

OpenActive Open Booking Standard v0.3
(draft)

This document represents a minimal early draft of a standard for booking physical activities. It is
highly likely to change completely between now and the first published version, so this document
should only be used to guide swift implementations where the quick win of booking
proof-of-concepts and shared learning are high priorities.

Note this has been superseded by the following:
https://app.swaggerhub.com/apis/theodi/openactive-booking-draft/0.4

Scope
The scope of this specification is to cater for the “v1” requirements included in this Use Cases and
Requirements document in minimal form. These are summarised as follows:

V1 Goals:

●​ Improvements to RPDE feed to enable booking
●​ Get price and availability for a specific event
●​ Paid for or free bookings of sessions
●​ Bookings made as new or returning accounts, with minimal user data required
●​ Guest booking, where a booking is made which does not create an account
●​ Facilitate integration with any third party payment processor
●​ Identify the platform during the booking
●​ Provide a mechanism to make terms & conditions available, and acknowledge consent

during booking.
●​ Two-phase commit booking (i.e. “lease” and “book”)
●​ Booking of sessions and facilities. While a session can be a yoga class, organised run or

any other kind of physical activity happening at a specific place at specific times, a facility is
a squash court, football pitch or any other venue that can be booked out at any time

●​ Include “Book multiple events” requirement in design thinking, but not in the specification

V1 Non-Goals:

●​ API Authentication mechanism
●​ Payment processing - payments can be offloaded to the client, which can then notify the

provider of transaction and credit them accordingly
●​ Shopping baskets
●​ Special pricing models for existing memberships
●​ Waiting lists
●​ Group booking. This is a single customer booking multiple spaces for friends or family
●​ Coverage of every single possible use case of booking

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://app.swaggerhub.com/apis/theodi/openactive-booking-draft/0.4
https://docs.google.com/document/d/1fsCr071V12i_2g0DK818OAGlEAJFLWwkBp9bpgx4fo8/edit#bookmark=id.oja94n3i4lyn
https://docs.google.com/document/d/1fsCr071V12i_2g0DK818OAGlEAJFLWwkBp9bpgx4fo8/edit#bookmark=id.oja94n3i4lyn

Objectives
●​ Easy to understand
●​ Simple to implement (does not require complex libraries)
●​ Minimalistic (focus on removing complexity)
●​ Use existing standards where possible
●​ Allow or a checkout experience that is as seamless as possible

Concepts

Account Creation
In order to create an account via the Booking Standard, a customer must provide details. There is a
minimum set of details required for all providers as well as the ability for providers to require extra
fields from a set defined below

Minimum required fields

●​ emailAddress

Extra fields - following this standard

●​ givenName
●​ familyName

GDPR
In order to conform to GDPR accounts that were created during unsuccessful bookings must not be
persisted. For this reason, the booking standard mandates that newly created accounts start with an
expiry of 30 minutes. If the account does not successfully complete a booking before the expiry has
elapsed, the account must be deleted by the provider. Suggested mechanisms for this deletion are
provided in the “Other Processes” section

Event
A bookable session can occur on multiple dates. For example, a weekly yoga session could occur
every Monday for a month. Each of these occurrences is called a subEvent, which inherits the
properties of its parent Event.

An Event can have multiple spaces, each of which is available to be booked.

Broker
The third party organisation hosting the booking user experience (e.g. Change4Life). See
schema.org definition.

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://www.w3.org/International/questions/qa-personal-names#fielddesign
https://schema.org/broker

Customer
The end user making the purchase. See schema.org definition.

Seller
The activity provider offering the activities. See schema.org definition.

Implementation

Errors
All errors conform to RFC 7807 https://tools.ietf.org/html/rfc7807, and have content type
“application/problem+json”

Workflow
The following is a list of actions which need to implemented in order to make a successful booking.
Each action is documented with its associated REST endpoint, example requests and response
objects where necessary. These objects are in JSON format.

Authentication
Note that all API requests specified in this document (including Get Latest Event Data) should
require authentication. In the absence of an existing authentication pattern, HTTP authentication is
recommended.

1. Get Latest Event Data
For a given Event, get the latest data as it appears in the RPDE feed.

In order for an Event or SubEvent to be considered “bookable”, it must contain the following:

Property Status Notes

id required The URI which may be used to retrieve a subset
of the latest Event object

identifier required

startDate required

endDate optional

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://schema.org/customer
https://schema.org/seller
https://tools.ietf.org/html/rfc7807
https://www.openactive.io/modelling-opportunity-data/#describing-events-code-schema-event-code-
https://www.openactive.io/modelling-opportunity-data/#identifying-and-linking-resources
http://schema.org/identifier
http://schema.org/startDate
http://schema.org/endDate

remainingAttendeeCapacity optional If not specified unlimited availability is assumed

offer At least one
“offer” is
required

An array of offers

isAccessibleForFree optional Boolean

duration optional

maximumAttendeeCapacity optional If not specified unlimited availability is assumed

beta:orderPostUrl required The post endpoint to use to create an order, e.g.
http://www.book.com/api/orders

beta:anonymousLeaseDuratio
n

optional Duration of extended lease available given in
ISO8601 format.

If provided the client may choose to use the
lease to reserve the space while the customer is
entering personal details and payment details.
In this case the “customer” property is not
required with the first POST to /order.

If not provided, the lease is available for the
purposes of reservation as part of a payment
flow only. This means that no POST to /order
should be made until the complete customer
and payment details have been received and
validated, and that the PATCH to /order should
be expected within 180 seconds of the initial
POST. Should the lease expire, the customer
details used to create the lease must also be
removed from the provider’s system.

If not provided, the use of the lease to facilitate
a “shopping basket” is strictly prohibited.

Any other fields supported by the event object specification can be included and may be used to
provide additional context to customers by clients of a booking standard implementation.

Use of the “id” to retrieve the latest Event
To allow the retrieval of the latest Event data, the “id” of the Event must be a globally unique URI
that resolves to an up-to-date contents of the “data” property for that Event in the RPDE feed.

Note that the properties returned by this URI may be a subset of the data in the “data” property of
the RPDE feed if feed augmentation has taken place outside of the source booking system,
however all properties provided are considered to override anything in the feed. Where
augmentation has occurred, the URI should not provided properties that match those in the feed

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

http://schema.org/remainingAttendeeCapacity
https://www.openactive.io/modelling-opportunity-data/#offers
https://www.openactive.io/modelling-opportunity-data/#offers
http://schema.org/isAccessibleForFree
http://schema.org/duration
http://schema.org/maximumAttendeeCapacity

unless they are expected to have identical output in normal operation. New properties can be
defined for this purpose, if they are expected to provide different output.

Use of the “id” to retrieve the latest Offer
To allow the retrieval of the latest Offer data, the “id” of the Offer must be a globally unique URI that
resolves to an up-to-date contents of the Offer within the Event in the RPDE feed.

Only “Offers” which specify an “id” are bookable, this “id” can be used within the OrderItem to
reference the same bookable object.

Bookable free Offers
To allow free opportunities to be booked through the same mechanism as paid opportunities, the
following format must be used for a free bookable Offer. Note the “price” is set to the string “0”.

 {
 "type": "Offer",
 "id": "http://www.book.com/api/sessions/9209#offer",
 "price": "0"
 }

Free Events
For universally free events (distinct from those that have one or more free Offers as well as paid
Offers) that require booking in advance, but are accessible for free to anyone, the following property
must also be set:
 "isAccessibleForFree": true

Events that do not require booking in advance / Just turn up and pay
For events that may or may not be bookable, but are accessible without necessarily requiring
booking in advance (i.e. “just turn up and pay”), the following property should also be set.
 "publicAccess": true

Just turn up for free
For events where no booking is required (though it may be available via an Offer) and the
participant can “just turn up for free”, the above two properties can be used in combination:
 "isAccessibleForFree": true
 "publicAccess": true

Request
GET /sessions/{session ID}

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

Response with Paid session
Session found
STATUS 200
{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Event",
 "identifier": 9209,
 "id": "http://www.book.com/api/sessions/9209",
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "beta:formattedDescription": "<p>An action packed, fast paced game

that incorporates netball, handball and
football.<\/p>",

 "startDate": "2018-01-27T11:00:00Z",
 "remainingAttendeeCapacity": 1,
 "maximumAttendeeCapacity": 10,
 "beta:orderPostUrl": "http://www.book.com/api/orders",
 "beta:anonymousLeaseDuration": "PT15M",
 "offers": [
 {
 "id": "http://www.book.com/api/sessions/9209#!/offers/159",
 "type":"Offer",
 "identifier": 159,
 "name": "London Unlimited ",
 "description": "This is a 30 day unlimited London game pass.

This pass renews each month but you can cancel at any
time.",

 "price": "39.00",
 "priceCurrency":"GBP"
 }
]
}

Response with free session

Note that for the case where each event only has one offer, the offer ID can be referenced as a
simple resource or a hash URI rather than a collection. The following two examples are equally
valid, and the hash URI is preferred as it is simpler to implement:

●​ "http://www.book.com/api/sessions/9209/offer".
●​ "http://www.book.com/api/sessions/9209#offer".

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

http://www.book.com/api/orders
https://www.w3.org/TR/2008/NOTE-cooluris-20081203/#hashuri

GET http://www.book.com/api/sessions/9210

Session found
STATUS 200
{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Event",
 "identifier": 9210,
 "id": "http://www.book.com/api/sessions/9210",
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Slowball",
 "beta:formattedDescription": "<p>Something else.<\/p>",
 "startDate": "2018-01-27T11:00:00Z",
 "remainingAttendeeCapacity": 3,
 "maximumAttendeeCapacity": 20,
 "beta:orderPostUrl": "http://www.book.com/api/orders",
 "offers": {
 "type": "Offer",
 "id": "http://www.book.com/api/sessions/9210#offer",
 "price": "0"
 },
 "isAccessibleForFree": true,
 "publicAccess": true
}

Session does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/problem+json
Content-Language: en

{​
 “type”: “session_does_not_exist”,
 “title”: “This session does not exist”
}

1b. Get Latest Offer Data

For completeness, the offer endpoint referenced in the offer ID can be implemented as an actual
endpoint. Note that this is not functionally required for the booking workflow (the /orders endpoint

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

just uses the offer ID url as an ID, and the Get Latest Event Data includes Offers). The modelling
specification allows such IDs to optionally resolve to further machine-readable information about the
resource, so it is not required to resolve.

Using hash URIs for offers (e.g. “#!/offers/159”) is an alternative to implementing this endpoint.

Request
GET /sessions/{session ID}/offers/{offer ID}

Response
Session found
STATUS 200
 {
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "id": "http://www.book.com/api/sessions/9209/offers/159",
 "beta:orderPostUrl": "http://www.book.com/api/orders",
 "type":"Offer",
 "identifier": 159,
 "name": "London Unlimited ",
 "description": "This is a 30 day unlimited London game pass.

This pass renews each month but you can cancel at any
time.",

 "price": "39.00",
 "priceCurrency":"GDP"
 }

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://www.openactive.io/modelling-opportunity-data/#identifying-and-linking-resources
https://www.openactive.io/modelling-opportunity-data/#identifying-and-linking-resources

2. Lease
Reserve an Event’s space for a finite amount of time.

On POST /orders, an order object is created with an expiry time (which is expected to be equal to
180 seconds unless beta:anonymousLeaseDuration was set). While this reservation is in
orderStatus “OrderPaymentDue”, the number of spaces in that Event decreases by 1 (i.e. the space
is taken up). If the order is not confirmed (i.e. changed to state “OrderDelivered”) by the time of the
expiry, the order is permanently deleted and the number of spaces in that Event increases by 1 (i.e.
the space is released).

This does not require use of an Account, as a “customer” can be specified directly in the order.

If beta:anonymousLeaseDuration was set, the “customer” is provided as part of the PATCH
Book call to complete the order. Otherwise, the “customer” is provided at the point of Order creation
in the first POST.

If the lease times out before it is booked, the customer details provided with the lease must be
discarded by the booking system.

Request
Note the “broker” is the third party, and the “customer” is the end user. Both are optional at this
stage, although must be added to the order before it is paid.

Also note that “Free” orders still require confirmation. This extra step allows for email verification to
take place between the lease and book steps.

Example 1

POST /orders
{
 "type": "Order",
 "broker":{
 "type":"Organisation",
 "name":"Change4Life"
 },
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/events/1234#!/offer/2134",
 "orderQuantity": 1,
 "orderedItem": "http://www.book.com/api/events/1234#!/subEvent/123"
 },

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

http://schema.org/OrderStatus
http://schema.org/OrderStatus
https://schema.org/broker
https://schema.org/orderedItem

 "customer":{​
 "type":"Person",​
 "givenName":"Joe",​
 "familyName":"Smith",​
 "email":"joe@smith.com"​ ​

 }
}

Example 2

POST /orders
{
 "type": "Order",
 "broker":{
 "type":"Organisation",
 "name":"Change4Life"
 },
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/events/1234#offer",
 "orderQuantity": 1
 },
 "customer":{​
 "type":"Person",​
 "givenName":"Joe",​
 "familyName":"Smith",​
 "email":"joe@smith.c wwkkom"​ ​

 }
}

Response
“paymentDueDate” is an ISO-8601 datetime with a time zone designator, which is the lease expiry
date.

Note that a successful lease response expands the orderedItems into their original events including
the selected offer.

In the case where the customer and the offer match an existing Order that has not yet expired,
return the existing Order and update the expiry date. If an existing offer is returned, the response
must be status code 200.

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://schema.org/customer
https://schema.org/broker
https://schema.org/orderedItem
https://schema.org/customer

Lease successful (paid session):

HTTP/1.1 201 Created
Content-Type: application/json
Content-Language: en
Location: /api/orders/535

{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "id": "http://www.book.com/api/orders/535"
 "identifier": 535,
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer":
"http://www.book.com/api/sessions/1234#!/offer/2134",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "identifier": 9209,
 "id": "http://www.book.com/api/sessions/9209",

 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/sessions/9209#!/offer/2134",
 "type":"Offer",
 "identifier": 159,
 "name": "London Unlimited ",
 "description": "This is a 30 day unlimited London game pass.
This pass renews each month but you can cancel at any time.",
 "price": "39.00",
 "priceCurrency":"GDP"
 }
 }
 },
 "orderStatus": "OrderPaymentDue",
 "paymentDueDate": "2018-02-20T11:00:00Z",
 "orderDate": "2018-02-20T11:00:00Z",
 "partOfInvoice": {
 "type": "Invoice",

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 "paymentStatus": "PaymentDue",
 "totalPaymentDue": {
 "type": "MonetaryAmount",
 "value": "10.00",
 "currency": "GBP"
 }
 }
}

Lease successful (free session):

HTTP/1.1 201 Created
Content-Type: application/json
Content-Language: en
Location: /api/orders/535

{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "id": "http://www.book.com/api/orders/535"
 "identifier": 535,
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/sessions/9209#offer",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "identifier": 9209,
 "id": "http://www.book.com/api/sessions/9209",

 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/sessions/9209#offer",
 "type":"Offer",
 "price": "0"
 }
 }
 },
 "orderStatus": "EmailValidationRequired",

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 "paymentDueDate": "2018-02-20T11:00:00Z",
 "orderDate": "2018-02-20T11:00:00Z"
}

No available spaces:

HTTP/1.1 409 Conflict
Content-Type: application/problem+json
Content-Language: en

{​
 “type”: “no_spaces_available”,
 “title”: “There are no spaces available”
}

Email address invalid:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “email_address_invalid”,
 “title”: “Email address is invalid”
}

2b. Get Order Status
To aid debugging and allow for lease validation, a GET request returns the current Order.

Request
GET /orders/535

Response
The response will be identical to that of the Lease or Book call, depending on the status of the
Order.

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

3. Book
Fulfill a lease and confirm payment

A successful call to this endpoint should set the paymentDueDate to null and, where applicable,
generate a barcode number (“confirmationNumber”) used to access the session. It will also set the
booking account’s expiry to null.

Note that for entirely free bookings, the customer e-mail address must be validated by the broker
between the lease and book step. This may be achieved, for example, by sending a confirmation
code to the email address.

Request for paid event

PATCH /orders/{order ID}

PATCH /orders/535
{
 "type": "Order",
 "partOfInvoice": {
 "type": "Invoice",
 "accountId": 1232312,
 "paymentStatus": "PaymentComplete",
 "paymentMethod": "http://purl.org/goodrelations/v1#Stripe",
 "paymentMethodId": "[StripeToken]",
 "totalPaidByCustomer": {
 "type": "MonetaryAmount",
 "value": "10.00",
 "currency": "GBP"
 },
 "totalPaidToProvider": {
 "type": "MonetaryAmount",
 "value": "8.00",
 "currency": "GBP"
 }
 }
}

Response
Booking successful:
STATUS 200

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "identifier": 535
 "orderedItem": {
 "type": "OrderItem",
 "orderQuantity": 1
 "acceptedOffer":
"http://www.book.com/api/sessions/9209#!/offers/2134",
 "orderedItem": {
 "type": "Event",
 "identifier": 9209,
 "id": "http://www.book.com/api/sessions/9209",

 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/sessions/9209#!/offers/2134",
 "type":"Offer",
 "identifier": 159,
 "name": "London Unlimited ",
 "description": "This is a 30 day unlimited London game pass.
This pass renews each month but you can cancel at any time.",
 "price": "39.00",
 "priceCurrency":"GDP"
 }
 }
 }
 "orderDate": "2018-02-20T11:00:00Z",
 "orderStatus": "OrderDelivered",
 "partOfInvoice": {
 "type": "Invoice",
 "accountId": 1232312,
 "paymentStatus": "PaymentComplete",
 "paymentMethod": "http://purl.org/goodrelations/v1#Stripe",
 "paymentMethodId": "AppName",
 "totalPaidByCustomer": {
 "type": "MonetaryAmount",
 "value": "10.00",
 "currency": "GBP"
 },

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 "totalPaidToProvider": {
 "type": "MonetaryAmount",
 "value": "8.00",
 "currency": "GBP"
 }
 },
 "confirmationNumber":"T112434234"
}

Request for free event

PATCH /orders/{order ID}

PATCH /orders/535
{
 "type": "Order",
 "orderStatus": "OrderDelivered"
}

Response
Booking successful:
STATUS 200
{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "identifier": 535,
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/sessions/9209#offer",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "id": "http://www.book.com/api/sessions/9209",

 "identifier": 9209,
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/sessions/9209#offer",
 "type":"Offer",
 "price": "0"
 }
 }
 }
 "orderDate": "2018-02-20T11:00:00Z",
 "orderStatus": "OrderDelivered",
 "confirmationNumber":"T112434234"
}

Lease expired:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “lease_has_expired”,
 “title”: “It is not possible to book this offer as the lease has expired”
}

Account does not exist:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “account_does_not_exist”,
 “title”: “It is not possible to book this offer as the account does not exist. Perhaps the account has
expired”
}

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

4. Cancel order
Cancelling an order is a case of updating the order’s status:

Request for free event:

PATCH /orders/535
{​
 "type": "Order",​
 "orderStatus": "OrderCancelled"​
}​

Response
Booking successful:
STATUS 200
{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "identifier": 535,
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/sessions/9209#offer",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "id": "http://www.book.com/api/sessions/9209",

 "identifier": 9209,
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/sessions/9209#offer",
 "type":"Offer",
 "price": "0"
 }
 }
 }
 "orderDate": "2018-02-20T11:00:00Z",
 "orderStatus": "OrderCancelled",

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

}
Lease expired:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “lease_has_expired”,
 “title”: “It is not possible to book this offer as the lease has expired”
}

Account does not exist:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “account_does_not_exist”,
 “title”: “It is not possible to book this offer as the account does not exist. Perhaps the account has
expired”
}

Other Processes

1. Account Expiry
In the “Concepts” section, it was explained that new accounts that have not successfully completed
a booking must be deleted after a 30 minute expiry in order to conform to GDPR rules.

One suggested mechanism for implementing this is a cron job which runs the following SQL
(assuming a SQL based implementation):

DELETE FROM accounts
WHERE expiry <= CURRENT_TIMESTAMP;

2. Lease Expiry
In the “Lease” step in the workflow, it was explained that reservations which are leased are given an
expiry time. If not booked by the time the expiry is elapsed, they are to be expired, at which point the
reserved space is deallocated.

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

Similar to account expiry, one suggested mechanism for implementing this is a cron job which runs
the following SQL (assuming a SQL based implementation):

DELETE FROM reservations
WHERE expiry <= CURRENT_TIMESTAMP;

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

Appendix: Outstanding Issues and Notes
The following notes and issues have been moved the the end of this document for reference. For
those implementing the specification in its present state, they are outside of scope.

Issues

Issue 1: Use of persistent “Order” semantics vs use of transient “Reservation” semantics,
for a Lease

Order Reservation

Similar to Stripe, an Order is created as during
the checkout process with a unique identifier
and a “Reserved” or “Unpaid” status. If the
Order is left unpaid, it is automatically removed
after a timeout, and once paid it will remain
indefinitely. Refunds can be applied, changing
the status of the order.

1.​ Creates one object that persists
throughout the lifecycle of the purchase,
from reservation, to payment, to refund.
This simplifies debugging and audit.

2.​ Reduces the complexity of the
implementing system, as in the simple
case only a single database table is
required which handles orders
throughout their lifecycle.

3.​ Only a single REST path needs to be
implemented at /orders to allow
creation, payment and cancellation of
orders (as opposed to /reservations)

4.​ An “Order” to reserve an item could
semantically still be considered an
order.

5.​ The “customer” can be added to the
Order both at point of reservation, or at
point of payment, with further customer
details captured after payment is taken,
with the same semantics in all cases.

6.​ For free activities, a reservation is not
required and an order can be
immediately created. This simplifies the
semantics for free activity booking, as a
POST to /orders is sufficient.

7.​ It makes future shopping basket
semantics easier, as you can refund the

A Reservation is created during the checkout
process, which is converted to a Booking
following payment. If the Reservation is left
unpaid, it is automatically removed after a
timeout. Refunds can be applied to the
Booking, changing the status to “Refunded”.

1.​ Reservation has a clearer semantic
meaning than an Order in a Reserved
state

2.​ A well defined step between
Reservation and Booking serves as a
clear trigger for persistent object
creation on the provider system (e.g.
account creation).

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://stripe.com/docs/orders/guide

items in the order, and the items
themselves persist after purchase.

8.​ Lack of clear boundary between
reservation and booking objects allows
the specification to more easily adapt to
future requirements such as changing
an existing booking (e.g moving the
time of a Squash court booking, which
is permissible in some systems without
generating a new invoice).

Issue 2: Shopping basket vs. collection of leases

Collection of leases Shopping basket

The Order can be created at the point of
payment, and a collection of leases can be
passed to the booking endpoint to facilitate it

1.​ Advantage: Simplicity of implementation
2.​ Disadvantage: Lease timeouts may

need resetting independently
3.​ For cases where leases cannot be

anonymous, customer details must be
provided with each individual lease. An
additional error case is introduced
where these customers details may not
match.

The Order can be created at the point of first
lease, and the order accrues leases as the user
continues their journey. The order then exists at
the point of payment, and can easily be paid.

1.​ Advantage: The order timeout can be
reset with each action per user session

2.​ Disadvantage: Increase of complexity
3.​ Use of a central “Order” reduces the

need to create an Account in the case
where leases cannot be anonymous,
and so enables “guest checkout” for this
use case.

Issue 3: Anonymous leases

Allow anonymous leases Disallow anonymous leases

Leases can be acquired without customer data
being provided

1.​ Open to abuse if not correctly
implemented by broker e.g. by bots (for
implements which do not use
authentication)

2.​ Assurance to customer that later
inputted user data will not have been
entered in vain

Leases can only be acquired with customer
data provided

1.​ If user data capture is at the last step of
the customer journey, the user may be
disappointed if they are not able
complete the booking

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

3.​ Committing to an Event before any user
data capture will likely decrease chance
for customer drop-off

Issue 4: bookableItemId vs. Offer URI vs Offer Identifier

bookableItemId Offer URI / Identifier

v0.2 had the notion of a bookableItemId which
would be added to an Offer or an Event to allow
them to be bookable. Hence Offers did not
need to be used for free events.

1.​ This makes simple implementations
more simple, but adds complexity to
clients (as there are more variations of
workflow to handle).

V0.3 moved towards the data model requiring
Offers for free and paid bookable Events (see
discussion at 35:30), and using these as the
primary identifiers to trigger the booking
workflow.

1.​ The Offer URI creates a parsing
problem, as the /orders endpoint needs
to parse the Offer URI to retrieve the
relevant Event ID and Offer ID.

Another approach is to use an Offer identifier
without a mandated structure (schema.org’s
“identifier” instead of JSON-LD “@id” URI).

1.​ It might be more straightforward to allow
for any form of ID to represent the Offer
and not limit it to a URI, however the
advantage of a URI form is that it allows
the embedding of potentially complex
data that can be passed blindly by the
client from the Offer into the /orders call,
while still prescribing an element of
structure.

Booking Multiple Events

Note: Discussion points for “Book multiple events” included in design thinking

The semantics of this specification can be easily extended to book multiple events with the
following considerations:

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

https://youtu.be/wjBODJsC03U?t=35m30s

1.​ Note that the orderedItem in the top level Order can also support an array of items, which
supports the creation of a shopping basket.

2.​ For orders that consist of only isAccessibleForFree items, the order is instantly confirmed.
If an order consists of a mix of isAccessibleForFree and offer items, the offer expiry
process will apply and the customer will lose their space on the isAccessibleForFree
sessions when the order is cancelled.

3.​ In the simple case, for single item isAccessibleForFree implementation, only a single item
POST for orders must be supported.

Add order items to the basket by making a POST to the order’s “orderedItems” with a new
acceptedOffer:

POST /orders/535/orderedItems
{
 "type": "OrderItem",
 "acceptedOffer": "http://www.book.com/api/sessions/9209/offer/2134",
 "orderQuantity": 1
}

To remove order items from the basket, a PATCH may be made with an existing acceptedOffer
and an orderQuantity of 0, or a DELETE may be used.

PATCH /orders/535/orderedItems/12
{
 "orderQuantity": 0
}

DELETE /orders/535/orderedItems/12

GET /orders
[TODO - retrieve either future orders or all orders]

Account Creation

Note: Account creation work in progress

Initial thoughts on account creation are included below, however for the initial implementation this
is not required, as any accounts can be created as a part of the lease using the “customer”
feature of lease creation.

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

http://schema.org/orderedItem
http://schema.org/Order

Get Account
Gets account associated with an email address. If found, it returns the ID of the account, if not a
404 Not Found error is returned and a new account must be created.

Request
GET /accounts?email={emailAddress}

Response
Account exists:
STATUS 200
{
 "type":"Person",
 "identifier":"abcd1234",
 "email": "example.person@example.com"
}

Account does not exist:
HTTP/1.1 404 Not Found
Content-Type: application/problem+json
Content-Language: en

{​
 “type”: “account_does_not_exist”,
 “title”: “An account with that email does not exist”
}

Create Account
Create new account

Request
POST /accounts

{
 “email”: “example.person@example.com”
}

Response
Account created successfully:
STATUS 201
{
 “type”:”Person”,

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 “identifier”:”abcd1234”,
 “email”: “example.person@example.com”,
 “accountExpiry”: “2018-03-02T18:53:00.000Z”
}

Account with email already exists:

HTTP/1.1 409 Conflict
Content-Type: application/problem+json
Content-Language: en

{
 “type”: “account_with_email_already_exists”,
 “title”: “Account with that email already exists”
}

Confirmation Email Suppression

Note: Suppressing Confirmation E-mails

Further research is required on the subject of confirmation email suppression of the booking
system (to allow the broker to send custom e-mail messages).

1.​ This call takes a query parameter “suppressConfirmation”. If set to “true”, the client wants
to handle notifying the customer of confirmation via email or other means. In this case, the
provider should not send out its own notifications of confirmation e.g. confirmation emails

2.​ PATCH /orders/535?suppressConfirmation={suppressConfirmation}

Cancellation

Note: Cancellation

Cancel
Cancel order that is in leased or booked state

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

A successful call to this endpoint should set the paymentDueDate and confirmationNumber to null

Request
PATCH /orders/{order ID}/orderItems/{orderItem ID}

{
 “orderQuantity”: 0
}

Response
Cancel successful:
STATUS 200
{
 "@context": "https://www.openactive.io/ns/oa.jsonld",
 "type": "Order",
 "identifier": 535,
 "orderedItem": {
 "type": "OrderItem",
 "acceptedOffer":
"http://www.book.com/api/sessions/9209/offer/2134",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "identifier": 9209,
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "offers": {
 "id": "http://www.book.com/api/events/1234/offer/2134",
 "type":"Offer",
 "identifier": 159,
 "name": "London Unlimited ",
 "description": "This is a 30 day unlimited London game pass.
This pass renews each month but you can cancel at any time.",
 "price": "39.00",
 "priceCurrency":"GDP"
 }
 }
 }, {
 "type": "OrderItem",

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

 "acceptedOffer":
"http://www.book.com/api/sessions/9209/offer/2134",
 "orderQuantity": 1
 "orderedItem": {
 "type": "Event",
 "id": "http://www.book.com/api/events/1234",
 "identifier": 9209,
 "organizer": {
 "type": "Organization",
 "identifier": 225,
 },
 "name": "Speedball",
 "description": "An action packed, fast paced game that
incorporates netball, handball and football.",
 "startDate": "2018-01-27T11:00:00Z",
 "isAccessibleForFree": true
 }
 }
 "orderStatus": "OrderPaymentDue",
 "paymentDueDate": "2018-02-20T11:00:00Z",
 "orderDate": "2018-02-20T11:00:00Z",
 "partOfInvoice": {
 "type": "Invoice",
 "paymentStatus": "PaymentDue",
 "totalPaymentDue": {
 "type": "MonetaryAmount",
 "value": "-4.00",
 "currency": "GBP"
 }
 }
}

TODO: Add POST for processing refund

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

Appendix: Design Notes
The notes below are a log of the high level decisions taken during the initial specification design.
These serve as a guide for discussion points and assumptions made.

●​ To enable the following architecture:​

○​ Over time we expect adapters to be redundant and booking systems to implement

the specification directly.
●​ To allow for the following functionality:

○​ Get Space Availability: To retrieve the explicit number of spaces available at the
point where the customer is selecting options and entering payment details

■​ Using a subset of the modelling specification to represent the event,
availability, and associated offers would allow reuse of existing work.

■​ This endpoint should not be required to output the equivalent level of detail to
the open opportunity data, to allow for optimisation.

○​ Lease: Reserves a space(s) without account ID required
■​ NB. This is not always implemented, so the workflow should allow for this
■​ The lease may fail if there are constraints about the concurrent bookings

●​ Error codes should be enumerated, especially for the lease
■​ The lease should have a timeout (suggest 15 minutes)

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

■​ Should the lease only be possible after Create or Get, as otherwise it’s hard
to spot duplicate member bookings?

○​ [Baskets vs Leases]: In order to assign a payment to multiple bookings, an “order”
must be created that encompasses the bookings, and allows them to be assigned to
payment.

■​ Option 1: The order can be created at the point of payment, and a collection
of leases can be passed to the booking endpoint to facilitate it

●​ Advantage: Simplicity of implementation
●​ Disadvantage: Lease timeouts may need resetting independently

■​ Option 2: The order can be created at the point of lease, and the order
accrues leases as the user continues their journey. The order then exists at
the point of payment, and can easily be paid.

●​ Advantage: The order timeout can be reset with each action per user
session

●​ Disadvantage: Increase of complexity
○​ Create or Get Third Party Account: Gets an existing third party account based on

e-mail address, or otherwise creates a new account and returns the account identifier
■​ Need to define minimum required fields to create a member

●​ Suggest email address only
■​ Need to define custom required fields for each endpoint:

●​ Forename, Surname
●​ Date of Birth
●​ Ethnicity
●​ Gender
●​ Postcode

■​ For existing members, is a new third-party account created, or is the existing
member’s account utilised

■​ Duplicate bookings for the same email address may optionally be not possible
●​ Multi-party bookings (booking for more than one person)

○​ Can primary booker make multi-party-booking?
■​ GDPR consideration: Accounts should not remain in the system if they were

created for the sake of a booking which subsequently failed.
●​ Alternative routes: timeout to remove accounts that have no bookings;

additional endpoint to roll back account creation.
●​ Such a timeout should be reset on each call

○​ - Third Party Payment Step -
○​ Book: (or “confirm payment”) confirms the payment has occurred and registers the

amount taken
■​ Note the amount paid by the customer, and the amount deposited to the

provider should both be captured
■​ Triggers the sending of confirmation emails {has side effects}

●​ There should be the functionality for these confirmation emails to be
suppressed to streamline the user experience

■​ The book API call should produce a barcode or other data required for site
entry

○​ Cancel: Allow a booking to be cancelled

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

■​ Should allow cancellation with or without notification
■​ Note this should not be used for system-level transaction rollback, as it is

intended to be used for user cancellation
○​ [Authenticate existing members]: OAuth flow to allow authentication of existing

members
■​ This should be descoped / not in V1

○​ [Waiting lists]

Version 0.3
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

	OpenActive Open Booking Standard v0.3 (draft)
	Scope
	Objectives
	Concepts
	Account Creation
	GDPR

	Event
	Broker
	Customer
	Seller

	Implementation
	Errors
	Workflow
	Authentication
	1. Get Latest Event Data
	Use of the “id” to retrieve the latest Event
	Use of the “id” to retrieve the latest Offer
	Bookable free Offers
	Free Events
	Events that do not require booking in advance / Just turn up and pay
	Just turn up for free
	Request
	Response with Paid session
	Response with free session

	1b. Get Latest Offer Data
	Request
	Response

	2. Lease
	Request
	Example 1
	Example 2
	Response

	2b. Get Order Status
	Request
	Response

	3. Book
	Request for paid event
	Response
	Request for free event
	Response

	
	4. Cancel order
	Request for free event:
	Response

	Other Processes
	1. Account Expiry
	2. Lease Expiry

	
	Appendix: Outstanding Issues and Notes
	Issues
	
	Booking Multiple Events
	Account Creation
	Get Account
	Request
	Response

	Create Account
	Request
	Response

	Confirmation Email Suppression
	Cancellation
	Cancel
	Request
	Response

	
	Appendix: Design Notes

