CS W186 - Fall 2024
Exam Prep Section 1
SQL

Question 1: SQL

Consider the following schema for library books:

Books: bid INTEGER,
title TEXT,
library INTEGER REFERENCES Library,
genre TEXT,
PRIMARY KEY (bid)

Library: lid INTEGER,
Iname TEXT,
PRIMARY KEY (lid)

Checkouts: book INTEGER REFERENCES Books,
day DATETIME,
PRIMARY KEY (book, day)

(a) Return the bid and genre of each book that has ever been checked out. Remove any duplicate rows
with the same bid and genre.

(b) Find all of the fantasy book titles that have been checked out and the date when they were

checked out. Even if a book hasn’t been checked out, we still want to output the title (i.e. the row
should look like (title, NULL)).

(c) Select the name of the book that has been checked out the most times and the corresponding

checked out count. You can assume that each book was checked out a unique number of times,
and that the titles of the books are all unique.



(d) Select the name of all of the pairs of libraries that have books with matching titles. Include the
name of both libraries and the title of the book. There should be no duplicate rows, and no two
rows that are the same except the libraries are in opposite order (e.g. (‘East’, ‘West’, ‘Of Mice and
Men’) and (‘West’, ‘East’, ‘Of Mice and Men’)). To ensure this, the first library name should be

alphabetically less than the second library name. There may be zero, one, or more than one
correct answer.

(A) SELECT DISTINCT LIname, l.Iname, b.title
FROM Library |, Books b
WHERE b.library = Llid
ORDER BY lIname

(B) SELECT DISTINCT I1.Iname, I12.Iname, b1.title
FROM Library 1, Library 12, Books b1, Books b2
WHERE I1.Iname < |2.Iname AND bi.title = b2.title
AND bl.library = I1.lid AND b2.library = 12.lid

(C) SELECT DISTINCT first.l1, second.I2, b1
FROM
(SELECT Iname I, title b1
FROM Library |, Books b
WHERE b.library = Llid) as first,
(SELECT Iname 12, title b2
FROM Library |, Books b
WHERE b.library = Llid) as second
WHERE first.l1 < second.|2
AND first.b1 = second.b2;



Question 2: More SQL

Consider the following schema for bike riders between cities:

Locations: lid INTEGER PRIMARY KEY,
city_name VARCHAR

Riders: rid INTEGER PRIMARY KEY,
name VARCHAR,
home INTEGER REFERENCES locations (lid)

Bikes: bid INTEGER PRIMARY KEY
owner INTEGER REFERENCES riders (rid)

Rides: rider INTEGER REFERENCES riders(rid)
bike INTEGER REFERENCES bikes(bid)
src INTEGER REFERENCES locations(lid)
dest INTEGER REFERENCES locations(lid)

(a) Select all of the following queries which return the rid of Rider with the most bikes. Assume all
Riders have a unique number of bikes.

(A) SELECT owner FROM bikes GROUP BY owner ORDER BY COUNT(*) DESC LIMIT 1;

(B) SELECT owner FROM bikes GROUP BY owner HAVING COUNT(*) >= ALL
(SELECT COUNT(*) FROM bikes GROUP BY owner);

(C) SELECT owner FROM bikes GROUP BY owner HAVING COUNT(*) = MAX(bikes);

(b) Select the bid of all Bikes that have never been ridden.

(A) SELECT bid FROM bikes b1 WHERE NOT EXISTS
(SELECT owner FROM bikes b2 WHERE b2.bid = b1.bid);

(B) SELECT bid FROM bikes WHERE NOT EXISTS
(SELECT bike FROM rides WHERE bike = bid);

(C) SELECT bid FROM bikes WHERE bid NOT IN
(SELECT bike FROM rides, bikes as b2 WHERE bike = b2.bid);

(c) Select the name of the rider and the city name of the src and dest locations of all their journeys
for all rides. Even if a rider has not ridden a bike, we still want to output their name (i.e. the output
should be (name, null, null)).

(A) SELECT tmp.name, s.city_name AS src, d.city_name AS dst FROM
locations s, locations d,
(riders r LEFT OUTER JOIN rides ON r.rid = rides.rider) as tmp
WHERE s.lid = tmp.src AND d.lid = tmp.dest;

(B) SELECT r.name, s.city_name AS src, d.city_name as dst FROM riders r

LEFT OUTER JOIN rides ON r.rid = rides.rider
INNER JOIN locations s on s.lid = rides.src
INNER JOIN locations d on d.lid = rides.dest;

(C) SELECT r.name, s.city_name AS src, d.city_name AS dst FROM rides RIGHT
OUTER JOIN riders r ON r.rid = rides.rider
INNER JOIN locations s on s.lid = rides.src
INNER JOIN locations d on d.lid = rides.dest;



