
2D Controller - Gamepad 
 

Self-study 

Intro to Gamepad Development 
If you’re using Unity, the Rewired package can save vast amounts of work. Recommended! 
 

Technical 
 
The basic differences where Gamepad is different from Keyboard gaming: 

●​ Analog inputs (up to 2 thumbsticks, with two axes each + additional “axis” on analog 
L2/R2 (trigger) buttons). 

●​ Nothing to emulate mouse well. 
●​ Less buttons. 
●​ No key ghosting (you can press all the buttons simultaneously and it will transmit). 
●​ Gamepads can vibrate. You can’t rely on it, but it can add a lot of feedback to the player. 

 
It is a good idea to add deadzones (i.e. ignore values from e.g. <-0.3,0.3> from the thumbsticks, 
to ignore accidental presses and small hardware/controller glitches. Also, sometimes a turnback 
can happen, where the momentum of the thumbstick can “overshoot zero” when released. The 
deadzone should deal with this too. 
 
Often, libraries/engines will give you “smoothed” input, which slowly transfers from one value to 
another without “jumps”. This is usually beneficial, but in some context you might rather want to 
utilize “raw” input, which you can (almost) always get too. 

Technical meets design 
With a gamepad, you need to have the “selected” status visually clear on UI elements. It is a 
good idea to have that nevertheless. 
 
If you’re creating a game with both keyboard and gamepad support, you need to consider this: 

●​ It is a good idea to switch between inputs based on what the player is trying to do. 
Anything on keyboard/mouse was pressed? Switch to keyboard+mouse. Any gamepad 
key pressed? Switch to gamepad. 

●​ You also should show mouse only when the user is not using gamepad. 
●​ It is good to fallback to keyboard in case of gamepad disconnect (and show mouse, 

select UI element). 

https://assetstore.unity.com/packages/tools/utilities/rewired-21676


●​ Change button prompts (don’t say “Press Enter” when the user is using gamepad). Also 
use the correct button prompt depending on the controller (don’t say press green-A to a 
user with a PS controller). 

○​ This can be mitigated if you use visual-context prompts. E.g. Instead of “press 
green-A” show 4 buttons in the shape and highlight the bottom one. 

Design 
Gamepads make your game seem more accessible (due to less buttons). The controller 
schema visualization also looks simpler :). 
 
People not used to gamepads: 

●​ Have difficulties coordinating both thumbsticks. 
●​ Have problems pressing the thumbsticks (R3/L3 buttons), especially combining it with 

thumbstick movement. 
 
Give your players options to re-map buttons. 
 
The limited amount of buttons on gamepad can be solved by: 

●​ Having actions context specific. 
●​ Holding a button and moving joystick (e.g. radial menus, move+dodge=roll, etc). 
●​ Pressing two buttons simultaneously. (watch out that you need to check this with some 

delay). 
●​ Holding a button doing something else than pressing it (use sparingly and at least with 

similar context). 
 
Watch out what is possible to do simultaneously. E.g. actions on d-pad usually make the player 
stop moving by the left-stick. Shoulder button fingers are not used for anything else, but 
relatively few people use that claw grip that enables them to press both (e.g. L1 and L2) 
simultaneously. 
 
If you support multiple players, you have to deal with who has control in common contexts, such 
as menu. Consider asking other people to confirm, so that someone doesn’t advance menu 
when others are still looking around. 
 
Unless you need lots of buttons and utilize the d-pad specially, you can let players choose 
between thumbstick and d-pad movement. 
 
If your game can be controlled by a gamepad, all of the game should be controllable by it 
(including all menus, etc.) 
 
Joystick is slower and less precise than mouse. Take that into consideration and balance it. If 
your game is supporting multiplayer between gamepad and keyboard+mouse players, it might 
be hard to balance that (but sometimes, a good matchmaking algorithm should take care of that 
by itself). 



 
Sometimes, you have to decide, if the thumbstick is from the direction of the character or the 
camera. This is especially true, if you use some strange perspective (isometric, external camera 
alá old Resident Evil). 
 
Gestures: 

●​ The thumbsticks have more flexibility of movement. You can do some motions that make 
sense with a gamepad only (half-circle then go-to middle, rotating around). 

Lab 
Start with your previous lab (Controller - Keyboard) result. 
Alternatively, in the platformer repo, start with the solution branch 

Starting point 
scenes/Environment.tscn - A very basic level with platforms. 
scenes/Crate.tscn - A crate object to push around. 
scripts/ScreenWrap.gd - Screen wrap for the player and the crate (player’s script extends the 
screen wrap). 
scenes/Player.tscn - Using RigidBody2D as a base. 

-​ scripts/Controller.gd - Basic controls using keyboard (utilizing InputMap). 
 
Using InputEvent — Godot Engine (stable) documentation in English 
Input examples — Godot Engine (stable) documentation in English 
RigidBody2D — Godot Engine (stable) documentation in English 
Godot 3.0: Rigid Bodies · KCC Blog (kidscancode.org) (setting position of RigidBody2D) 
Physics introduction — Godot Engine (stable) documentation in English 

Steps: 

InputMap setup 
Project → Project Settings… → Input Map tab 
Add axes mapping. 

https://gitlab.com/gamedev-cuni-cz/gpp/platformer-base/-/tree/solution
https://docs.godotengine.org/en/stable/tutorials/inputs/inputevent.html#
https://docs.godotengine.org/en/stable/tutorials/inputs/input_examples.html#inputmap
https://docs.godotengine.org/en/stable/classes/class_rigidbody2d.html
https://kidscancode.org/blog/2017/12/godot3_kyn_rigidbody1/#the-position-problem
https://docs.godotengine.org/en/stable/tutorials/physics/physics_introduction.html


 

Support of analog input 
You need to support analog input. There are two functions for this: 
Input.get_action_strength(axis) and 
Input.get_action_raw_strength(axis). Called like this: 
Input.get_action_strength("Left") 
 
Modify files: 
scripts/Controller.gd - Analog reading, Input.get_action_strength(). 
Input — Godot Engine (stable) documentation in English 

Working with axis 
You can get opposite axes at once: 
Input.get_axis("Left", "Right") 
scripts/Controller.gd - Getting both directions at once using Input.get_axis(). 
Input — Godot Engine (stable) documentation in English 

Dead zone setup in InputMap 
Project → Project Settings… → Input Map tab 

 

https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-action-strength
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-axis


Dead zone as a parameter in the Inspector 
Try to set up your own dead-zone (where the controller won’t react) in your custom code. 
Input.get_action_raw_strength("Left") 
scripts/Controller.gd - Export a variable for the dead zone percentage, then threshold the raw 
strength of the action. 
Input — Godot Engine (stable) documentation in English 

Vibration on collision with ground 
Whenever the player collides with the ground, the gamepad vibrates. 
e.g. Input.start_joy_vibration(0, 0.2, 0.3, 0.1) 
scripts/Controller.gd - Export variables for the vibration parameters and then use them. 
Input — Godot Engine (stable) documentation in English 

Useful resources 
Controllers, gamepads, and joysticks — Godot Engine (stable) documentation in English 
Input — Godot Engine (stable) documentation in English 

Assets sources 
Kenney • Background Elements Redux 
Kenney • Platformer Pack Redux 
Kenney • Platformer Characters 
Cannon Ball Assets – RedFoc 
 

https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-get-action-raw-strength
https://docs.godotengine.org/en/stable/classes/class_input.html#class-input-method-start-joy-vibration
https://docs.godotengine.org/en/stable/tutorials/inputs/controllers_gamepads_joysticks.html
https://docs.godotengine.org/en/stable/classes/class_input.html
https://www.kenney.nl/assets/background-elements-redux
https://www.kenney.nl/assets/platformer-pack-redux
https://www.kenney.nl/assets/platformer-characters
https://redfoc.com/item/cannon-ball-assets/

	2D Controller - Gamepad 
	Self-study 
	Intro to Gamepad Development 
	Technical 
	Technical meets design 
	Design 


	Lab 
	Starting point 
	Steps: 
	InputMap setup 
	Support of analog input 
	Working with axis 
	Dead zone setup in InputMap 
	Dead zone as a parameter in the Inspector 
	Vibration on collision with ground 

	Useful resources 
	Assets sources 

