
 

Shared with Istio Community   

Istio over Zero-VPN 

Owner:  costin,andracis 
Work-Group:  Environments, Networking 
Short self link: https://goo.gl/efPVv8 
Reviewers: 

Status: WIP | In Review | Approved | Obsolete​
Created: 10/2017 
Release Version: 0.3, 0.4, 0.5 
Approvers: louiscryan [], sven [], rshriram[] 
 

 

This document is following the Istio Design Review Process. 

TL;DR 
Define requirements and implementations options for Istio communication in networks without 
direct L3 connectivity between services - when some resources are behind NATs, firewalls, or 
have multiple isolated VPNs or no VPN capabilities. 
 
We discuss multiple options, including cases where we do not control the Gateway, i.e. existing 
gateway or LB is used, but main priority is the case where Istio is used as Gateway. 

Overview 
As we expand Istio to multiple hybrid environments and multiple clouds we need to support 
cases where a private network or a VPN between endpoints is not possible or desirable.  
 
Goals: 

●​ P0: Allow mesh expansion in cases where the requirements of “direct L3 IP connection 
between services” can’t be met. 

●​ P0: All communication must be secure (encrypted & authenticated in both directions).  
●​ P1: Allow admin to selectively control which services are exposed to remote clusters  

using service-level Istio configs. 
 
Non-Goals: 

●​ Some of the solutions do not provide end-to-end security, and assume the gateway is 
trusted. Opportunistic encryption and other solutions for e2e will be discussed in 
separate documents. 

 
There are many use cases and configurations, each with specific solutions, but in general given 

https://docs.google.com/a/google.com/document/d/1QzpDUuB-GoEZ1HLmPuC6Sb0bgXWZDc2hcimZoFBKEOI/edit?usp=sharing


 

the requirements - NAT or firewall - we must route the requests through some gateway, either 
the Istio Mesh Load Balancer/Gateway or an equivalent gateway.  
 
This document attempts to list possible options and their use cases - it goes into more details 
for the simplest solution that we may implement first, while the intent is to gradually support 
multiple environments and solutions. 
 
In addition to the connectivity itself, the challenge in all discussed solutions is providing a ‘split’ 
DNS/naming - there are several ways to handle custom naming, addressed in separate 
document. In the example below,  “C.onprem” will get a “Gateway2” as the list of endpoints for 
“B.mesh2” service - while “A.Mesh1” will get the actual endpoints of B.mesh2. 
 
Each endpoint has a private address ( like 10.9.0.2 ) and belong to one or more services, 
identified by a VIP ( ClusterIP in case of K8S - can also be a manually allocated address ). The 
VIP is core to Istio functionality  - it is required for intercepting the traffic, and acts as a primary 1

key to identify services. 
 
 

 

1 Headless services - where each endpoint can be addressed individually - are not covered in this 
document, special extensions for this case will be discussed in a future version. 

https://docs.google.com/document/d/10uzw4N11NY_vWxWu2l79Ag96fvPT6w-OGzD_buvILM0/edit
https://docs.google.com/document/d/1XVigTQ1pZZIdfm94MyQChexh8BFTMjZSiCbVtMtT-7I/edit#heading=h.x9snb54sjlu9


 

 
 

Use cases 
The main use case is an environment where there is not a private network, VPN or VPC 
connecting all the clusters/clouds. It may happen when the cloud provider does not provide 
VPN, or on-prem has specific firewall or NAT requirements. 
 
A less common case is when some services run outside of the cluster or on-prem ‘production’ 
network - for example isolated servers. The design also allows the mesh to expand to IoT - like 
a badge, light, sensor controllers and other equipment. While IoT and ‘isolated servers’ could 
also use the regular Ingress to make calls into the mesh, it is typically hard for cloud services to 
make calls to the service ‘outside’ ( most of the times it requires mqtt or similar protocol, and a 
reverse call). In general IoT and ‘isolated’ servers have special security challenges - and are 
very likely to benefit in many ways from adopting Istio (to be discussed in separate design). 
 
 

Headless and load balancing 
In all solutions discussed, the ‘gateway’ will receive an identifier, using a specific protocol, 
allowing it to connect to the service and endpoint. 
 
The identifier is set by the client sidecar - and should include information needed to identify both 
the Service and endpoint.  
 
As a starting proposal, we can use:  ENDPOINT.CLUSTER 
 
As an optimization we can use the actual (local) endpoint IP, or we can use the endpoint index 
to match the headless approach. 
 
The load balancing and routing decisions are identical with those over private 
network/VPN/VPC: the client sidecar only needs to ‘adjust’ the endpoint connection, instead of 
opening a TCP connection to the endpoint IP it’ll need to open (or reuse) a TCP connection to 
the Gateway IP, and include the endpoint and cluster info as metadata. Except the extra bytes 
sent in the first packet (and in some cases the extra multiplexing), the ‘external’ services should 
be indistinguishable and operate in the same way with same features with the ‘internal’ services.  
 
For “TLS termination in Gateway” options, the gateway may do additional processing (with 
associated latency/scalability costs) - but so far we don’t have a clear use case. 



 

 
 

Options 
In all cases, the communication uses mTLS - this is one of the core requirements, it is not 
acceptable to send unencrypted traffic outside of the private network ( and usually even inside 
the private network). 
As such, the Host/authority is not visible until TLS handshake is finished - we must either do the 
handshake or rely on external signals.    
 

 

TLS termination in the destination service 
 
This category of options use the Gateway as a simple TCP proxy, terminating the mTLS at the 
destination service. The Gateway doesn’t decrypt or make any security decision. 
 
Pros: 

●​ End-to-end security 
●​ Less overhead on Gateway 
●​ Less complexity 
●​ Gateway doesn’t need to be trusted 

 
Cons: 

●​ Routing to the destination service is more complicated and non-standard 
 
 



 

P0: TCP proxy with separate ports 
The first option is to manually configure the Gateway as TCP proxy, allocating a separate port 
for each of the service that needs to be exposed outside of the cluster. Not all services need to 
be exposed - and the configuration can be automated by Istio. 
 
The Gateway acts as a plain TCP proxy - will not terminate TLS, but forward the request to the 
service using the port. The ports in the gateway don’t need to match the service ports. 
 
Pros: 

●​ Very simple - and already works (using manual configuration - only needs to be 
automated by Pilot)  

 
Cons: 

●​ Port is 16 bits - so max 64k services 
●​ Difficulties in allocating one port per service. 

 
Best for: 

●​ Small number of services 
 

P1: TCP proxy with single port using SNI-based routing 
An optimization for the above setup is to use the SNI part of the TLS handshake to determine 
the service name, and map it to an Istio service. This allows using a single port for all services, 
which is more scalable and elegant - and requires minimal changes in Envoy compared with 
plain TCP proxy. 
 
(note: lryan@ suggested the idea, it takes advantage of a little known behavior in the TLS 
handshake protocol, the fact that ClientHello sends the original hostname in clear text, to allow 
the server to present the matching certificate). 
 
This approach requires relatively small changes in Envoy TCP proxy code for listener, however 
the cluster code (for the client’s sidecar) must ensure that a SNI header is sent, and use the 
service name. Normally SNI headers are sent only for connections with a host, and need to be 
explicitly set (one liner). The Envoy cluster code initiates connections to the IP resolved by EDS, 
but should have access to the original host. 
 
Pros: 

●​ Doesn’t require an additional protocol or changes - SNI is sent anyways at the start of 
the connection 

Cons: 
●​ Non-standard, original solution 



 

●​ Requires care in parsing the ASN1/DER  
Best for: 
    This is likely the best option for TCP proxy, with minimal changes in application code. This is  
the recommended solution. 

P2: TCP proxy using HTTP2/gRPC streaming 
In this mode a dedicated HTTP2 or gRPC interface is used explicitly, with the service ID passed 
explicitly in the gRPC request or as a HTTP2 header, and the raw bytes encrypted TCP payload 
forwarded as bi-directional streaming. 
 
 
Pros: 

●​ Well tested/widely used in some corp environments. 
●​ Uses the native http2/gRPC support in Envoy 
●​ Multiplexed connections 
●​ Will work naturally with QUIC, once added to Envoy (and benefit from UDP) 
●​ Allows more flexible metadata 
●​ Easy to integrate with apps supporting Istio natively, without sidecar 

Cons: 
●​ Likely to require more time/code to implement and test. 
●​ Not yet a standard solution 

TCP proxy with single port using CONNECT or SOCKS 
Another option is to extend the TCP proxy in Envoy with HTTP CONNECT and/or SOCKS 
support. The TLS connection will be tunneled over CONNECT or SOCKS - the gateway will use 
the destination info (host) to locate the service. 
 
CONNECT is the standard solution of https proxies - support for CONNECT in Envoy will allow 
a broad set of applications to use Envoy without iptables. SOCKS is the equivalent solution for 
plain TCP. In both cases the ‘authority’ is sent at the start of the connection. 
 
In this case the sidecar of the external service will need to also be changed to use CONNECT 
or SOCKS on its cluster connection. 
 
Pros: 

●​ Standard protocols for proxies 
●​ Well known/supported  
●​ May work with unmodified applications 

Cons: 
    ? 
 
Best for: 



 

●​ Existing external apps that implement their own mTLS ( without sidecar ), and already 
have socks or connect support. 

 

TCP proxy with single port using HAProxy's PROXY protocol 
The PROXY protocol supports both TCP and HTTP, and has additional features not present in 
CONNECT/SOCKS - but shares the same characteristics. Envoy supports it for listeners 
(use_proxy_proto) - but it will need special changes since the inbound information can’t be 
trusted, and should only be used for routing. Also it doesn’t appear that cluster (outbound) 
support for PROXY protocol is available. 
 
The CONNECT/SOCKS solution would fit better in cases of unmodified applications doing 
custom mTLS (without sidecar), since this is built-in/configurable. The PROXY protocol is best fit 
for integration with other proxies. 
 
Pros: 

●​ Partially supported by Envoy and other proxies 
●​ Like Connect, it can pass additional data ( source IP ) 
●​ Consistency - normal TCP Gateway may use the same protocol to pass source 

information. 
Cons: 

●​ Less commonly used compared with socks/connect 
Best for: 

●​ Infrastructure already using or migrating from haproxy 
 

TCP proxy using Websocket 
This is a variant of the above, using the existing Websocket protocol to route the bi-directional 
stream of bytes (consisting of the encrypted mTLS connection). 
 
Pros: 

●​ No changes to Envoy 
●​ WS is widely used as a TCP proxy  
●​ Routing and metadata are easy 
●​ Will make the Websocket support in Envoy more powerful. 

Cons: 
●​ The destination service sidecar must terminate Websocket handshake and transform it 

into TCP proxy. (this would be a good general feature - there is an Envoy issue asking 
for this) 

Best for: 
Apps already using Websocket as a generic transparent proxy. 
  

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt


 

Foreign LB as TCP proxy 
In cases a cluster doesn’t allow customization or provides specialized gateway, it is possible to 
either tunnel traffic over Websockets or similar protocol, terminating mTLS on the actual service. 
 
Pros: 

●​ Works with other LBs, doesn’t require Istio gateway 
Cons 

●​ We have less control, and may need to work around any limitations 
Best for: 
In cases where we don’t have Istio gateway, or if a foreign LB provides special features missing 
in Istio gateway, or is required. 

NATs with port forwarding 
A special case is a service behind a NAT. This can be covered by any of the solutions above, 
but the gateway will need to open a port forward in the NAT.  The main difference is that the 
gateway endpoint to be registered is the address of the NAT, not the address of the gateway. 
Additional code to do address discovery is needed. 
 
Cons: 

●​ Performance, scalability, hard to configure  
Best for: 
If you have no other choice, or use it from home or small office. 
 

NATs without port forwarding 
In extreme cases, the service may not be able to open an inbound port in the NAT. A number of 
protocols exist allowing a ‘reverse Gateway’, where the gateway server will open a connection 
as client to the main networks gateway. For example SOCKS allows this, as well as few new 
protocols. The behavior will be similar with the other solutions, but an additional service will 
need to maintain the reverse channel and the registrations will use the IP address of the tunnel 
server. 
 
Cons:  

●​ Poor performance, requires external service 
Best for: 
If you have no other choice (and can’t even open a TCP port in the firewall). For example for 
development/debugging. Should not be used for production.  

TLS termination in gateway 
In this case, the gateway will handle mTLS authentication: 



 

●​ It must have a certificate that is recognized by the client - either provide the expected 
service account cert based on the SNI, or clients must accept the gateway certificate as 
a valid secure name for all services behind the gateway 

●​ It must request mTLS client certificate - this typically means that port can’t be shared 
with normal ‘browser-based’ Gateway. (a browser accessing the secure port would get a 
prompt for certificate) 

●​ It must propagate the mTLS client certificate to the service - in case of TCP proxy using 
one of the solutions for passing metadata (haproxy protocol, etc). 

●​ The service must verify the ‘delegated’ call is from the gateway (to prevent other 
services from impersonating callers) 

●​ The gateway must be ‘trusted’ - this class of solutions do not provide end-to-end 
security, the gateway will have access to clear-text. Additional layer of encryption can be 
added - but it requires additional complexity (and would effectively turn this into one of 
the ‘TLS termination at destination’ discussed above). 

 
This is a more  complex solution compared with the case where the TLS was terminated by the 
destination service. It also requires an additional decryption and encryption at the gateway, 
which may have latency/cpu impact. 
 
For routing, in case of HTTP, the gateway can forward the request to the actual service using 
the Host header.  
 
For TCP, we still need a similar ‘one port per service’ is required, or SNI (with specialized 
envoy/gateway code to use the SNI for routing, by default it’s only used to select the server 
certificate). 
 
The main problem in this setup is mTLS and identity delegation and trust: the client will receive 
the gateway cert, while the server will see gateway as client.  
 

Istio Ingress  
Current Istio ingress can be used with changes in the secure naming configuration. Extensions 
for passing the identity may be needed, but Envoy seems to already provide this for HTTP.  
 
Cons: 

●​ Requires implementation/design of secure delegation  
●​ Requires Trust in the ingress, if Gateway is compromised the effects are broad.  

Foreign LB TLS and HTTPS termination 
In cases the cluster inbound has to use a specialized gateway that doesn’t allow websocket or 
TCP, it is possible to terminate the TLS on the ‘foreign’ gateway. In general most LBs do not 



 

require client certificates - and are unlikely to support Istio certificate format - the client sidecar 
will need to generate a JWT token and use regular TLS, and the server sidecar will need to 
process the JWT token forwarded by the gateway. 
 
Cons: 

●​ May not support mTLS  
●​ JWT is less secure  
●​ May be even harder to trust than Istio gateway operated by the developer. 

 

Access control 
The services exposed via the gateway can be accessed by anyone on the internet - but only if 
the client has a valid mTLS client certificate issued by Istio CA. We explicitly set as a 
requirement that all communication over zero-VPN networks will use mTLS or equivalent 
“encryption and mutually authentication”. 
 
It is possible to use annotations to whitelist/blacklist services that can be exposed via the 
gateway, as an additional layer of control, so some services will not be ‘meshed’ outside of the 
zero VPN.  
 
Beyond corp goes into many details for one similar deployment and the security implications. 
 
 

https://research.google.com/pubs/pub43231.html

	Istio over Zero-VPN 
	TL;DR 
	Overview 
	Use cases 
	Headless and load balancing 
	Options 
	TLS termination in the destination service 
	P0: TCP proxy with separate ports 
	P1: TCP proxy with single port using SNI-based routing 
	P2: TCP proxy using HTTP2/gRPC streaming 
	TCP proxy with single port using CONNECT or SOCKS 
	TCP proxy with single port using HAProxy's PROXY protocol 
	TCP proxy using Websocket 
	Foreign LB as TCP proxy 
	NATs with port forwarding 
	NATs without port forwarding 

	TLS termination in gateway 
	 
	Istio Ingress  
	Foreign LB TLS and HTTPS termination 


	Access control 

