## Single-input Single-output Terahertz Communication System with Multi-channel Access

Xuan-Wei Mlao¹, Shang-Hua Yang¹.²

1 Institute of Electronic Engineering, National Tsing Hua University, Hsinchu, Taiwan

2 Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

Abstract—This study investigates the performance of a multi-channel access approach usina reliable single-input, single-output (SISO) terahertz indoor communication system operating at 325 GHz. By introducing spatial diversity, the system enhances transmission reliability under various channel conditions, including scenarios involving obstruction and misalignment—conditions commonly encountered in real-world settings. Three multi-channel strategies are explored: line-of-sight (LOS) transmission, reflection-based transmission, and LOS transmission with partial blockage. Experimental results demonstrate that these methods significantly improve transmission performance. The proposed SISO system achieves a 1.5-meter wireless range with a 115-degree angular coverage. In addition, the study examines the feasibility of integrating sensing and communication (ISAC) functionalities using the same carrier frequency. The findings offer important insights for future terahertz indoor communication applications and present a practical physical-layer solution for robust transmission under diverse environmental conditions

## References

- [1]. G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, "6G: Opening new horizons for integration of comfort, security, and intelligence," IEEE Wireless Commun., vol. 27, no. 5, pp. 126–132, Oct. 2020, doi: 10.1109/MWC.001.1900516.

  [2]. H. Bergaoui, Y. Mlayah, F. Tlili, and F. Rouissi, "Scalable and adaptable diversity/multiplexing trade-off in a multi-user massive-MIMO environ ment," in Proc. Int. Conf. Signal, Control Commun. (SCC), Dec. 2019, pp. 41–45.

  [3]. N. H. Mahmood et al., "Multi-Channel Access Solutions for 5G New Radio," 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), Marrakech, Morocco, 2019, pp. 1-6, doi: 10.1109/WCNCW.2019.8902668.
- [4]. A. Shafie, N. Yang and C. Han, "Multi-Connectivity for Indoor Terahertz Communication with Self and Dynamic Blockage," ICC 2020 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-7, doi: 10.1109/ICC40277.2020.9148716.
- [5]. Kondratyeva A, Ivanova D, Begishev V, Markova E, Mokrov E, Gaidamaka Y, Samouylov K. Characterization of Dynamic Blockage Probability in Industrial Millimeter Wave 5G Deployments. Future Internet. 2022; 14(7):193. https://doi.org/10.3390/fi14070193