
Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 

Week 01:  

●​ INTRODUCTION 
o​ Overview of c# 

o​ C# family tree 

o​ C# and .NET Framework 

o​ Version History of C# 

 

 

Introduction 
 

Overview of C#  
C# is pronounced as "See Sharp". It is a simple, modern, object-oriented, and type-safe programming 

language. C# has its roots in the C family of languages. It enables developers to build a variety of secure and 

robust applications that run on the .NET Framework. C# can be used to create Windows client applications, 

XML Web services, distributed components, client-server applications, database applications, and much, much 

more.  

Several C# features aid in the construction of robust and durable applications:  

♦​ Garbage collection automatically reclaims memory occupied by unreachable unused objects  

♦​ Exception handling provides a structured and extensible approach to error detection and 

recovery 

♦​ Type-safe design of the language makes it impossible to read from uninitialized variables, to 

index arrays beyond their bounds, or to perform unchecked type casts 

♦​ Unified type system: All C# types, including primitive types such as int and double, inherit from 

a single root object type. Thus, all types share a set of common operations, and values of any 

type can be stored, transported, and operated upon in a consistent manner.  

♦​ C# supports both user-defined reference types and value types, allowing dynamic allocation of 

objects as well as in-line storage of lightweight structures. 

♦​ Versioningensure that C# programs and libraries can evolve over time in a compatible manner 

C# is an object-oriented language, but C# further includes support for component-orientedprogramming.As an 

object-oriented language, C# supports the concepts of encapsulation, inheritance, and polymorphism. All 

variables and methods, including the Main method (the application's entry point) are encapsulated within 

class definitions. A class may inherit directly from one parent class, but it may implement any number of 

interfaces. Methods that override virtual methods in a parent class require the override keyword as a way to 

 

Lecturer: Mairaj​ ​ C# Introduction | 1 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

avoid accidental redefinition. In C#, a struct is like a lightweight class; it is a stack-allocated type that can 

implement interfaces but does not support inheritance. 

In addition to these basic object-oriented principles, C# makes it easy to develop software components 

through several innovative language constructs, including the following: 

●​ Encapsulated method signatures called delegates, which enable type-safe event notifications. 

●​ Properties, which serve as accessors for private member variables. 

●​ Attributes, which provide declarative metadata about types at run time. 

●​ Inline XML documentation comments. 

●​ Language-Integrated Query (LINQ) which provides built-in query capabilities across a variety of data 

sources. 

C# syntax simplifies many of the complexities of C++ and provides powerful features such as  

●​ nullable value types, enumerations, delegates, lambda expressions and direct memory access, 

which are not found in Java.  

C# supports  

●​ generic methods and types, which provide increased type safety and performance 

●​ iterators, which enable implementers of collection classes to define custom iteration behaviors 

that are simple to use by client code  

Visual C# provides an advanced code editor, convenient user interface designers, integrated debugger, and 

many other tools to make it easier to develop applications based on the C# language and the .NET Framework. 

 

C# Family Tree  
C# inherits a rich programming legacy. It is directly descended from two of the world’s most 

successful computer languages: C and C++. It is closely related to Java.  

  

Invention of C language is considered as the beginning of the modern age of programming. C was 

invented by Dennis Ritchie in the 1970s on a DEC PDP-11 that used the UNIX operating system. By the 

late 1970s, the size of many projects was near or at the limits of what structured programming 

methodologies and the C language could handle.  

Using OOP, a programmer could handle much larger programs. The desire for an object-oriented 

version of C led to the creation of C++beginning in 1979.C++ was invented by BjarneStroustrup at Bell 

Laboratories in Murray Hill, New Jersey. C is the foundation upon which C++ is built. In essence, C++ is 

the object-oriented version of C. By building upon the foundation of C, Stroustrup provided a smooth 

migration path to OOP. Instead of having to learn an entirely new language, a C programmer needed 

to learn only a few new features before reaping the benefits of the object-oriented methodology. This 

made it easy for legions of programmers to make the shift from structured programming to 

objectoriented programming.It was an enhancement to an already highly successful language.   

 

Lecturer: Mairaj​ ​ C# Introduction | 2 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

The main driving force behind Java’s design was James Gosling. Patrick Naughton, Chris Warth, Ed 

Frank, and Mike Sheridan also played a role. Java is a structured, object-oriented language with a 

syntax and philosophy derived from C++. The innovative aspects of Java were driven not so much by 

advances in the art of programming, but rather by changes in the computing environment 

Java achieved portability by translating a program’s source code into an intermediate language called 

bytecode.  This bytecode was then executed by the Java Virtual Machine (JVM). Therefore, a Java 

program could run in any environment for which a JVM was available. 

 It is key to understand that Java’s use of bytecode differed radically from both C and C++, which were 

nearly always compiled to executable machine code. Machine code is tied to a specific CPU and 

operating system. Thus, if you wanted to run a C/C++ program on a different system, it needed to be 

recompiled to machine code specifically for that environment, to create a C/C++ program that would 

run in a variety of environments. 

Creation of C# 

One of the lacks of Java is cross-language interoperability also called mixed-language programming. 

Cross-language interoperability is crucial for the creation of large, distributed software systems. 

Another feature lacking in Java is full integration with the Windows platform. Java and Windows are 

not closely coupled. Since Windows is the mostly widely used operating system in the world, lack of 

direct support for Windows is a drawback to Java.To answer these and other needs, Microsoft 

developed C#.  

C# was created at Microsoft late in the 1990s and was part of Microsoft’s overall .NET strategy.By 

building C# upon a solid,well-understood foundation, C# offers an easy migration path from these 

languages. Some of its most important features relate to its built-in support for softwarecomponents. 

Infact,C# has been characterized as being a component-oriented language because it contains 

integral support for the writing of software components. 

 
Figure 1: The family tree for C# 

 
 

Lecturer: Mairaj​ ​ C# Introduction | 3 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 

C# and .NET Framework  
C# programs run on the .NET Framework. Dot net (.NET) framework is an integral component of Windows that 

includes  

♦​ a virtual execution system called the common language runtime (CLR) and  

♦​ a unified set of class libraries  

The CLR is the commercial implementation by Microsoft of the common language infrastructure (CLI). CLI is an 

international standard that is the basis for creating execution and development environments in which 

languages and libraries work together. 

Source code written in C# is compiled into an intermediatelanguage (IL) that conforms to the CLI specification. 

The IL code and resources, such as bitmaps and strings, are stored on disk in an executable file called an 

assembly, typically with an extension of .exe or .dll. An assembly contains a manifest that provides information 

about the assembly's types, version, culture, and security requirements. 

When the C# program is executed, the assembly is loaded into the CLR, which might take various actions based 

on the information in the manifest. Then, if the security requirements are met, the CLR performs just in time 

(JIT) compilation to convert the IL code to native machine instructions. The CLR also provides other services 

related to automatic garbage collection, exception handling, and resource management. Code that is executed 

by the CLR is sometimes referred to as "managed code," in contrast to "unmanaged code" which is compiled 

into native machine language that targets a specific system.  

The following diagram illustrates the compile-time and run-time relationships of C# source code files, the .NET 

Framework class libraries, assemblies, and the CLR. 

 

Lecturer: Mairaj​ ​ C# Introduction | 4 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 

 

 

Version History of C# 
 Version  .NET Framework Visual Studio  New Features  
 
C# 1.0  .NET Framework 

1.0/1.1  
Visual Studio .NET 
2002  

♦​ Basic features  

 

C# 2.0  .NET Framework 
2.0  

Visual Studio 2005  

♦​ Generics  

♦​ Partial types  

♦​ Anonymous methods  

♦​ Iterators  

♦​ Nullable types  

♦​ Private setters (properties)  

♦​ Method group conversions (delegates)  

♦​ Covariance and Contra-variance  

♦​ Static classes  

 

Lecturer: Mairaj​ ​ C# Introduction | 5 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 Version  .NET Framework Visual Studio  New Features  
 

C# 3.0  .NET Framework 
3.0\3.5  

Visual Studio 2008  

♦​ Implicitly typed local variables  

♦​ Object and collection initializers  

♦​ Auto-Implemented properties  

♦​ Anonymous types  

♦​ Extension methods  

♦​ Query expressions  

♦​ Lambda expressions  

♦​ Expression trees  

♦​ Partial Methods  

 

C# 4.0  .NET Framework 
4.0  

Visual Studio 2010  

♦​ Dynamic binding (late binding)  

♦​ Named and optional arguments  

♦​ Generic co- and contravariance 

♦​ Embedded interop types  

 

C# 5.0  .NET Framework 
4.5  

Visual Studio 
2012/2013  

♦​ Asynchronous methods 

♦​ Caller info attributes 

 

C# 6.0  .NET Framework 
4.6  

Visual Studio 
2013/2015  

♦​ Expression-bodied members 

♦​ Auto-property initializer  

♦​ nameof operator 

♦​ Primary constructor 

♦​ Await in catch/finally blocks 

♦​ Exception filters 

♦​ String interpolation 

♦​ Compiler-as-a-service 

♦​ Import of static type members into 

namespace 

♦​ Default values for getter-only properties 

 

Lecturer: Mairaj​ ​ C# Introduction | 6 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 Version  .NET Framework Visual Studio  New Features  

♦​ Null propagator 

♦​ Dictionary initializer  

 

C# 7.0  
.NET Core  
.NET Framework 
4.6.2 

Visual Studio 2017  

♦​ out variables  

♦​ Tuples  

♦​ Discards 

♦​ Pattern Matching 

♦​ Local functions 

♦​ Generalized async return types 

♦​ throw Expressions 

♦​ Deconstruction 

♦​ Digit separators 

♦​ Binary literals 

♦​ Ref returns and locals 

♦​ Expression bodied constructors and 

finalizers 

♦​ Expression bodied getters and setters 

♦​ Use of Throw as expression 

C# 7.1 
August 2017 

.Net Framework 
4.7 

Visual Studio 2017 
version 15.3 

♦​ Async main 

♦​ Default literal expressions 

♦​ Inferred tuple element names 

C# 7.2 
November 
2017 

.Net Framework 
4.7.1 

Visual Studio 2017 
version 15.5 

♦​ Reference semantics with value types 

♦​ Non-trailing named arguments 

♦​ Leading underscores in numeric literals 

♦​ private protected access modifier 

C# 7.3 May 
2018 

.NET Core 2.1 

.NET Core 2.2 

.NET Framework 
4.8 

Visual Studio 2017 
version 15.7 

♦​ Accessing fixed fields without pinning 

♦​ Reassigning ref local variables 

 

Lecturer: Mairaj​ ​ C# Introduction | 7 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

 Version  .NET Framework Visual Studio  New Features  

♦​ Using initializers on stackalloc arrays 

♦​ Using fixed statements with any type that 

supports a pattern 

♦​ Using additional generic constraints 

C# 8.0 
September 
2019 

.NET Core 3.0 
Visual Studio 2019 
version 16.3 

♦​ readonlystruct members 
♦​ Default interface members 
♦​ switch expressions 
♦​ Property, Tuple, and positional patterns 
♦​ using declarations 
♦​ static local functions 
♦​ Disposable ref struct 
♦​ Nullable reference types 
♦​ Indices and Ranges 
♦​ Null-coalescing assignment 

♦​ Async Streams 

 

 

Lecturer: Mairaj​ ​ C# Introduction | 8 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 



Network Programming (CS423)​ ​ Spring 2022 
MCS – Semester 4th​ ​ SSD: 06 April  

References: 

✔​ https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-lan

guage-and-the-net-framework 

✔​ https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/ 

✔​ https://www.wideskills.com/csharp/overview-csharp 

✔​ https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree 

✔​ https://en.wikipedia.org/wiki/C_Sharp_(programming_language) 

✔​ https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8 

 

✔​ https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree/Untitled.jpg?attre

directs=0 

✔​ https://docs.microsoft.com/en-us/dotnet/standard/managed-code 

 

 

 

 

Lecturer: Mairaj​ ​ C# Introduction | 9 
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books. 

Qurtuba University of Science and Information Technology Peshawar 
(Computer Science Department) 

https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.wideskills.com/csharp/overview-csharp
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree/Untitled.jpg?attredirects=0
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree/Untitled.jpg?attredirects=0
https://docs.microsoft.com/en-us/dotnet/standard/managed-code

	Introduction 
	Overview of C#  
	C# Family Tree  
	C# and .NET Framework  
	Version History of C# 


