходимо чистить или заменять), повышенный расход электроэнергии; отсутствие средств механизации выгрузки охлажденной рыбы.

Системы предварительного охлаждения рыбы с добавлением льда применяют на траулерах.

Оборудование системы предварительного охлаждения рыбы траулера типа «Наталья Ковшова» (рис.5.24) состоит из приемной цистерны, льдогенератора, цистерн-охладителей, цистерн-аккумуляторов (стокеров), транспортера, водоохладителя и циркуляционных насосов.

Из трала выловленную рыбу выгружают без предварительной сортировки в приемную цистерну через люк, расположенный на верхней (промысловой) палубе. Приемная цистерна (емкость 20 т) выполнена с наклонным дном и двумя люками для разгрузки, а также снабжена гидравлическим приводом для их открывания. Рыбу пересыпают чешуйчатым льдом, приготовленным в льдогенераторе, который установлен непосредственно над цистернами. Выгруженную из цистерны рыбу сортируют, после чего транспортером подают в цистерну-охладитель или цистерну-аккумулятор, где она охлаждается до 0°С и хранится в охлажденной морской воде. Эти цистерны можно использовать как для охлаждения, так и для хранения рыбы.

Каждая цистерна вмещает 9 т рыбы и 9 м воды.

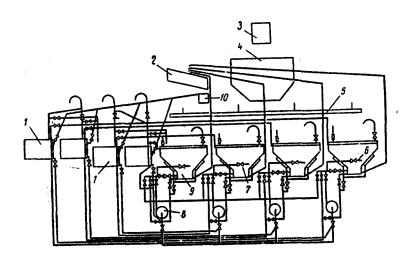


Рисунок 5.24. Система предварительного охлаждения рыбы траулера «Наталья Ковшова»: 1 — водоохладители; 2 — отделитель рыбы от воды; 3 — льдогенератор; 4 — приемная цистерна; 5 — транспортер; 6 — трубопровод сжатого воздуха; 7 — цистерна-охладитель; 8 — циркуляционный насос; 9 — цистерна-аккумулятор (стокер); 10 — фильтр

Водоохладитель цистерны выполнен в виде закрытого бака емкостью 4 м³, в котором размещена гладкотрубная батарея, охлаждаемая кипящим аммиаком.

Циркуляционный насос соединен с цистернами системой трубопроводов с пневматическими клапанами.

Оборудование систем предварительного охлаждения рыбы на траулерах типа «Тропик» (рис.5.25) состоит из цистерны-охладителя с охлаждающими батареями, льдогенератора, циркуляционных насосов, трубопроводов и цистерны загрязненной воды. В отличие от систем предварительного охлаждения рыбы на траулерах типа «Наталья Ковшова» у этой системы нет отдельных водоохладителей. Вода охлаждается в самих цистернах.

В цистерну с водой, предварительно охлажденной до температуры -1°C, загружают пересыпанную льдом рыбу. Продолжительность охлаждения рыбы в цистернах составляет 1,5—2 ч. При необходимости охлажденную рыбу можно хранить в этих же цистернах в течение 5—6 ч. Из цистерн ее выгружают специальным элеватором.

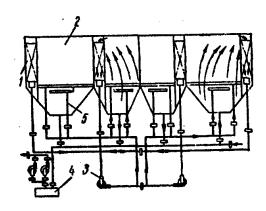


Рисунок 5.25. Система предварительного охлаждения рыбы траулера типа «Тропик»: 1 — охлаждающие батареи; 2 — цистерна-охладитель; 3 — циркуляционные насосы; 4 — цистерна загрязненной воды; 5 — трубопроводы

Конвейерная система охлаждения рыбы в холодной морской воде (рис.5.26) состоит из пластинчатого конвейера, циркуляционного насоса, водоохладителя и водяных трубопроводов.

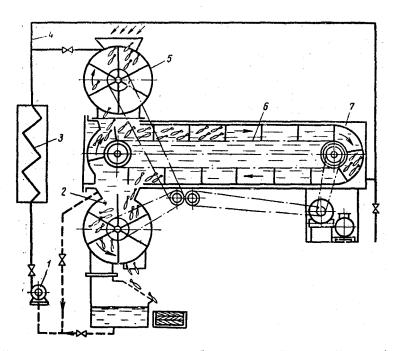


Рисунок 5.26. Конвейерная система охлаждения рыбы в холодной морской воде: 1 — циркуляционный насос; 2 — разгрузочный золотник; 3 — водохладитель; 4 — водяные трубопроводы; 5 — загрузочный золотник; 6 — пластинчатый конвейер; 7 — закрытый бункер

Рыба попадает на пластинчатый конвейер, который проходит через закрытый бункер, заполненный охлажденной морской водой. Изменение скорости движения конвейера позволяет охлаждать рыбу различных размеров: от сельди, продолжительность охлаждения которой составляет 5—7 мин, до трески, продолжительность охлаждения которой 30—40 мин.

Морская вода в системе циркулирует по замкнутому кольцу: закрытый бункер — водоохладитель — закрытый бункер.

После охлаждения ее направляют на замораживание или на технологическую переработку. Конвейерная система охлаждения рыбы эффективна и проста в эксплуатации.

Наряду с системами предварительного охлаждения рыбы погружением находят применение и *системы с орошением* ее жидкими хладоносителями или холодной морской водой.

На небольших промысловых судах оборудование систем предварительного охлаждения рыбы (рис.5.27) состоит из генератора холода, циркуляционного насоса, оросительных трубопроводов, фильтра, рыбонасоса и водоотделителя. Система предназначена для охлаждения и хранения охлажденной рыбы.

Рыба, подлежащая охлаждению, из трала вместе с морской водой удаляется рыбонасосом. В водоотделителе происходит отделение рыбы от морской воды. По наклонному лотку рыбу ссыпают в трюм на решетчатый настил. В нижней части трюма находится слой льда. Запас льда зависит от массы охлаждаемой рыбы и длительности ее перевозки. Воду охлаждают льдом в генераторе холода. Холодную морскую воду с помощью циркуляционного насоса направляют к оросительным трубопроводам. Избыток воды, создающийся в результате таяния льда, при необходимости можно сбросить за борт. Охлаждение рыбы происходит орошением ее очищенной холодной водой, подаваемой в трюм через оросительные трубопроводы.

Достоинством системы является простота я малая металлоемкость, небольшие энергетические затраты.

Система имеет и серьезные недостатки: плохое использование емкости трюма, необходимость запаса значительного количества водного льда, возможность бактериального заражения рыбы, коррозия металлических конструкций трюма.

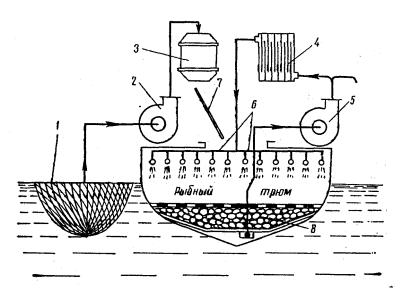


Рисунок 5.27. Система предварительного охлаждения рыбы орошением для небольших промысловых судов: 1 — сеть (трал); 2 — рыбонасос; 3 — водоотделитель; 4 — фильтр; 5 — циркуляционный насос; 6 — оросительные трубопроводы; 7 — лоток для подачи рыбы в трюм; 5 — генератор холода

Оборудование системы охлаждения рыбы транспортного судна состоит из испарителя, батарей для охлаждения воды, оросительных трубопроводов, фильтра, циркуляционного насоса и насоса хладоносителя (рис.5.28).

Рыбу, уложенную слоями толщиной до 700 мм, орошают холодной морской водой, которая циркуляционным насосом подается в оросительные трубопроводы Орошение рыбы водой, температура которой -2°С, продолжается до момента ее доставки к месту назначения. Вода в трюме охлаждается батареями, в которые подается хладоноситель из испарителя холодильной установки.

В этой системе отсутствуют емкости для охлаждения и хранения рыбы, что улучшает использование объема трюма, а применение холодильной установки позволяет стабильно поддерживать температуру охлаждающей воды в течение всего рейса судна.

Существенными недостатками системы являются длительность процесса охлаждения, повышенные затраты электроэнергии и металла, а также сильная коррозия металлических конструкций трюма.

На судах получают распространение системы предварительного охлаждения, в которых рыба, перемещаемая сетчатыми или шаговыми транспортерами, орошается холодной морской водой. Такие системы применяют только для охлаждения рыбы.

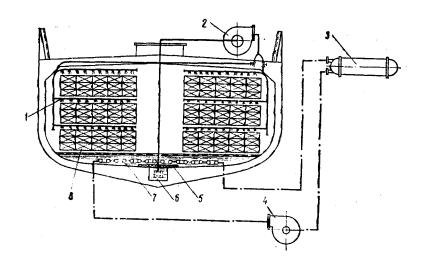


Рисунок 5.28. Система предварительного охлаждения орошением для транспортного судна: 1 — оросительные трубопроводы; 2 — циркуляционный насос; 3 — испаритель; 4 — насос хладоносителя; 5 — фильтр; 6 — приемный колодец; 7 — батареи для охлаждения воды; 8 — ящики с рыбой

Судовой вакуумный рыбоохладитель. Судовой вакуумный рыбоохладитель состоит из герметичной камеры, вакуум-насоса, батарей для конденсации водяных паров (рис.5.29).

Противни с рыбой устанавливают на этажерки, которые направляют в герметичные камеры, и включают вакуум-насосы. При понижении давления в камере до 540—600 Па испаряется влага с площади поверхности рыбы и понижается ее температура.

В процессе охлаждения рыбы пар собирается в верхней части камеры, где он конденсируется на змеевиках батарей, температура которых поддерживается около 0° C.

Рисунок 5.29. Судовые вакуумные рыбоохладители: 1 — оросительные трубопроводы; 2 — циркуляционный насос

Список рекомендованных источников

1. Голянд М.М., Малеванный Б.Н. Холодильное технологическое оборудование. – М.: Пищевая промышленность, 1977. – 335 с.

Составить опорный конспект, сделать скрин и прислать – vitaliv.buruyan@mail.ru