Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April

Week 01:

® INTRODUCTION
o Overview of c#

o C# family tree

o C#and .NET Framework

o Version History of C#
Introduction

Overview of C#

C# is pronounced as "See Sharp". It is a simple, modern, object-oriented, and type-safe programming
language. C# has its roots in the C family of languages. It enables developers to build a variety of secure and
robust applications that run on the .NET Framework. C# can be used to create Windows client applications,
XML Web services, distributed components, client-server applications, database applications, and much, much
more.

Several C# features aid in the construction of robust and durable applications:
¢ Garbage collection automatically reclaims memory occupied by unreachable unused objects

¢ Exception handling provides a structured and extensible approach to error detection and
recovery

¢ Type-safe design of the language makes it impossible to read from uninitialized variables, to
index arrays beyond their bounds, or to perform unchecked type casts

¢ Unified type system: All C# types, including primitive types such as int and double, inherit from

a single root object type. Thus, all types share a set of common operations, and values of any
type can be stored, transported, and operated upon in a consistent manner.

¢ C# supports both user-defined reference types and value types, allowing dynamic allocation of
objects as well as in-line storage of lightweight structures.

¢ Versioningensure that C# programs and libraries can evolve over time in a compatible manner

C# is an object-oriented language, but C# further includes support for component-orientedprogramming.As an
object-oriented language, C# supports the concepts of encapsulation, inheritance, and polymorphism. All
variables and methods, including the Main method (the application's entry point) are encapsulated within
class definitions. A class may inherit directly from one parent class, but it may implement any number of
interfaces. Methods that override virtual methods in a parent class require the override keyword as a way to

Lecturer: Mairaj C# Introduction | 1
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April

avoid accidental redefinition. In C#, a struct is like a lightweight class; it is a stack-allocated type that can
implement interfaces but does not support inheritance.

In addition to these basic object-oriented principles, C# makes it easy to develop software components
through several innovative language constructs, including the following:

e Encapsulated method signatures called delegates, which enable type-safe event notifications.
e Properties, which serve as accessors for private member variables.

e Attributes, which provide declarative metadata about types at run time.

e Inline XML documentation comments.

e Language-Integrated Query (LINQ) which provides built-in query capabilities across a variety of data
sources.

C# syntax simplifies many of the complexities of C++ and provides powerful features such as

e nullable value types, enumerations, delegates, lambda expressions and direct memory access,
which are not found in Java.

CH supports

e generic methods and types, which provide increased type safety and performance
e iterators, which enable implementers of collection classes to define custom iteration behaviors
that are simple to use by client code

Visual C# provides an advanced code editor, convenient user interface designers, integrated debugger, and
many other tools to make it easier to develop applications based on the C# language and the .NET Framework.

C# Family Tree
C# inherits a rich programming legacy. It is directly descended from two of the world’s most
successful computer languages: C and C++. It is closely related to Java.

Invention of C language is considered as the beginning of the modern age of programming. C was
invented by Dennis Ritchie in the 1970s on a DEC PDP-11 that used the UNIX operating system. By the
late 1970s, the size of many projects was near or at the limits of what structured programming
methodologies and the C language could handle.

Using OOP, a programmer could handle much larger programs. The desire for an object-oriented
version of C led to the creation of C++beginning in 1979.C++ was invented by BjarneStroustrup at Bell
Laboratories in Murray Hill, New Jersey. C is the foundation upon which C++ is built. In essence, C++ is
the object-oriented version of C. By building upon the foundation of C, Stroustrup provided a smooth
migration path to OOP. Instead of having to learn an entirely new language, a C programmer needed
to learn only a few new features before reaping the benefits of the object-oriented methodology. This
made it easy for legions of programmers to make the shift from structured programming to
objectoriented programming.lt was an enhancement to an already highly successful language.

Lecturer: Mairaj C# Introduction | 2
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April

The main driving force behind Java’s design was James Gosling. Patrick Naughton, Chris Warth, Ed
Frank, and Mike Sheridan also played a role. Java is a structured, object-oriented language with a
syntax and philosophy derived from C++. The innovative aspects of Java were driven not so much by
advances in the art of programming, but rather by changes in the computing environment

Java achieved portability by translating a program’s source code into an intermediate language called
bytecode. This bytecode was then executed by the Java Virtual Machine (JVM). Therefore, a Java
program could run in any environment for which a JVM was available.

It is key to understand that Java’s use of bytecode differed radically from both C and C++, which were
nearly always compiled to executable machine code. Machine code is tied to a specific CPU and
operating system. Thus, if you wanted to run a C/C++ program on a different system, it needed to be
recompiled to machine code specifically for that environment, to create a C/C++ program that would
run in a variety of environments.

Creation of C#t

One of the lacks of Java is cross-language interoperability also called mixed-language programming.
Cross-language interoperability is crucial for the creation of large, distributed software systems.
Another feature lacking in Java is full integration with the Windows platform. Java and Windows are
not closely coupled. Since Windows is the mostly widely used operating system in the world, lack of
direct support for Windows is a drawback to Java.To answer these and other needs, Microsoft
developed C#.

CH# was created at Microsoft late in the 1990s and was part of Microsoft’s overall .NET strategy.By
building C# upon a solid,well-understood foundation, C# offers an easy migration path from these
languages. Some of its most important features relate to its built-in support for softwarecomponents.
Infact,C# has been characterized as being a component-oriented language because it contains
integral support for the writing of software components.

st

Java O

Figure 1: The family tree for C#

Lecturer: Mairaj C# Introduction | 3
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April

C# and .NET Framework

C# programs run on the .NET Framework. Dot net (.NET) framework is an integral component of Windows that
includes

4 avirtual execution system called the common language runtime (CLR) and

¢ a unified set of class libraries

The CLR is the commercial implementation by Microsoft of the common language infrastructure (CLI). CLI is an
international standard that is the basis for creating execution and development environments in which
languages and libraries work together.

Source code written in C# is compiled into an intermediatelanguage (IL) that conforms to the CLI specification.
The IL code and resources, such as bitmaps and strings, are stored on disk in an executable file called an
assembly, typically with an extension of .exe or .dll. An assembly contains a manifest that provides information
about the assembly's types, version, culture, and security requirements.

When the C# program is executed, the assembly is loaded into the CLR, which might take various actions based
on the information in the manifest. Then, if the security requirements are met, the CLR performs just in time
(JIT) compilation to convert the IL code to native machine instructions. The CLR also provides other services
related to automatic garbage collection, exception handling, and resource management. Code that is executed
by the CLR is sometimes referred to as "managed code," in contrast to "unmanaged code" which is compiled
into native machine language that targets a specific system.

The following diagram illustrates the compile-time and run-time relationships of C# source code files, the .NET
Framework class libraries, assemblies, and the CLR.

Lecturer: Mairaj C# Introduction | 4
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022

MCS — Semester 4% SSD: 06 April
Visual C# Project
C# Source | Resources |
File(s) | References |
| C# Compiler |
l Creates

Managed Assembly (.exe or .dil)
MSIL Metadata

IL metadata & references
loaded by CLR

.MET Framewaork

Common Language Runtime
Security [Garbage
Collection f JIT Compiler

Uses .MET Framework
—_—
Class Libraries

Converted to native
machine code

Operating System

Version History of C#

Version |[.NET Framework| Visual Studio New Features
C# 1.0 .NET Framework |Visual Studio .NET ¢ Basic features
1.0/1.1 2002

¢ Generics
4 Partial types
4 Anonymous methods
¢ lterators

C#2.0 'ZNST Framework o al studio 2005 | ¢ Nullable types
4 Private setters (properties)
4 Method group conversions (delegates)
¢ Covariance and Contra-variance
4 Static classes

Lecturer: Mairaj C# Introduction | 5

Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423)
MCS — Semester 4™

Version

NET Framework

Visual Studio

Spring 2022
SSD: 06 April

New Features

C#3.0

.NET Framework
3.0\3.5

Visual Studio 2008

®* & & & o o o oo o

Implicitly typed local variables
Object and collection initializers
Auto-Implemented properties
Anonymous types

Extension methods

Query expressions

Lambda expressions

Expression trees

Partial Methods

C#4.0

.NET Framework
4.0

Visual Studio 2010

* & o o

Dynamic binding (late binding)
Named and optional arguments
Generic co- and contravariance

Embedded interop types

C#5.0

.NET Framework
4.5

Visual Studio
2012/2013

* <

Asynchronous methods

Caller info attributes

C#6.0

.NET Framework
4.6

Visual Studio
2013/2015

*® & & & O o o oo o

Expression-bodied members
Auto-property initializer
nameof operator

Primary constructor

Await in catch/finally blocks
Exception filters

String interpolation
Compiler-as-a-service

Import of static type members into

namespace

Default values for getter-only properties

Lecturer: Mairaj

C# Introduction | 6

Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April
Version [.NET Framework| Visual Studio New Features
¢ Null propagator
4 Dictionary initializer
¢ out variables
¢ Tuples
4 Discards
¢ Pattern Matching
¢ Local functions
¢ Generalized async return types
¢ throw Expressions
.NET Core
C#17.0 .NET Framework |Visual Studio 2017 | ¢ Deconstruction
4.6.2
4 Digit separators
4 Binary literals
4 Ref returns and locals
¢ Expression bodied constructors and
finalizers
¢ Expression bodied getters and setters
¢ Use of Throw as expression
4 Async main
C#17.1 Net Framework |Visual Studio 2017 | ¢ pefault literal expressions
August 2017|4.7 version 15.3
¢ Inferred tuple element names
4 Reference semantics with value types
¢ Non-traili d t
C#7.2 .Net Framework |Visual Studio 2017 on-tratling hamed arguments
November : . . o
2017 4.7.1 version 15.5 ¢ Leading underscores in numeric literals
¢ private protected access modifier
.NET Core 2.1 ' ' _ ' o
C# 7.3 May |.NET Core 2.2 Visual Studio 2017 | ¢ Accessing fixed fields without pinning
2018 .NET Framework |version 15.7 - .
¢ Reassigning ref local variables

4.8

Lecturer: Mairaj

C# Introduction | 7

Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4% SSD: 06 April

Version |.NET Framework| Visual Studio New Features

4 Using initializers on stackalloc arrays

¢ Using fixed statements with any type that

supports a pattern

4 Using additional generic constraints

readonlystruct members

Default interface members

switch expressions

Property, Tuple, and positional patterns
using declarations

static local functions

Disposable ref struct

Nullable reference types

Indices and Ranges

Null-coalescing assignment

C# 8.0
September |.NET Core 3.0
2019

Visual Studio 2019
version 16.3

@ ¢ ¢ ¢ ¢ ¢ ¢ o o o o

Async Streams

Lecturer: Mairaj C# Introduction | 8
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

Network Programming (CS423) Spring 2022
MCS — Semester 4™ SSD: 06 April

References:

etting-started/introduction-to-the-csharp-lan

guage-and-the-net-framework

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

https://www.wideskills.com/csharp/overview-cshar

https://en.wikipedia.org/wiki/C Sharp (programming language)

v
v
v/ https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree
v
v

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8

uidec/fundamentals/c-family-tree/Untitled.j

directs=0

v/ https://docs.microsoft.com/en-us/dotnet/standard/managed-code

Lecturer: Mairaj C# Introduction | 9
Note: These handouts/notes are not equivalent and/or replacement of the text/reference books.
Qurtuba University of Science and Information Technology Peshawar
(Computer Science Department)

https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.wideskills.com/csharp/overview-csharp
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree/Untitled.jpg?attredirects=0
https://sites.google.com/site/progammingguidec/fundamentals/c-family-tree/Untitled.jpg?attredirects=0
https://docs.microsoft.com/en-us/dotnet/standard/managed-code

	Introduction
	Overview of C#
	C# Family Tree
	C# and .NET Framework
	Version History of C#

