Année Universitaire 2020-2021

Module : ATOMISTIQUE (SMPC/S1)

Travaux Dirigés d'Atomistique

Série N°1

I) Compléter le tableau suivant et identifier l'élément X ainsi que les isotopes s'ils existent.

Elé me nt	4 ⁹ Be ⁴⁺	26 ^A Fe	z ¹⁶ O	26 ^A Fe ²⁺	$z^{32}S^{2-}$	z ^A X
Nombre de protons						
Nombre d'électrons		26	8		18	8
Nombre de neutrons		30		30		9
Nombre de masse						
Masse d'un atome						
Masse molaire						
L'élément X						X≡

II) 1°) Quelle est en gramme : - la masse d'un atome de zinc 65₃₀Zn.

- la masse d'une mole d'atomes de $^{65}_{30}$ Zn.

2°) Dans 10 grammes de zinc, combien y a-t- il : a) d'atomes ; b) de moles

; On donne : 1 u.m.a = $1/N = 1,66.10^{-24}$ g

- III) Le chlore à l'état naturel contient deux isotopes ³⁵₁₇Cl et ³⁷₁₇Cl dont les masses sont respectivement 35,000 et 36,9993. Quel est le pourcentage des deux isotopes dans un échantillon de chlore de masse atomique 35,453.
- IV) Deux isotopes X_1 et X_2 d'un même élément X, ont respectivement les nombres de masse $A_1 = 238$ et $A_2 = 235$ et les nombres de neutrons N_1 et N_2 .
- 1°/ Exprimer une équation de lien entre N_1 et N_2 .
- 2°/ Calculer alors le nombre de neutron N_1 si $N_2 = 143$. En déduire le numéro atomique Z de l'élément X.
- 3°/ Que peut-on conclure.
- V) 1) Calculer l'énergie de liaison nucléaire du noyau de l'atome d'Hélium (42He) en Mev (Méga électron volt) correspondant au défaut de masse Δm du noyau d'Hélium.
- 2) En déduire en (kJ.mol⁻¹) l'énergie libérée au cours de la formation d'une mole d'Hélium ⁴₂He.
- 3) Comparer cette valeur à celle de la réaction de combustion de C₄H₁₀ qui libère 2658 kJ.mol⁻¹.

Données:
$$M_{He} = 4,0026 \text{ u.m.a}$$
; $m_{proton} = 1,00710 \text{ u.m.a}$; $m_{neutron} = 1,00849 \text{ u.m.a 1ev}$
= $1,6.10^{-19} \text{ J}$; $C = 3.10^8 \text{ m.s}^{-1}$

Université Hassan II de Casablanca Faculté des Sciences Ben M'Sik Département de Chimie ce de l'énergie de liaison. Année Universitaire 2020-2021

Module: ATOMISTIQUE (SMPC/S1)