

Introduction to Rockfish Cluster

Help

High Performance Computing

Allocations on Rockfish

Connecting to Rockfish

Data Transfer

Module and Software System

Parallel Computing Jobs

Job Management by SLURM

Container and Singularity

Python and Anaconda

RStudio

Jupyter Notebook

Help

 The Advanced Research Computing at Hopkins (ARCH) –formerly known as MARCC– is a

shared computing facility at Johns Hopkins University that enables research, discovery, and

learning, relying on the use and development of advanced computing. See About ARCH.

Rockfish website: https://www.arch.jhu.edu/

Rockfish User Guide: https://www.arch.jhu.edu/access/user-guide/

1

https://www.arch.jhu.edu/about-rockfish/
https://www.arch.jhu.edu/
https://www.arch.jhu.edu/access/user-guide/

Help

 Note: We will have maintenance on 4/11/2022 to 4/15/2022.

RockFish Web Sites

Read our User Guide web site for how to use our system or look for specific information.

RockFish RT System

Send us your questions at help@rockfish.jhu.edu and include as much information as possible.

For example:

●​ The jobid of the job with problems

●​ Full path to the batch submission script

●​ Any specific error messages

●​ If possible a snapshot with errors

Frequently Asked Questions

We also have a FAQ web page where you could find the answers of your questions which most of

the users asked.

2

https://www.arch.jhu.edu/access/user-guide/#elementor-toc__heading-anchor-0
https://www.arch.jhu.edu/access/faq/

High Performance Computing

HPC Terminology

Why Use ARCH

3

HPC Terminology

Node

A standalone "computer in a box". Usually comprised of multiple CPUs/processors/cores,

memory, network interfaces, etc.

Cluster

A group of nodes networked together so a program can run on them in parallel.

CPU/Processor(Socket)/Core

In the past, a CPU (Central Processing Unit) was a singular execution component for a computer.

Then, multiple-core CPU is incorporated into a node. It is subdivided into multiple "cores" inside

processors (or sockets). Each core is a unique execution unit like a CPU in the past. RAM memory

between different sockets is connected with a bus interface.

Multicore CPU (NUMA system)

GPU

Short for Graphics Processing Unit. It is a specialized processor with thousands of small CPU

cores. It can run multiple processes and perform many pieces of data in parallel. It is useful for

machine learning, video editing, and gaming applications.

Task/Process

A process or running process refers to a set of programmed instructions currently being

processed by the computer CPU. A process may be made up of multiple threads of execution

that execute instructions concurrently.

4

Thread

In computer science, a thread of execution is the smallest sequence of instructions (from an

application) that can be managed independently by a single core.

SSH

Also known as secure shell. It is used to log into a remote machine and execute commands

through a cryptographic network protocol.

File System

System for storing many files. A local file system is a file system directly connected to a node,

such as a hard drive in a computer (in /tmp). Files saved in a local file system can only be

accessed directly through the connected node. A network file system (NFS) is a distributed file

system protocol allowing a user on a client computer to access files over a computer network.

Files saved in a NFS can be directly accessed through the computers in the network.

5

Why Use ARCH

 A comparison between your pc and our HPCC:

Hardwares

 Laptop/Desktop Rockfish Clusters

Number of Nodes 1 693

Sockets per node 1 2

Cores per node 4 - 16 48

Cores total 4, 8, or 16 33,264

Core Speed 2.7 - 3.5 GHz 3 GHz

RAM memory 8 - 32GB 189GB or 1.4TB

File Storage 250GB - 1TB
50GB(Home), 10TB(data),

10TB(Scratch)

Connection to other

computers
Campus ethernet 1 Gbit/sec "Infiniband"100 Gbit/sec

Users 1 ~800

Schedule On Demand 24/7 via queue

​
* Parallel is mostly the key to use ARCH.

Software

 ​ You can use various software with different versions installed in HPCC:

●​ Compilers — GNU, intel, CUDA, ...

●​ Parallel — OpenMPI, Intel-MPI, ...

●​ Bioinformatics — BLAST, Trinity, Mothur, Samtools, Trimmomatic, ...

●​ Libraries — MKL, OpenBLAS, HDF5ls , FFTW, ...

●​ Commercial — MATLAB, ABINIT, COMSOL, TotalView, ...​

6

Allocations on Rockfish
Account and Allocation Management

Computing Allocations

7

Account and Allocation Management

Allocation and User Account

The Rockfish portal (Coldfront) can be used by PIs and users to manage accounts and

allocations. PIs can create projects with a short proposal; request allocations (which must be

approved by the advanced computing committee); add or remove users to their allocations;

upload publications, grants and other items. All projects must submit periodic reports via the

Rockfish portal or to XSEDE. Users can see the video link for how to use Coldfront.

Account Usage

Rockfish allocations are made in core-hours. The recommended method for estimating

your resource needs for an allocation request is to perform benchmark runs. The core-hours

used for a job are calculated by multiplying the number of processor cores used by the wall-clock

duration in hours.

For example: if you request one core on one node for an hour your allocation will be

charged one core-hour. If you request 24 cores on one node, and the job runs for one hour, your

account will be charged 24 core-hours. Job accounting is independent of the number of

processes actually used on compute nodes. You can request 2 cores for your job for one hour. If

you run only one process, your allocation wil still be charged for 2 core-hours.

Charge = Number of cores requested x wall-time.

Note: Each GPU is associated with 12 cores.

• Allocations will be reset on a quarterly basis. The model is “use it or lose it”. Unused

allocations or part of them will not roll over to the next quarter. Users can use the sbalance

command to check their usage:

[userid@login01 ~]$ sbalance slurm_account userid

[BALANCE] used/quarter, account: slurm_account 7073.2 / 100000.0 (SU)

[BALANCE] used/quarter, user: userid 4077.6 / 100000.0 (SU)

8

http://coldfront.rockfish.jhu.edu/
https://youtu.be/L6zvLBK5Mss

Computing Allocations

MRI-Related Allocations

●​ PIs who participated in the proposal to NSF should submit a short proposal justifying the

request for cpu-cycles and storage.

●​ Regular cpu-cycles. This allocation will allow the use of the regular/standard compute

nodes. The limit is 750,000 core-hours per quarter.

●​ Large memory cpu-cycles. This allocation will allow the use of large memory nodes.

Applications and simulations must use more than 192GB of memory. Limit 50,000

core-hours per quarter.

●​ GPU allocation. This allocation will allow the use of GPU nodes. All scientific applications

should make use of the GPUs. Limit 50,000 core-hours.

●​ Storage (GPFS) allocations. This allocation will assign storage to the group on an annual

basis.

Condo-Related Allocations

●​ Deans’ Condo allocations

○​ The Dean’s office will offer small/startup faculty members allocations. These

allocations WILL follow the MRI-topics and will be part of the annual report to the

funding agency.

●​ Morgan State University allocations

○​ A subset of allocations will follow a model developed at Morgan State University

as a partner for this grant.

●​ XSEDE allocations

○​ Follows the process established for XSEDE allocations (XRAC)

●​ PIs who contribute condos will have an allocation (or additional allocation) equivalent to

the size of the condo. For example a one node condo is equivalent to 100,000 core-hours

per quarter.

●​ Condo storage and purchased storage. This allocation is composed of the storage given

by default plus the size of the storage purchased. It may cover different file sets.

●​ New faculty members will have allocations equivalent to the size of the condo in their LOI,

or as offered by the Dean’s office.

●​ As of April 15,2022 all “active” PIs using the Bluecrab cluster have a startup allocation on

Rockfish (50,000 hours). Use this trial access to benchmark your codes and obtain

information to submit a proposal by November 2022.

Please refer to Allocations web site.

9

https://forms.office.com/r/6Mmhq6w9jf
https://www.arch.jhu.edu/policies/allocations/

Connecting to Rockfish
SSH Client

Access to login Node

Check Storage and Account Allocations

10

SSH Client

In order to use the Rockfish system robustly by command lines, please have a SSH client

and X11 server installed in your computer.

For Windows machines

 ​ You can use PuTTY or MobaXterm (Home Edition → Installer edition). MobaXterm provides

both a SFTP application for file transfer and a SSH client for command lines with X-Windows (X11

server) system (for graphical user interface (GUI) running on Rockfish login nodes).

For Mac OS machines

 You can use Terminal program (installed within MacOS) for your SSH client. (In the taskbar,

search for “terminal”.) However, for running graphical user interface (GUI) programs on Rockfish

login nodes, the X11-server program XQuartz needs to be installed. See XQuartz for download

instructions.

11

https://www.putty.org/
http://mobaxterm.mobatek.net/download.html
https://www.xquartz.org/

Access to login Node

 After you have a SSH client in your local computer, please open the application to run ssh

commands. In the opened terminal, please type:

> ssh -XY userid@login.rockfish.jhu.edu​
password:

and hit enter, where userid should be your Rockfish account name. Once you establish a

connection, SSH will prompt for your password. Please type the password of your Rockfish user

account. There will be nothing on your password typing. However, keep finishing your password

and hit enter. Once sign into the login node, you should see the welcome messages:

Thu Mar 10 09:45:29 2022 from 172.28.3.75​
 ____ _ _____ _ _​
| _ \ ___ ___| | _| ___(_)___| |__​
| |_) / _ \ / __| |/ / |_ | / __| |_ \​
| _ < (_) | (__| <| _| | __ \ | | |​
|_| ____/ ___|_|__| |_|___/_| |_|​
[STATUS] loading software modules​
[STATUS] modules are Lmod (https://lmod.readthedocs.io/en/latest/)​
[STATUS] software is Spack (https://spack.readthedocs.io/en/latest/)​
[STATUS] the default modules ("module restore") use GCC 9 and OpenMPI 3.1​
[STATUS] you can search available modules with: module spider <name>​
[STATUS] you can list available modules with: module avail​
[STATUS] loading a compiler, MPI, Python, or R will reveal new packages​
[STATUS] and you can check your loaded modules with: module list --terse​
[STATUS] to hide this message in the future: touch ~/.no_rf_banner​
[STATUS] restoring your default module collection now​
​
Quota and usage information. Updated hourly. Use 'gpfsquota'​
Usage for group MyGroup​
FS Usage Quota Files_Count File_Quota​
--- --- --- --- ---​
data 5.07T 10T 2287948 4194304​
scratch16 1.939T 10T 1005210 10240000​
scratch4 4.177T 10T 1159700 20480000​
[userid@login02 ~]$

Now you are on the login node of the Rockfish system. Please be aware: All users are requested
to abstain from running jobs and conduct minimal tasks on login nodes. Any extended testing

should be done using the debug queue or an interactive session. Please see our Policies for

more details.

12

https://idiestech.atlassian.net/wiki/spaces/ITRC/pages/2733933103
https://www.arch.jhu.edu/policies/

Check Storage and Account Allocations

Right after access to a login node, users should reach their home space (/home/userid).

By default, the results of the usage and quota of their file storages are also displayed. Users can

also use gpfsquota command to get the results:

[userid@login02 ~]$ gpfsquota

Quota Usage for group PI-userid

FS Usage Quota Files_Count File_Quota

--- --- --- --- ---

data 9.475T 10T 10789187 10240000

scratch16 2.44T 10T 2086208 10240000

scratch4 8.641T 10T 2355444 20480000

There should be four file storage places where you can access, read and write files:

File System
Path

Size
Quota

(default)

File
Number
Quota

(default)

Usage

Back-Up System Type

/home/userid 50GB N/A long term file

storage weekly to an

off-site location
NMVe SSD

/data/PI-

userid

10TB 10240000 long term file

storage N/A
GPFS (parallel file

system)

/scratch16/PI-

userid

10TB 10240000 temporary

large file

storage N/A

GPFS (parallel file

system 16MB

blocksize)

/scratch4/PI-

userid

10TB 20480000 temporary

small file

storage N/A

GPFS (parallel file

system 4MB block

size)

where “userid” is the user’s account name and PI-userid is the account name of the user’s PI.

Users can use cd and ls commands to check if they can be accessed.

13

Users can use sbalance command to check the allocation and usage of their job

accounts

[userid@login02 ~]$ sbalance PI-userid userid​
[BALANCE] used/quarter, account: PI-userid 64406.4 / 143750.0 (SU)​
[BALANCE] used/quarter, user: userid 9468.7 / 143750.0 (SU)

If there is anything wrong with the results of the usage and the allocation, please let us know with

a message to Rockfish HELP.

14

mailto:help@rockfish.jhu.edu

Hardware Resources

Users can use sinfo command below to get the partitions and their compute nodes:

[userid@login02 ~]$ sinfo -s

PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST

a100 up 3-00:00:00 12/2/3/17 gpu[02-09,13-21]

bigmem up 2-00:00:00 5/10/7/22 bigmem[01-12,17-26]

defq* up 3-00:00:00 492/66/95/653

c[001-332,337-381,383-424,433-499,501-520,522-524,529-576,625-720]

v100 up 3-00:00:00 0/1/0/1 gpu01

Here is the list of compute nodes and their properties:

Partition Nodes Processors Cores
Memor

y
Local
Disk

GPUs
Job Time Limit

& Node List

defq 653

Intel(R)

Xeon(R) Gold

6248R CPU @

3.00GHz

48 189 GB 915 GB N/A

3 days
c[001-332,337-381,

383-424,433-499,5

01-520,522-524,52

9-576,625-720]

bigmem 22

Intel(R)

Xeon(R) Gold

6248R CPU @

3.00GHz

48 1.47 TB 816 GB N/A

2 days

bigmem[01-12,17-

26]

a100 17

Intel(R)

Xeon(R) Gold

6248R CPU @

3.00GHz

48 189 GB 1.4 TB 4*A100
3 days

gpu[02-09,13-21]

v100 1

Intel(R)

Xeon(R) Gold

6248R CPU @

3.00GHz

48 189 GB 1.4 TB 4*V100
3 days

gpu01

Total 693 33,264
68*A100

4*V100

15

Data Transfer
SFTP Application

Command Lines

Globus

16

SFTP Application

 Please make sure you use Rockfish data transfer node: rfdtn1.rockfish.jhu.edu for the

(remot) host. The following free SFTP applications are available to be installed for file transfer:

MobaXterm

1.​ Download and install MobaXterm (Windows computer only).

2.​ Start the application. Click on Sessions then choose New session. In the pop-out

window, click on SFTP and enter the information:

○​ Remote host: rfdtn1.rockfish.jhu.edu

○​ Username: <your userid>

○​ Port: 22

3.​ Click OK You will be asked for password if it is not saved.

4.​ Once connected, the left column displays files in your local computer, the right column

displays files of your Rockfish home.

5.​ You can select the appropriate directories by double clicking through each tree. Files can

be dragged and dropped from one column to the other. (By dragging files from the left

column to the right, they are uploaded from your local computer to Rockfish. By dragging

files from the right column to the left, they are downloaded from Rockfish to your local

computer.)

FileZilla

1.​ Download and install FileZilla.

2.​ Start the application. In the top dialog boxes, enter your information for each item:

○​ Host: rfdtn1.rockfish.jhu.edu

○​ Username: <your userid>

○​ Password: <your password>

○​ Port: 22

3.​ Click connect or quickconnect. The first time you use this, you will have to accept the

host certificate.

4.​ Once connected, the left column displays files in your local computer, the right column

displays files of Rockfish home.

5.​ You can select the appropriate directories by double clicking through each tree. Files can

be dragged and dropped from one column to the other. (By dragging files from the left

column to the right, you are uploading files to Rockfish from your local computer. By

dragging files from the right column to the left, you can download files from Rockfish to

your local computer.)

17

http://mobaxterm.mobatek.net/download.html
https://filezilla-project.org/

Command Lines

Download Data from Web Sites

Users can use wget or curl command to download data from a website to the Rockfish

cluster. Just cd to the directory where you would like the data to be saved and execute the

command. For example, by running the command:

curl -O http://www.examplesite.com/examplefile.txt

 or

wget http://www.examplesite.com/examplefile.txt

the file examplefile.txt is downloaded to your current directory from the web site:

http://www.examplesite.com/.

Copy Files by scp Command

Users can use scp command to copy a file or a directory from/to the Rockfish system

to/from a local computer or another cluster. For example, the command

scp file-name userid@rfdtn1.rockfish.jhu.edu:/scratch16/PI-id/user-id/

copies file-name from the local computer (or the cluster) you are using to the directory

/scratch16/PI-id/user-id/ of Rockfish cluster. Since your local computer is not a server,

please make sure you always run scp command on a terminal before you log into Rockfish cluster

(rather than running scp on a Rockfish login node). To copy a directory, please specify -r option.

For example, running the command:

scp -r userid@rfdtn1.rockfish.jhu.edu:/data/PI-id/user-id/MyDir ./

copies the directory /data/PI-id/user-id/MyDir in the Rockfish system to the current

directory of your local computer (or the cluster you are using).

Synchronize Files by rsync Command

With rsync command, you can copy and synchronize your files and directories between two

different locations. It can be used for mirroring data and transferring only the differences between

the source and the destination. The syntax for rsync command is similar to scp command. To

mirror a directory rockfish_dir in Rockfish system to a local directory local_dir, use the

command:

rsync -ave ssh userid@rfdtn1.rockfish.jhu.edu:rockfish_dir local_dir

18

http://www.examplesite.com/

To mirror a local directory local_dir to a directory rockfish_dir in Rockfish cluster, just switch

their places in the above command line:

rsync -ave ssh local_dir userid@rfdtn1.rockfish.jhu.edu:rockfish_dir

Again, the command is considered to be used in the terminal of your local computer (or the

cluster you are using) before accessing the Rockfish cluster.

19

Globus

 The best way to transfer large data files to/from the Rockfish cluster is to use Globus. Globus

manages all data transfers in the background, and makes sure the process goes through even

with interruptions. To use Globus for data transfer, you can follow the steps below.

1.​ Use a web browser to connect to https://app.globus.org. If this is the first time you use

Globus, you will be asked to sign into an organization. Please type and select “Johns

Hopkins” then click Continue.

2.​ Sign in with your JHED ID.

20

https://app.globus.org
https://app.globus.org

3.​ After you sign in successfully, you reach the Globus File Manager page. If you only get

one column of Collection 🔍Search in the screen. You can click in Panels on the

top right corner to get two columns.

4.​ Search for “Rockfish“ in the Collection field.

21

5.​ Click on Rockfish dtn01 user data. If this is the first time you access the collection, it

will prompt for authentication. Click on Continue.

6.​ Enter your Rockfish username and password.

7.​ After that, you access the file system of Rockfish cluster in the left column.

22

8.​ In the right column, you can search the endpoint to/from which you wish to transfer data

in the Collection field. For example, you can use MARCC data transfer endpoint. Follow

from step 3 again and search for "marcc" in the Collection field. After that, click on

marcc#dtn and follow step 6 to access the file system of MARCC.

9.​ To transfer files from one side to another, just select files and/or directories on one side

and click on Start button to transfer them to the other side.

If you would like to use Globus to transfer data to/from your local computer, please install

the Globus Connect Personal. During the installation, an endpoint is set for your local computer

and you can use it in the Collection field to access your local file system.

23

https://www.globus.org/globus-connect-personal

Module and Software System
LMOD System and Module Commands

Find, List and Load Software

Module hierarchy

24

LMOD System and Module Commands

There are many software applications installed in Rockfish cluster system. In order to find

and use them properly and conveniently, LMOD module system was built in the Rockfish system.

Users can simply run the command :

[cchan139@login02 ~]$ module -h

Usage: module [options] sub-command [args ...]

to find out how to use the module commands. The following is a list of commonly used module

commands.

Common Module Commands

module list List currently loaded modules.

module spider <software name> Find installed software in HPCC system

module load <software name> Load an available software module.

module unload <software name>
Unload a currently loaded software
module.

module purge Unload all loaded modules

module swap <software A> <software B> Unload software A and load software B

module avail Show currently available software.

module whatis <software name> Show a description of the software

module show <software name>
Show functions and environment settings
of a module.

module use <module directory> Use modules installed in a directory

25

ml Commands

ml can be ... Description Examples

module if a module command is specified behind
ml

ml spider ..., ml show ...,
...

module list if nothing is specified behind ml ml

module load if a module name is specified behind ml ml git, ml matlab

module unload if a module name with "-" sign is specified ml -git, ml -matlab

Users can find out more details about ml commands by running ml -h on a login node.

26

Find, List and Load Software

List Loaded Module

Right after you ssh to a Rockfish node, some modules are automatically loaded by default.

You can use module list command to see the loaded modules:

[userid@login02 ~]$ module list​
​
Currently Loaded Modules:​
 1) gcc/9.3.0 2) openmpi/3.1.6 3) slurm/19.05.7 4) helpers/0.1 5)

git/2.28.0 6) standard/2020.10

Once users have a module loaded, its application is ready to be used. For example, gcc

command of gcc/9.3.0 and mpirun command of openmpi/3.1.6 can be found by which command:

[userid@login02 ~]$ which gcc

/data/apps/linux-centos8-cascadelake/gcc-9.2.0/gcc-9.3.0-bnvby67rgbqevwsd26

4rgz44xucnkhpm/bin/gcc

[cchan139@login02 ~]$ which mpirun

/data/apps/linux-centos8-cascadelake/gcc-9.3.0/openmpi-3.1.6-rk3nyoehbq3pke

4zy4hn7unns3ujtutx/bin/mpirun

where commands gcc and mpirun are pointed to the places where the applications are installed.

Find Software Module

​ If you did not find your preferred software loaded, you can use module spider command

to look for it first. For example, to look for Python application, just run module spyder python :

[userid@login02 ~]$ module spider python​
​
-------------------------------------​
 python:​
-------------------------------------​
 Versions:​
 python/3.7.9​
 python/3.8.6​
 python/3.9.0

-------------------------------------​
… … …

and a list of installed python versions is displayed. Before you try to load a version of Python, you

might want to find out what needs to be loaded first before you can load it. You can use the same

27

module spider command with the specified version. For example, to load Python version 3.9.0,

use the command module spider python/3.9.0 :

 [userid@login02 ~]$ module spider python/3.9.0​
​
-------------------------------------​
 python: python/3.9.0​
-------------------------------------​
​
 You will need to load all module(s) on any one of the lines below

before the "python/3.9.0" module is available to load.​
​
 gcc/9.3.0​
​
 Help:​
 The Python programming language.

and we found the compiler gcc/9.3.0 needs to be loaded first. Due to module hierarchy used in

our module system, before an application can be loaded, the version of its compiler (or maybe its

MPI compiler) needs to be loaded first.

Load Modules

Now, we can run the module load command:

[userid@login02 ~]$ module load gcc/9.3.0 python/3.9.0

to load both gcc/9.3.0 and python/3.9.0 at the same time. Again, we can use module list

and which command to check if they are loaded:

[userid@login02 ~]$ module list​
​
Currently Loaded Modules:​
 1) slurm/19.05.7 3) standard/2020.10 5) openmpi/3.1.6 7)

python/3.9.0​
 2) helpers/0.1 4) gcc/9.3.0 6) git/2.28.0​
[userid@login01 ~]$ which python​
/data/apps/linux-centos8-cascadelake/gcc-9.3.0/python-3.9.0-yjjcnpbjcnwubdg

kk4d6qy64twbio233/bin/python

As we can see, not only are they loaded but also the python command is pointed to the

application directory.

Show Module Functions

28

​ The functions of a loaded module are to set up the environment in the running session so

the application command can be executed directly and properly. Users can use module show

command to find out the settings. For example, after the slurm/19.05.7 module is loaded, we

can run

[userid@login02 ~]$ module show slurm/19.05.7​
---​
 /data/apps/lmod/linux-centos8-x86_64/Core/slurm/19.05.7:​
---​
whatis("Adds Slurm to your environment ")​
setenv("CMD_WLM_CLUSTER_NAME","slurm")​
setenv("SLURM_CONF","/cm/shared/apps/slurm/var/etc/slurm/slurm.conf")​
prepend_path("PATH","/cm/shared/apps/slurm/current/bin")​
prepend_path("PATH","/cm/shared/apps/slurm/current/sbin")​
prepend_path("MANPATH","/cm/shared/apps/slurm/current/man")​
prepend_path("LD_LIBRARY_PATH","/cm/shared/apps/slurm/current/lib64")​
prepend_path("LD_LIBRARY_PATH","/cm/shared/apps/slurm/current/lib64/slurm")​
prepend_path("LIBRARY_PATH","/cm/shared/apps/slurm/current/lib64")​
prepend_path("LIBRARY_PATH","/cm/shared/apps/slurm/current/lib64/slurm")​
prepend_path("CPATH","/cm/shared/apps/slurm/current/include")​
help([[Adds Slurm to your environment​
]])

to see the setup of the environment variables during module loading. We can also use the results

to find the installed location of the application: /cm/shared/apps/slurm/ and the module file

name with the path /data/apps/lmod/linux-centos8-x86_64/Core/slurm/19.05.7.

29

Module hierarchy

In order to use an application with the linked libraries correctly, the same versions of the

compiler and the libraries by which the application was built also need to be loaded. User can

see this feature with lists of directly available modules through the module avail command:

[userid@login02 ~]$ module avail​
​
*** RockFish Software ***​
Use "module spider <name>" to search all software.​
The available software depends on the compiler, MPI,​
Python, and R modules you have already loaded.​
https://lmod.readthedocs.io/en/latest/010_user.html​
​
------------------ gcc (9.3) + openmpi (3.1) ------------------​
 boost/1.74.0 hdf5/1.10.7 openfoam-org/7 py-netcdf4/1.5.3​
 fftw/3.3.8 hypre/2.20.0 openmm/7.4.1 remora/1.8.5​
 … … …

 … … …

 gromacs/2020.5 (D) netcdf-fortran/4.5.3 petsc/3.14.0​
​
------------------ gcc (9.3) ------------------​
 aspera-cli/3.7.7 htslib/1.10.2 python/3.7.9​
 bedtools2/2.27.1 intel-mkl/2020.3.279-tbb python/3.8.6 (D)

 … … …

 … … …

 gmp/6.1.2 openmpi/3.1.6 (L) vmd/1.9.4​
​
------------------ external software ------------------​
 Aspera-Connect/3.9.6 amber/20 gaussview/gv

 … … …

 … … …

 abinit/9.6.2 (D) gaussian/16 orca/5.0.2 (D)​
​
------------------ core ------------------​
 anaconda/2020.07 helpers/0.1 (L) intel/2020.2 own/0.1

standard/2020.10 (L)​
 gcc/9.3.0 (L) intel/2020.1 (D) slurm/19.05.7 (L)​
​
 Where:​
 L: Module is loaded​
 D: Default Module

30

As you can see, all of the available modules are separated into 4 parts. Modules under gcc

(9.3) + openmpi (3.1) are available since they are compiled by the gcc version 9.3 and

OpenMPI version 3.1 and modules under gcc (9.3) are built by the gcc version 9.3 only. The

application modules under core and external software can be loaded directly since they only

need system libraries. If you try to load a module which is not available, you will get an error

message. For examples, loading quantum-espresso module will display the module can not be

loaded

[userid@login02 ~]$ module load quantum-espresso​
Lmod has detected the following error: These module(s) or extension(s)

exist but cannot be loaded as​
requested: "quantum-espresso"​
 Try: "module spider quantum-espresso" to see how to load the module(s).

and suggest you to use the module spider command to find out how to load it. This is exactly

the way we mentioned in the previous section. The spider command shows the intel compiler

intel/2020.2 and intel-mpi compiler intel-mpi/2020.2 also need to be loaded.

[userid@login02 ~]$ module spider quantum-espresso/​
​
---​
 quantum-espresso: quantum-espresso/6.6​
---​
​
 You will need to load all module(s) on any one of the lines below

before the "quantum-espresso/6.6" module is available to load.​
​
 intel/2020.2 intel-mpi/2020.2

 By including intel/2020.2 and intel-mpi/2020.2 in the module load command, the

quantum-espresso module can be loaded.

[userid@login02 ~]$ module load intel/2020.2 intel-mpi/2020.2

quantum-espresso​
​
Lmod is automatically replacing "gcc/9.3.0" with "intel/2020.2".​
​
​
Lmod is automatically replacing "openmpi/3.1.6" with "intel-mpi/2020.2".​
​
​

31

Due to MODULEPATH changes, the following have been reloaded:​
 1) git/2.28.0​
​
[cchan139@login02 ~]$ ml​
​
Currently Loaded Modules:​
 1) slurm/19.05.7 3) standard/2020.10 5) intel-mpi/2020.2 7)

quantum-espresso/6.6​
 2) helpers/0.1 4) intel/2020.2 6) fftw/3.3.8 8)

git/2.28.0

Due to conflict between different compilers, loading intel and intel-mpi modules replaces gcc and

openmpi. As shown in the module list (ml) command, quantum-espresso is successfully loaded

and both gcc and openmpi are not in the module list.

32

Parallel Computing Jobs
The simplest way to do work in parallel is to run many jobs independently at a time.

However, to perform many operations coherently and concurrently on multiple CPUs in one or

multiple nodes, an application needs to be programmed with a parallel model and compiled by

certain libraries. For HPC software, three basic parallel models: Shared Memory, Distributed

Memory and Hybrid Model are usually used.

Shared Memory with Threads

●​ It performs some serial work, and then creates a number of threads running by CPU (or

GPU) cores concurrently.

●​ Each thread can have local data, but also, shares the entire resources, including RAM

memory of the main program.

●​ Threads communicate with each other through global memory (RAM). This requires

synchronization operations to ensure that no more than one thread is updating the same

RAM address at any time.

●​ Threads can come and go, but the main program remains present to provide the

necessary shared resources until the application has completed.

Examples: POSIX Threads, OpenMP, CUDA threads for GPUs

An example of OpenMP resource request:

#SBATCH --ntasks=1​
#SBATCH --cpu-per-task=8 # run 8 threads

Distributed Memory with Tasks

●​ A main program creates a set of tasks (processes) that use their own local memory during

computation. Multiple tasks can reside on the same physical machine and/or across an

arbitrary number of machines.

●​ Tasks exchange data through communications by sending and receiving messages

through a fast network (e.g. infinite band).

●​ Data transfer usually requires cooperative operations to be performed by each process.

For example, a send operation must have a matching receive operation.

●​ Synchronization operations are also required to prevent race conditions.

Example: Message Passing Interface (MPI)

An example of MPI resource request:

33

#SBATCH --ntasks=8 # mpirun -np 8​
#SBATCH --cpu-per-task=1

Hybrid Parallel

●​ A hybrid model combines more than one of the previously described programming

models.

●​ A simple example (OpenMPI) is the combination of the message passing model (MPI) with

the threads model (OpenMP).

●​ Threads perform computationally intensive kernels with the local RAM in a node

●​ Communications between processes on different nodes occurs over the network

using MPI

●​ Works well to the most popular HPC clusters with multi/many-core machines.

●​ Other example: MPI with CPU-GPU (Graphics Processing Unit)

An example of OpenMPI resource request:

#SBATCH --ntasks=6 # mpirun -np 6​
#SBATCH --cpu-per-task=4 # run 4 threads for each task

Hybrid OpenMP-MPI Parallel Model:

Hybrid CUDA-MPI Parallel Model:

34

Job Management by SLURM

In order to have fair usage of the shared cluster, SLURM (Simple Linux Utility for Resource

Management) is used to manage users' jobs and computing resources in the Rockfish system.

SLURM is an open-source, fault-tolerant, and highly scalable scheduling system. It has been

employed by a large number of national and international computing centers. Users can use

SLURM commands to submit jobs with resource requests, monitor job status and collect resource

usages.

Request Interactive jobs

List of Job Options

Batch Job Script

SLURM Environment Variables

Submit and Monitor Jobs

35

Request Interactive jobs

​ It is helpful to run your work and get the response of the commands right away to see if

any error is in your workflow. If an interactive job is required for job testing, users can use the

interact command to request one. Simply use the command on a login node to display the

usage.

[userid@login02 ~]$ interact​
​
usage: interact [-n tasks or cores] [-t walltime] [-r reservation] [-p

partition] [-a Account] [-f featurelist] [-h hostname] [-g ngpus]​
​
Starts an interactive job by wrapping the SLURM 'salloc' and 'srun'

commands.​
​
options:​
 -n tasks (default: 1)​
 -m memory memory in K|M|G|T (if m > max-per-cpu * cpus, more cpus

are requested)​
 -t walltime as hh:mm:ss (default: 30:00)​
 -r reservation reservation name​
 -p partition (default: 'defq')​
 -a Account If users needs to use a different account. Default is

primary PI​
 -f featurelist SLURM features (e.g., 'haswell'),​
 combined with '&' and '|' (default: none)​
 -h hostname only run on the specific node 'hostname'​
 (default: none, use any available node)​
 -g gpus specify GRES for GPU-based resources

As mentioned in the results, this command is related to 'salloc' and 'srun' commands. We can see

how it works by requesting an interactive job:

[userid@login03 ~]$ interact -n 1​
Tasks: 1​
Cores/task: 1​
Total cores: 1​
Walltime: 30:00​
Reservation:​
Queue: defq​
Command submitted: salloc -J interact -N 1-1 -n 1 --time=30:00 -p defq srun

--pty bash​

36

salloc: Granted job allocation 3624855​
...

...

[userid@c003 ~]$

where the real command executed is

salloc -J interact -N 1-1 -n 1 --time=30:00 -p defq srun --pty bash

In other words, the interact command actually uses the syntax:

salloc <Job Options> srun --pty bash

to request an interactive job. A list of available job options is mentioned in the next section and

we can use them for job submission.

37

List of Job Options

The following is a list of basic job specifications. To see the complete options, please refer

to the SLURM sbatch command page.

Computing Resource Options

Job Options Description Examples in Job Script

-c,

--cpus-per-task=<nc

pus>

Require ncpus number of processors

per task

#SBATCH -c 3 (3 cores per

node)

--gres=<list>

Specifies a comma delimited list of

generic consumable resources. The

format of each entry on the list is

"name[[:type]:count]", where name is

that of the consumable resource. To

request for GPUs, --gres=gpu:3 is an

example to request 3 A100 GPUs.

#SBATCH --gres=gpu:2

(request 2 GPUs per node)

--mem=<size[units]>
Specify the real memory required per

node.

#SBATCH --mem=2G (M or

G bytes)

--mem-per-cpu=<siz

e[units]>

Minimum memory required per

allocated CPU

#SBATCH

--mem-per-cpu=2G (M or G

bytes)

-N,

--nodes=<minnodes[

-maxnodes]>

Request that a minimum of minnodes

nodes be allocated to this job. A

maximum node count may also be

specified with maxnodes. If only one

number is specified, this is used as

both the minimum and maximum node

count.

#SBATCH --nodes=2-4

(Request 2 to 4 different

nodes)

-n,

--ntasks=<number>

Request total number of tasks. The

default is one task per node, but note

that the --cpus-per-task option will

change this default.

#SBATCH -n 4

(All tasks could be in 1 to 4

different nodes)

38

https://slurm.schedmd.com/sbatch.html

--ntasks-per-node=<

ntasks>

--tasks-per-node=<nt

asks>

Request that ntasks be invoked on

each node. This is related to

--cpus-per-task=ncpus, but does not

require knowledge of the actual

number of cpus on each node.

-p,

--partition=<partition

_names>

Request a specific partition for the

resource allocation. If not specified,

the default behavior is used.

#SBATCH -p a100

#SBATCH -p bigmem

-A,
--account=<account>

Charge resources used by this job to

specified account.
#SBATCH -A <account>

-t, --time=<time>

Set a limit on the total run time of the

job allocation. The total run time in the

form: HH:MM:SS or DD-HH:MM:SS

#SBATCH -t 00:20:00

-w, --nodelist=<node

name list>

Request a specific list of your buy-in

nodes. The job will contain all of these

hosts and possibly additional hosts as

needed to satisfy resource

requirements.

The list may be specified as a

comma-separated list of hosts, a range

of hosts, or a filename. The host list

will be assumed to be a filename if it

contains a "/" character.

#SBATCH

--nodelist=c001,c004,c011,,.

..

#SBATCH -w c[011-015,...]

#SBATCH -w

/home/userid/nodelist

-x, --exclude=<node

name list>

Explicitly exclude certain nodes from

the resources granted to the job.

-J,

--job-name=<jobnam

e>

Specify a name for the job allocation. #SBATCH -J MyJob

39

Other Job Options

Job Options Description Examples in Job Script

--mail-type=<type>

Notify user by email when certain event

types occur. Valid type values are

NONE, BEGIN, END, FAIL, REQUEUE,

ALL (equivalent to BEGIN, END, FAIL,

REQUEUE, and STAGE_OUT),

STAGE_OUT (burst buffer stage out and

teardown completed), TIME_LIMIT,

TIME_LIMIT_90 (reached 90 percent of

time limit), TIME_LIMIT_80 (reached 80

percent of time limit), TIME_LIMIT_50

(reached 50 percent of time limit) and

ARRAY_TASKS (send emails for each

array task).

#SBATCH

--mail-type=BEGIN,END

--mail-user=<user>

User to receive email notification of

state changes as defined by --mail-type.

The default value is the submitting user.

#SBATCH

--mail-user=user@msu.edu

--export=<environ

ment variables

[ALL] | NONE>

Identify which environment variables are

propagated to the launched application,

by default all are propagated. Multiple

environment variable names should be

comma separated.

#SBATCH

--export=EDITOR=/bin/ema

cs,ALL

--begin=<time>

Submit the batch script to the Slurm

controller immediately, like normal, but

tell the controller to defer the allocation

of the job until the specified time. Time

may be of the form HH:MM:SS to run a

job at a specific time of day (seconds are

optional).

#SBATCH --begin=16:00

40

Options Disabled for Interactive Job

Job Options Description Examples in Job Script

-e,

--error=<filename>

Instruct Slurm to connect the batch

script's standard error directly to the file

name specified. By default both

standard output and standard error are

directed to the same file. See -o,

--output for the default file name.

#SBATCH -e

/home/username/myerrorfi

le

-o,

--output=<filename

pattern>

Instruct Slurm to connect the batch

script's standard output directly to the

file name specified in the "filename

pattern".

The default file name is "slurm-%j.out",

where the "%j" is replaced by the job ID.

For job arrays, the default file name is

"slurm-%A_%a.out", "%A" is replaced by

the job ID and "%a" with the array index.

#SBATCH -o

/home/username/output-fil

e

Need a file name or

filename pattern not just a

directory.

-a,

--array=<indexes>

Submit a job array, multiple jobs to be

executed. The indexes specification

identifies what array ID values should be

used. Each job has the same job ID

($SLURM_JOB_ID) but different array ID

($SLURM_ARRAY_TASK_ID variable).

Can use step function with ":" separator.

A maximum number of simultaneously

running jobs may be specified with "%"

separator.

#SBATCH -a 0-15

#SBATCH --array=0,6,16-32

#SBATCH --a 0-15:4 (same

as #SBATCH –a 0,4,8,12)

#SBATCH --array=0-15%4

(4 jobs running

simultaneously)

More options can be found on the sbatch option website.

41

https://slurm.schedmd.com/sbatch.html#SECTION_%3CB%3Efilename-pattern%3C/B%3E
https://slurm.schedmd.com/sbatch.html#SECTION_%3CB%3Efilename-pattern%3C/B%3E
https://slurm.schedmd.com/sbatch.html#SECTION_OPTIONS

Batch Job Script

​ To submit a batch job and run it on a compute node, users need to use sbatch command

with a job script file. The job script is supposed to contain three parts. The first part is the first line

of the file which specifies the shell to run the script. By default, bash shell is generally used to run

our command lines. The first line should be like

#!/bin/bash

The second part contains the lines of resource requests and job options. Each of the lines

must start with the words #SBATCH so the job scheduler (SLURM) can read and manage the

resources. For example, the following SBATCH lines:

#SBATCH --job-name=MyTest # Job name (-J MyTest) ​
#SBATCH --time=4:00:00 # Time limit (-t 4:00:00)​
#SBATCH --nodes=1 # Number of nodes (-N 1)

#SBATCH --ntasks=2 # Number of processors (-n 2)​
#SBATCH --cpus-per-task=6 # Threads per process (-c 6)​
#SBATCH --partition=defq # Used partition (-p defq)​
#SBATCH --mem-per-cpu=4GB # Define memory per core

specify the job name to be MyTest. It can use 2 processes simultaneously (in parallel) on one

node in the defq partition with 6 threads in each process. The maximum memory usage is 4GB

per CPU and maximum running time is 4 hours.

The third part is the command lines which will be run on the compute nodes when the job

starts. The command lines should include all commands of job workflow after logging into a node,

such as module loading, environment setting and running application commands. An example of

the command lines are

module load intel/2020.2 intel-mpi/2020.2​
module load quantum-espresso/6.6

​
export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}​
mpirun -n $SLURM_NTASKS pw.x < scf.in > scf.out​
​
scontrol show job $SLURM_JOBID

The first 2 command lines load the necessary modules to run the QuantumESPRESSO software.

The export command sets the environment variable OMP_NUM_THREADS as the SLURM

environment variable $SLURM_CPUS_PER_TASK which is the requested number of CPUs per task.

The setting allows the application to run with multiple threads. The mpirun command starts to run

the pw.x command in parallel with the number of the processes the same as the SLURM variable

$SLURM_NTASKS set to be the requested number of tasks. The last command will print the job

42

information to the SLURM output file, where the environment variable $SLURM_JOBID is set to be

the job ID of the job. More SLURM variables can be seen in the SLURM Environment Variables

section.

​ By default, the job standard output and standard error will be sent to the SLURM output

file slurm-<JobID>.out in the directory where you run the job submission command. Users can

use the -o or -e option to specify a different output or a different error file name with a preferred

location. If the -e option is not specified, both messages are sent to the output file. Users can

also use the filename pattern to name the file. For example, using the specifications:

#SBATCH -o /home/userid/%j/%x.out​
#SBATCH -e /home/userid/%j/%x.err

will send the output to the file /home/userid/<JobID>/<JobName>.out and the error to the file

/home/userid/<JobID>/<JobName>.err, where <JobID> and <JobName> are the ID and name

of the job respectively. If there exists a file with the same file name as the output file name, the

job output will append to it.

Other Job Options and Usages

​ As mentioned in the Hardware Resources section, there are 3 partitions: defq, bigmem

and a100 for Rockfish compute nodes. Users can use the sinfo command to see them:

[cchan139@login02 ~]$ sinfo -s

PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST

a100 up 3-00:00:00 8/0/2/10 gpu[01-10]

bigmem up 2-00:00:00 3/7/3/13 bigmem[01-13]

defq* up 3-00:00:00 167/307/22/496

c[001-232,241-280,289-328,337-376,385-424,433-440,625-720]

By default, submitted jobs will use the defq partition if no partition is specified. If users would like

to use large memory nodes or A100 GPUs, they need to get the allocation first and use the

partition with the related account. For example, to run jobs on bigmem nodes, put the job options

in the job script:

#SBATCH --partition=bigmem​
#SBATCH -A PI-userid_bigmem

Please also make sure the memory request is more than 192GB. To run jobs with A100 GPUs,

users can use the options

#SBATCH --gres=gpu:4

#SBATCH -p a100​
#SBATCH -A PI-userid_gpu

43

https://slurm.schedmd.com/sbatch.html#SECTION_%3CB%3Efilename-pattern%3C/B%3E

where the first line is to request the number of GPUs and the last 2 lines specify the partition and

the account options respectively.

More job script examples can be found on the Running Jobs website.

Job Array

​ If users would like to submit multiple jobs with similar job scripts, use of the job array

option could be a good idea. Submission of a job array will use the same job script for all jobs but

with a different SLURM environment variable $SLURM_ARRAY_TASK_ID for each different job.

Users can apply the variable on the command lines to create different job runnings. A simple job

array example could be as

[userid@login02 ~]$ cat ArrayJob.sb

#!/bin/bash

#SBATCH --array=1-5

echo "SLURM job $SLURM_ARRAY_TASK_ID starts on $HOSTNAME"

[userid@login02 ~]$ sbatch ArrayJob.sb​
Submitted batch job 516540

Submitting this script ArrayJob.sb returns a parent job ID 516540 as $SLURM_ARRAY_JOB_ID

and generates 5 jobs with job IDs from 516540_1 to 516540_5. Each job has the output file as

slurm-516540_$SLURM_ARRAY_TASK_ID.out and has different output as

[userid@login02 ~]$ head slurm-516540_*.out

==> slurm-516540_1.out <==

SLURM job 1 starts on c007

==> slurm-516540_2.out <==

SLURM job 2 starts on c007
==> slurm-516540_3.out <==

SLURM job 3 starts on c007
==> slurm-516540_4.out <==

SLURM job 4 starts on c007
==> slurm-516540_5.out <==

SLURM job 5 starts on c007

 Users can also change the output or error file name with the -o or -e options in the job script. The

following is the list of the SLURM variables related to the file patterns:

44

https://www.arch.jhu.edu/access/user-guide/#elementor-toc__heading-anchor-26
https://slurm.schedmd.com/sbatch.html#SECTION_%3CB%3Efilename-pattern%3C/B%3E

SLURM Variables File Pattern Description

SLURM_ARRAY_JOB_ID %A Job array's parent job allocation number

SLURM_ARRAY_TASK_ID %a Job array ID (index) number

SLURM_JOB_ID %j Job identifier ID

SLURM_JOB_NAME %x Name of the job

Estimating Computing Resources

​ When users try to set the job options on computing resources, they might have problems

estimating how much to request. If users request too much, the job could wait in the queue for a

long time to get the available resources. However, if users request too less, the job could

over-utilize them and get canceled before it finishes. If you have no experience in job resource

usage, it is suggested to request more to make sure it can finish running for the first time. Check

the resource usages of the job with the seff command (see Submit and Monitor Jobs section)

and adjust the computing resources for the next jobs.

45

SLURM Environment Variables

The following is a list of SLURM environment variables available for the job script or

during an interactive job session. Users are able to get the variable settings by using the

command env|grep SLURM in an interactive job session or in a batch job script.

SLURM Variables File Pattern Description

SLURM_CPUS_PER_TASK
Number of cpus requested per task. Only set if
the --cpus-per-task option is specified.

SLURM_JOB_ACCOUNT Account name associated of the job allocation

SLURM_JOBID

SLURM_JOB_ID
%j The ID of the job allocation

SLURM_JOB_NAME %x Name of the job

SLURM_NODELIST

SLURM_JOB_NODELIST
 List of nodes allocated to the job

SLURM_NNODES

SLURM_JOB_NUM_NODES

Total number of different nodes in the job's
resource allocation

SLURM_MEM_PER_NODE Same as --mem

SLURM_MEM_PER_CPU Same as --mem-per-cpu

SLURM_NTASKS

SLURM_NPROCS
 Same as -n, --ntasks

SLURM_NTASKS_PER_NODE
Number of tasks requested per node. Only set if
the --ntasks-per-node option is specified.

SLURM_SUBMIT_DIR The directory from which sbatch was invoked

SLURM_ARRAY_TASK_ID %a Job array ID (index) number

SLURM_ARRAY_JOB_ID %A Job array's master job ID number

More variables are displayed on the SLURM environment variables website.

46

https://slurm.schedmd.com/sbatch.html#SECTION_OUTPUT-ENVIRONMENT-VARIABLES

Submit and Monitor Jobs

Job Submission

​ After you have a job script, you can use the sbatch command with the file name of the

job script to submit the job. For example, the command

[userid@login02 MyJob]$ sbatch jobfile

Submitted batch job 3679746

submits the script file jobfile. If it is submitted successfully, you will see the output with a job ID.

Please notice some facts about job submission:

●​ In case the job script does not specify any job options, users can also specify job options

mentioned in the List of Job Options section with sbatch command.

●​ If there is any option conflict between the specifications in the job script and on the

command line, the job scheduler will take the options specified with the sbatch command.

●​ By default, if the job scheduler is not able to find any job option, the submitted job will use

1 node, 1 task and 1 hour for the job running.

●​ After a job starts, it will run the command lines and create a SLURM output file in the

directory where you execute sbatch command. Please make sure you use the right

directory to run sbatch command.

Job Listing and Information

To list all your jobs in the SLURM queue, you can run sqme command:

[userid@login02 MyJob]$ sqme​
 USER ACCOUNT JOBID PARTITION NAME NODES CPUS

TIME_LIMIT TIME NODELIST ST REASON​
 userid mygroup 3679746 defq node_work 1 1

1:00:00 0:00 PD None

The sqme command is the same as the SLURM job listing command squeue :

squeue -u $USER -o '%.12u %.9a %.12i %9P %.10j %.5D %.5C %.10l %.8M %.8N %t

%r '

Users can also learn about how to use the command on the squeue website.

More information about a specific job can also be displayed by the scontrol show job

command:

[userid@login02 MyJob]$ scontrol show job 3679746​

47

https://slurm.schedmd.com/squeue.html

JobId=3679746 JobName=node_work​
 UserId=userid(1495) GroupId=mygroup(1002) MCS_label=N/A​
 Priority=2630 Nice=0 Account=mygroup QOS=normal​
 JobState=COMPLETED Reason=None Dependency=(null)​
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0​
 RunTime=00:00:01 TimeLimit=01:00:00 TimeMin=N/A​
 SubmitTime=2022-03-15T09:36:31 EligibleTime=2022-03-15T09:36:31​
 AccrueTime=2022-03-15T09:36:31​
 StartTime=2022-03-15T09:36:31 EndTime=2022-03-15T09:36:32 Deadline=N/A​
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2022-03-15T09:36:31​
 Partition=defq AllocNode:Sid=login02:2912087​
 ReqNodeList=(null) ExcNodeList=(null)​
 NodeList=c005​
 BatchHost=c005​
 NumNodes=1 NumCPUs=1 NumTasks=0 CPUs/Task=1 ReqB:S:C:T=0:0:*:*​
 TRES=cpu=1,node=1,billing=1​
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*​
 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0​
 Features=(null) DelayBoot=00:00:00​
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)​
 Command=./jobfile​
 WorkDir=/home/userid/MyJob​
 StdErr=/home/userid/MyJob/slurm-3679746.out​
 StdIn=/dev/null​
 StdOut=/home/userid/MyJob/slurm-3679746.out​
 Power=

At any time, you would like to cancel jobs in the queue, use scancel command with job IDs

behind it. For example, to cancel the job 3679746, run scancel 3685853

[userid@login02 MyJob]$ scancel 3685853​
[userid@login02 MyJob]$ $ sqme

 USER ACCOUNT JOBID PARTITION NAME NODES CPUS

TIME_LIMIT TIME NODELIST ST REASON

and it is canceled.

Job States and Pending Reasons

​ After a job is submitted, it could be in many different states (ST). The basic job states are

these:

●​ Pending (PD): job is in the queue, waiting to be scheduled.

48

●​ Running (R): job has been granted an allocation and in running.

●​ Completing (CG): job is in the process of completing.

●​ Held (H): job was submitted, but was put in the held state (held by users or system).

●​ Timeout (TO): job was terminated for running longer than its wall clock limit.

●​ Failed (F): job terminated with a non-zero status.

●​ Node Fail (NF): job terminated after a compute node reported a problem.

More job states can be found on the SLURM JOB STATE web site.

​ If a job is in the pending state, it could be due to many reasons. Some basic reasons are

these:

●​ Resources - The job is waiting for resources to become available.

●​ Priority - The job needs to wait and get higher priority for this partition.

●​ ReqNodeNotAvail - Nodes specifically required by the job are not currently available.

●​ AssociationResourceLimit - The job's association has reached some resource limit.

●​ QOSResourceLimit - The job's QOS has reached some resource limit.

●​ PartitionDown - The queue is currently closed to running any new jobs.

Please see more reasons on the SLURM JOB REASON web site.

Resource Usages

After a job finishes, users might need to check the resource usages for the next job

submission. Since it is no longer in the job queue, sqme or scontrol show job command can

not list or display the job information. Users will need to use the sacct command to see a list of

finished jobs.

To show the jobs submitted or in running today, you can run sacct -X command:

[userid@login02 MyJob]$ sacct -X​
 JobID JobName Partition Account AllocCPUS State

ExitCode​
------------ ---------- ---------- ---------- ---------- ----------

--------​
3679742 FastRun defq mygroup 1 COMPLETED

0:0​
3679746 node_work defq mygroup 1 COMPLETED

0:0

to get the job list. The -X option will prevent the display of each detailed job step. If users would

like to see the jobs over a period of time in the past, the -S option for the start time and -E option

49

https://slurm.schedmd.com/squeue.html#SECTION_JOB-STATE-CODES
https://slurm.schedmd.com/squeue.html#SECTION_JOB-REASON-CODES

for the end time can be used with the command. For example, to get the jobs running during the

days between March 1st, 2022 and March 5th, 2022, the command displays the results:

[userid@login02 MyJob]$ sacct -X -S 2022-03-01 -E 2022-03-05​
 JobID JobName Partition Account AllocCPUS State

ExitCode​
------------ ---------- ---------- ---------- ---------- ----------​
3342147 interact defq mygroup 1 FAILED

1:0​
3342150 interact defq mygroup 1 FAILED

2:0​
3345156 test2 defq mygroup 16 COMPLETED

0:0​
3345497 interact defq mygroup 1 COMPLETED

0:0

where the date format after -S and -E option is year-month-day. If -E is not specified, the end

of time is the current time. More usage about the command can be found on the sacct website.

​ After you find the job of which you would like to know the resource usages, you can run

the seff command with the job ID behind it to get the results. For example, to get the resource

usage of the job 3345156, you can run

[userid@login02 MyJob]$ seff 3345156​
Job ID: 3345156​
Cluster: slurm​
User/Group: userid/mygroup​
State: COMPLETED (exit code 0)​
Nodes: 1​
Cores per node: 16​
CPU Utilized: 00:17:45​
CPU Efficiency: 96.81% of 00:18:20 core-walltime​
Job Wall-clock time: 00:01:09​
Memory Utilized: 28.72 GB​
Memory Efficiency: 89.75% of 32.00 GB

to find the CPU, memory and wall-time usages with the efficiencies. The core-walltime with

orange background is the CPU time which will be charged to your group account.

50

https://slurm.schedmd.com/sacct.html

Container and Singularity

​ Some applications are not able to run on the Rockfish cluster due to system conflict.

Containers allow developers to package up an application with all of the dependencies so we

can use it as an application package in our system. Docker is a popular tool to create, deploy and

run application containers. However, due to its root privilege requirement, most HPC systems do

not allow users to install and use it. In order to use Docker containers, we have Singularity

installed in compute nodes. Singularity is compatible with Docker and able to run its containers.

​ To use Singularity, users can request an interactive job. After the job starts, singularity

command can be used directly:

[userid@c011 ~]$ which singularity​
/usr/bin/singularity

To pull a docker container image, users can use the Docker Hub web site to look for it. Once the

preferred container is found, use the docker pull address and singularity pull command to

download the image file in the current directory. For example, to pull the Docker python container

of image file 3.9.6-slim-buster (docker pull python:3.9.6-slim-buster), we can run

[userid@c011 Singularity]$ singularity pull python-3.9.6.sif

docker://python:3.9.6-slim-buster

INFO: Converting OCI blobs to SIF format

INFO: Starting build…

...

...

Getting image source signatures

INFO: Creating SIF file...

and the image file is saved with the name python-3.9.6.sif:

[userid@c011 Singularity]$ ls​
python-3.9.6.sif

 To run the image, just use singularity run command with the image file name:

userid@c011 Singularity]$ singularity run python-3.9.6.sif

Python 3.9.6 (default, Aug 17 2021, 02:38:04)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

51

https://hub.docker.com/
https://hub.docker.com/_/python

where, python version 3.9.6 is ready to use inside the container. We can check the container shell

and environment with the singularity shell command:

[userid@c011 Singularity]$ singularity shell python-3.9.6.sif​
Singularity> echo $PATH​
/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin​
Singularity> ls /usr/local/bin​
2to3 idle idle3.9 pip3 pydoc pydoc3.9 python-config

python3-config python3.9-config​
2to3-3.9 idle3 pip pip3.9 pydoc3 python python3

python3.9 wheel

If users would like to run other commands installed in the container image, such as 2to3 , the

singularity exe command can be used:

[userid@c011 Singularity]$ singularity exec python-3.9.6.sif 2to3 --help​
Usage: 2to3 [options] file|dir ...​
​
Options:​
 -h, --help show this help message and exit​
 -d, --doctests_only Fix up doctests only​
 -f FIX, --fix=FIX Each FIX specifies a transformation; default: all​
 -j PROCESSES, --processes=PROCESSES​
 Run 2to3 concurrently​
 -x NOFIX, --nofix=NOFIX​
 Prevent a transformation from being run​
 -l, --list-fixes List available transformations​
 -p, --print-function Modify the grammar so that print() is a function​
 -e, --exec-function Modify the grammar so that exec() is a function​
 -v, --verbose More verbose logging​
 --no-diffs Don't show diffs of the refactoring​
 -w, --write Write back modified files​
 -n, --nobackups Don't write backups for modified files​
 -o OUTPUT_DIR, --output-dir=OUTPUT_DIR​
 Put output files in this directory instead of​
 overwriting the input files. Requires -n.​
 -W, --write-unchanged-files​
 Also write files even if no changes were required​
 (useful with --output-dir); implies -w.​
 --add-suffix=ADD_SUFFIX​
 Append this string to all output filenames.

To find out more usages of singularity commands, simply run singularity --help command:

52

[cchan139@c011 ~]$ singularity --help​
​
Linux container platform optimized for High Performance Computing (HPC) and​
Enterprise Performance Computing (EPC)​
​
Usage:​
 singularity [global options...]​
​
Description:​
 Singularity containers provide an application virtualization layer

enabling​
 mobility of compute via both application and environment portability.

With​
 Singularity one is capable of building a root file system that runs on

any​
 other Linux system where Singularity is installed.​
​
Options:​
 -c, --config string specify a configuration file (for root or​
 unprivileged installation only) (default​
 "/etc/singularity/singularity.conf")​
 -d, --debug print debugging information (highest verbosity)​
 -h, --help help for singularity​
 --nocolor print without color output (default False)​
 -q, --quiet suppress normal output​
 -s, --silent only print errors​
 -v, --verbose print additional information​
 --version version for singularity​
​
Available Commands:​
 build Build a Singularity image​
 cache Manage the local cache​
 capability Manage Linux capabilities for users and groups​
 config Manage various singularity configuration (root user only)​
 delete Deletes requested image from the library​
 exec Run a command within a container​
 help Help about any command​
 inspect Show metadata for an image​
 instance Manage containers running as services​
 key Manage OpenPGP keys​
 oci Manage OCI containers​
 plugin Manage Singularity plugins​

53

 pull Pull an image from a URI​
 push Upload image to the provided URI​
 remote Manage singularity remote endpoints, keyservers and

OCI/Docker registry credentials​
 run Run the user-defined default command within a container​
 run-help Show the user-defined help for an image​
 search Search a Container Library for images​
 shell Run a shell within a container​
 sif siftool is a program for Singularity Image Format (SIF) file

manipulation​
 sign Attach digital signature(s) to an image​
 test Run the user-defined tests within a container​
 verify Verify cryptographic signatures attached to an image​
 version Show the version for Singularity​
​
Examples:​
 $ singularity help <command> [<subcommand>]​
 $ singularity help build​
 $ singularity help instance start​
​
​
For additional help or support, please visit https://www.sylabs.io/docs/

54

Python and Anaconda

​ There are several python versions installed in the Rockfish cluster. Users can use module

spider command to check the installed versions:

[userid@login03 ~]$ ml spider python​
​
---​
 python:​
---​
 Versions:​
 python/3.7.9​
 python/3.8.6​
 python/3.9.0

Once you have a version of python loaded, you can use module avail command to check if any

python packages are available to load:

[userid@login03 ~]$ module load python/3.8.6

[userid@login03 ~]$ module avail​
​
*** RockFish Software ***​
Use "module spider <name>" to search all software.​
The available software depends on the compiler, MPI,​
Python, and R modules you have already loaded.​
https://lmod.readthedocs.io/en/latest/010_user.html​
​
------------------------------ python (3.8) ------------------------------​
 py-cython/0.29.21 py-pip/20.2 py-scipy/1.5.3​
 py-joblib/0.14.0 py-pybind11/2.5.0 py-setuptools/50.1.0​
 py-numpy/1.18.5 py-scikit-learn/0.23.2 py-threadpoolctl/2.0.0

If more packages are needed, you can also use the pip command to install them. Since users are

not able to install packages in the python installed directory, You could use the pip command

with --user option to install in the hidden directory ~/.local of your home space. However, as

more python packages are installed, It is difficult to meet all of their requirements by one global

installation. Users are strongly suggested to create virtual environments and install python

packages in a self-contained directory. In this way, different applications can use different virtual

environments to avoid their conflict.

55

Virtual Environment

​ To create a virtual environment, users can first check the version of the used python and

create a directory.

[userid@login03 ~]$ module list python​
​
Currently Loaded Modules Matching: python​
 1) python/3.8.6​
[userid@login03 ~]$ mkdir python3.8​
[userid@login03 ~]$ cd python3.8/​
[userid@login03 python3.8]$

Once enter the directory, users can run the python3 -m venv command to create a virtual

environment. For example, to create a virtual environment with a name math-packages, we can

use the command:

[userid@login03 python3.8]$ python3 -m venv math-packages​
[userid@login03 python3.8]$ ls math-packages/​
bin include lib lib64 pyvenv.cfg

and the environment is created under the math-packages directory. Now we can use the

environment by sourcing the script file activate under the bin directory:

[userid@login03 python3.8]$ source math-packages/bin/activate​
(math-packages) [userid@login03 python3.8]$

Once it is activated, the name of the environment (math-packages) is displayed in front of the

prompt.

​ Now, we can install python packages under the environment by the pip install

command.

(math-packages) [userid@login03 python3.8]$ pip install numpy​
Collecting numpy​
 Downloading

numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8

MB)​
 |████████████████████████████████| 16.8 MB 85 kB/s​
Installing collected packages: numpy​
Successfully installed numpy-1.22.3

We can also install multiple python packages with your specific versions.

56

(math-packages) [userid@login03 python3.8]$ pip install mpmath==1.1.0

sympy==1.4​
Collecting mpmath==1.1.0​
 Downloading mpmath-1.1.0.tar.gz (512 kB)​
 |████████████████████████████████| 512 kB 18.2 MB/s​
Collecting sympy==1.4​
 Downloading sympy-1.4-py2.py3-none-any.whl (5.3 MB)​
 |████████████████████████████████| 5.3 MB 103.3 MB/s​
Using legacy 'setup.py install' for mpmath, since package 'wheel' is not

installed.​
Installing collected packages: mpmath, sympy​
 Running setup.py install for mpmath ... done​
Successfully installed mpmath-1.1.0 sympy-1.4

To see all installed python packages in the environment, use the pip freeze command:

(math-packages) [cchan139@login03 python3.8]$ pip freeze​
mpmath==1.1.0​
numpy==1.22.3​
sympy==1.4

At any time you would like to exit the environment, simply run deactivate command:

(math-packages) [cchan139@login03 python3.8]$ deactivate​
[cchan139@login03 python3.8]$

and the environment name in front of the prompt disappears.

57

Anaconda

​ The Rockfish cluster also has versions of anaconda installed. After you load a version of

anaconda, you can use conda command to create conda environments and install python

packages.

[userid@login03 conda]$ module load anaconda​
[userid@login03 conda]$ conda -V

conda 4.8.3

Users are also suggested to use conda environments for installing and running python packages

as mentioned in the python section. To create a conda environment, the conda create command

is used. For example, to create a my_conda environment, execute the command with -p option:

[userid@login03 conda]$ conda create -p my_env​
Collecting package metadata (current_repodata.json): done​
Solving environment: done​
​
==> WARNING: A newer version of conda exists. <==​
 current version: 4.8.3​
 latest version: 4.11.0​
​
Please update conda by running​
​
 $ conda update -n base -c defaults conda​
​
Package Plan ##​
​
 environment location: /home/userid/conda/my_env​
​
Proceed ([y]/n)? y

After you agree to proceed, the my_env environment is created in my_env directory under the

current directory.

[cchan139@login03 conda]$ ls​
my_env

Users can now activate the environment by the conda activate command with the directory

path:

[userid@login03 conda]$ conda activate ./my_env​
(/home/userid/conda/my_env) [userid@login03 conda]$

58

As the same as the python virtual environment, the environment name is displayed in front of the

prompt. Now, users can search for available conda packages from the Anaconda web site and

use the conda install command to install your preferred conda packages under the

environment. For example, we can install pip by the command:

(/home/userid/conda/my_env) [userid@login03 conda]$ conda install pip​
Collecting package metadata (current_repodata.json): done​
Solving environment: done

...

...

(/home/userid/conda/my_env) [userid@login03 conda]$ which pip

~/conda/my_env/bin/pip

and the pip command becomes available. With the pip package installed, all python packages

from PyPI can be installed just as mentioned in the section of python virtual environment.

At any time users would like to quit the environment, simply run conda deactivate

command

(/home/userid/conda/my_env) [userid@login03 conda]$ conda deactivate​
[userid@login03 conda]$

and the environment name in front of the prompt disappears.

59

https://anaconda.org/
https://pypi.org/

Install a List of Packages

 Some python applications require many python packages as dependencies. We can use a file

with a list of them inside and do the installations once. To install multiple packages by the pip

command, we can make a text file with the package names and their versions. For example, the

installation of a alphafold version requires several python packages and the file requirements.txt

displays a list of them

(math-packages) [userid@login03 python3.8]$ cat requirements.txt​
absl-py==0.13.0​
biopython==1.79​
dm-haiku==0.0.4​
dm-tree==0.1.6​
docker==5.0.0​
immutabledict==2.0.0​
jax==0.2.14​
ml-collections==0.1.0​
numpy==1.19.5​
pandas==1.3.4​
scipy==1.7.0​
tensorflow-cpu==2.5.0

A simple pip command with -r option installs them all in the environment:

(math-packages) [userid@login03 python3.8]$ pip install -r requirements.txt

​ For Anaconda, users can also use a yaml file to create a conda environment and install

dependencies all for once. For example, we can create a yaml file as reqs.yaml :

[userid@login03 conda]$ cat reqs.yaml​
name: conda_list​
channels:​
- conda-forge​
dependencies:​
- python=3.7​
- matplotlib​
- scipy​
- numpy

Use the conda create command:

[userid@login03 conda]$ conda env create -f reqs.yaml

The listed dependencies can all be installed under the created conda_list environment.

60

https://github.com/deepmind/alphafold/blob/main/requirements.txt

RStudio

 To use RStudio installed in the Rockfish cluster, users can simply run the script

r-studio-server.sh on a login node:

[userid@login02 ~]$ r-studio-server.sh​

 Creating slurm script: R-Studio-Server.slurm.script

 The Advanced Research Computing at Hopkins (ARCH)

 SLURM job script for run RStudio into Singularity container

 Support: help@rockfish.jhu.edu

 Nodes: 1

 Cores/task: 1

 Total cores: 1

 Walltime: 00-02:00

 Queue: defq

 The R-Studio-Server is ready to run.

 1 - Usage:

 $ sbatch R-Studio-Server.slurm.script

 2 - How to login see login file (after step 1):

 $ cat rstudio-server.job.<SLURM_JOB_ID>.out

 3 - More information about the job (after step 1):

 $ scontrol show jobid <SLURM_JOB_ID>

A job script with the filename R-Studio-Server.slurm.script is created in your current

directory. To request a job and start a RStudio session interactively, simply follow the output

instruction and submit the job script:

[userid@login02 ~]$ sbatch R-Studio-Server.slurm.script​
Submitted batch job 3549484

61

and an interactive job with the name rstudio_container_userid is in the queue, which can be

listed with sqme command:

[userid@login02 ~]$ sqme​
 USER ACCOUNT JOBID PARTITION NAME NODES CPUS

TIME_LIMIT TIME NODELIST ST REASON​
 userid mygroup 3549484 defq rstudio_co 1 1

2:00:00 0:21 c278 R None

Now, follow the output instruction and see the output file rstudio-server.job.<JOBID>.out

for the information of login to R-Studio server:

[userid@login02 ~]$ cat rstudio-server.job.3549484.out​
​
​
1. SSH tunnel from your workstation using the following command:​
​
 ssh -N -L 53609:c278:53609 cchan139@login.rockfish.jhu.edu​
​
2. log in to RStudio Server in your web browser using the Rockfish cluster

credentials (username and password) at:​
​
 http://localhost:53609​
​
 user: userid​
 password: < ARCH password >​
​
3. When done using RStudio Server, terminate the job by:​
​
 a. Exit the RStudio Session ("power" button in the top right corner of

the RStudio window)​
 b. Issue the following command on the login node:​
​
 scancel -f 3549484

The first step is to open a new terminal with your ssh client and run the command ssh -N -L

53609:c278:53609 userid@login.rockfish.jhu.edu with your password.

> ssh -N -L 53609:c278:53609 userid@login.rockfish.jhu.edu​
Password:

62

Once it is logged in, follow the second step. Use your web browser to open the address

http://localhost:port-number and input your username and password to sign in. Once you

successfully sign in, the RStudio session is started in the web browser.

If you would like to end the session, follow step 3. Click on the power button on the top right

corner and cancel your job.

[userid@login02 ~]$ scancel -f 3549484

To find out how to request more resources for RStudio session, use the script command

r-studio-server.sh with -h option on a login node:

[userid@login02 ~]$ r-studio-server.sh -h​
User Menu​
​
 usage: r-studio-server.sh [options]​
 [-n nodes] [-c cpus] [-m memory] [-t walltime] [-p

partition] [-a account] [-q qos] [-g gpu] [-e email]​
​
 Starts a SLURM job script to run R-Studio server into singularity

container.​
​
​
 options:​

63

 ?,-h help give this help list​
 -n nodes how many nodes you need (default: 1)​
 -c cpus number of cpus per task (default: 1)​
 -m memory memory in K|M|G|T (default: 4G)​
 (if m > max-per-cpu * cpus, more cpus are requested)​
 note: that if you ask for more than one CPU has, your

account gets​
 charged for the other (idle) CPUs as well​
 -t walltime as dd-hh:mm (default: 00-02:00) 2 hours​
 -p partition (default: defq)​
 -a account if users needs to use a different account. Default is

primary PI​
 combined with '_' for instance: 'PI-userid'_bigmem

(default: none)​
 -q qos quality of Service’s that jobs are able to run in your

association (default: qos_gpu)​
 -g gpu specify GRES for GPU-based resources (eg: -g 1)​
 -e email notify if finish or fail (default: <userid>@jhu.edu)

64

Jupyter Notebook

To use Jupyter Lab installed in the Rockfish cluster, users can submit a slurm job script to

start a job and run Jupyter Lab interactively. If users do not have the script, they can simply run

the script jupyterlab.sh on a login node to get one.

[userid@login02 ~]$ jupyterlab.sh​
​
The jupyterlab.sh script will create a slurm script for multiple

environments with jupyterlab and #SBATCH with default parameters.​
​
Use jupyterlab.sh --help for more details.​
​
1) Slurm script to run jupyterlab (jupyter_lab.slurm.script)​
2) File with login information (Jupyter_lab.job.<JOBID>.login)​
3) File related to slurm INPUT ENVIRONMENT VARIABLES and HTTPS server

information (Jupyter_lab.info)​
4) Notebook server file (.jupyter/jupyter_notebook_config.py)​
5) The jupyter-lab, ipykernal, pip will be installed/updated in:

/home/cchan139/jp_lab​
​
<Ctrl+C> to cancel​
​
Sign in with your Rockfish Login credentials:​
​
 Enter the userid password:​
Attempt 1 of 3​
?

After you enter the password, the job script jupyter_lab.slurm.script is saved in the current

directoy.

Submit the job script with sbatch command and wait for the job to start:

[userid@login03 ~]$ sbatch ./jupyter_lab.slurm.script​
Submitted batch job 3550093

[userid@login03 ~]$ sqme​
 USER ACCOUNT JOBID PARTITION NAME NODES CPUS

TIME_LIMIT TIME NODELIST ST REASON​
 userid mygroup 3550093 defq Jupyter_la 1 1

2:00:00 0:53 c005 R None

65

Once it starts, check the output file Jupyter_lab.job.<JOBID>.login in the directory and use

cat command to see the 3 steps for how to connect to the Jupyter Lab session.

[userid@login03 ~]$ cat Jupyter_lab.job.3550093.login​
​
1. SSH tunnel from your workstation using the following command:​
​
 ssh -N -L 49607:c005:49607 cchan139@login.rockfish.jhu.edu​
​
2. log in to Jupyter Lab in your web browser using the Rockfish cluster

credentials (username and password) at:​
​
 http://localhost:49607​
​
 user: cchan139​
 password: < ARCH password >​
​
3. When done using Jupyter Lab, terminate the job by:​
​
 a. Exit the Jupyter Lab ("file" button in the top left corner of the

Jupyter Lab and the shut down)​
 b. Issue the following command on the login node:​
​
 scancel -f 3550093

The steps are the same as the steps for connecting to RStudio interactive session mentioned in

the previous section. Follow the steps and the session is started with your web browser.

To find out more resource requests for Jupyter Lab job script, simply run the script

jupyterlab.sh with -h option and the usage is displayed:

[userid@login03 ~]$ jupyterlab.sh -h​
​
 usage: jupyterlab.sh [options]​
 [-n nodes] [-c cpus] [-m memory] [-t walltime] [-p

partition] [-a account] [-q qos] [-g gpu] [-e email]​
​
 Starts a SLURM job script to run Jupyter Lab.​
​
​
 options:​
 ?,-h help give this help list​
 -n nodes how many nodes you need (default: 1)​

66

 -c cpus number of cpus per task (default: 1)​
 -m memory memory in K|M|G|T (default: 4G)​
 (if m > max-per-cpu * cpus, more cpus are requested)​
 note: that if you ask for more than one CPU has, your

account gets​
 charged for the other (idle) CPUs as well​
 -t walltime as dd-hh:mm (default: 00-02:00)​
 -p partition (default: defq)​
 -a account if users needs to use a different account. Default is

primary PI​
 combined with '_' for instance: 'PI-userid'_bigmem

(default: none)​
 -q qos quality of Service’s that jobs are able to run in your

association (default: qos_gpu)​
 -g gpu specify GRES for GPU-based resources (eg: -g 1)​
 -e email notify if finish or fail (default: <userid>@jhu.edu)

67

Help

 Note: We will have maintenance on 4/11/2022 to 4/15/2022.

RockFish Web Sites

Read our User Guide web site for how to use our system or look for specific information.

RockFish RT System

Send us your questions at help@rockfish.jhu.edu and include as much information as possible.

For example:

●​ The jobid of the job with problems

●​ Full path to the batch submission script

●​ Any specific error messages

●​ If possible a snapshot with errors

Frequently Asked Questions

We also have a FAQ web page where you could find the answers of your questions which most of

the users asked.

68

https://www.arch.jhu.edu/access/user-guide/#elementor-toc__heading-anchor-0
https://www.arch.jhu.edu/access/faq/

69

[]

70

	Introduction to Rockfish Cluster
	Help
	We also have a FAQ web page where you could find the answers of your questions which most of the users asked.
	
	High Performance Computing
	HPC Terminology
	Why Use ARCH

	Allocations on Rockfish
	Account and Allocation Management
	Computing Allocations

	Connecting to Rockfish
	SSH Client
	Access to login Node
	Check Storage and Account Allocations
	Hardware Resources

	Data Transfer
	SFTP Application
	Command Lines
	Globus

	Module and Software System
	LMOD System and Module Commands
	Find, List and Load Software
	Module hierarchy

	Parallel Computing Jobs
	Shared Memory with Threads
	Distributed Memory with Tasks
	Hybrid Parallel

	Job Management by SLURM
	Request Interactive jobs
	List of Job Options
	Batch Job Script
	SLURM Environment Variables
	Submit and Monitor Jobs

	Container and Singularity
	Python and Anaconda
	Virtual Environment
	Anaconda
	Install a List of Packages

	RStudio
	Jupyter Notebook
	
	Help
	

