
Dynamic Shapes: A brief survey
TL;DR: We want to be able to extract graphs from PyTorch programs and re-use these graphs
with input Tensors of varying shapes.
Status: We have designs for Python and C++. is executing on the design for Nick Korovaiko
C++.

I. What do we want to do?
The most general formulation of the problem is: given a function (or PyTorch program), we
would like to extract a graph via tracing that represents the function regardless of the shapes of
input Tensors. The graph may be captured by LazyTensor or AOTAutograd and may be lowered
to backends like XLA.

For example, given the following function:

def sin_then_flatten(x):​
 y = x.sin()​
 numel = y.shape[0] * y.shape[1]​
 return y.view(numel)

we would like to extract a graph that looks like the following:

y = x.sin()

yshape0 = y.shape[0]

yshape1 = y.shape[1]

numel = yshape0 * yshape1​
z = y.view(numel)

There are a number of potential things that we’d like to do once we have a graph:
-​ Send it to a backend compiler. Today, torch/xla traces out and recompiles a different

graph every time input shapes change. Constant recompilation is wildly inefficient for
models that use a lot of tensors that have different shapes like Mask RCNN and
language models where input sentences have different word lengths. (see this note from
FAIR researchers for empirical observations). If we have a graph that works for “all
shapes” (or most of them), then we can decrease the number of recompilations.

-​ Use it as a deployment solution: deploy the graph (or a number of them) instead of the
original Python code. For models that use tensors with different shapes, deploying the
model would require deploying a different graph per input shape used -- this becomes
impractical as the number of shapes goes up.

Furthermore, although this doc is titled “Dynamic Shapes”, what we would really like is for the
graph to work regardless of other properties of the input Tensors (like strides, contiguity, values).

mailto:villedepommes@fb.com
https://fb.workplace.com/notes/392952175150222
https://fb.workplace.com/notes/392952175150222

II. Why can’t we do it?

Existing tracing mechanisms bake shapes/properties into the
graph

def sin_then_flatten(x):​
 y = x.sin()​
 numel = y.shape[0] * y.shape[1]​
 return y.view(numel)

If we were to use LazyTensor or AOTAutograd to trace the above code in PyTorch today, it
would first require the shapes of the input (let’s say [2, 3]) and then produce a graph like the
following:

y = x.sin()​
z = y.view(6)

This is kind of a problem -- the captured graph only works for inputs that are viewable as shape
(6,)!

The reason why this happens is that y.shape returns a Python Number, numel is computed
using Python math, and then finally PyTorch sees a call to “y.view(6)”.

Shape assertions aren’t captured in a graph
If x.shape returns a Tuple[int, …], and y.shape returns a Tuple[int, …], the following assertion
happens in Python. Since none of it goes through the PyTorch dispatcher, neither AOTAutograd
nor LazyTensor see it...

def my_mm(x, y):​
 assert x.shape[1] == y.shape[0]​
 return ...

This happens in both user-level code and framework-level code
As we saw above, user code (written in Python) can bake in shapes. The same can happen to
PyTorch code that is written in C++. Attempting to trace code that calls torch.flatten
(implementation roughly below) with LazyTensor or AOTAutograd will also bake numel into the
graph.

Tensor flatten(const Tensor& x) {​

 int64_t numel = c10::multiply_ints(x.sizes().begin(), x.sizes().end());​
 return x.view(numel)​
}

Finally, there are places in subsystem code (e.g. Autograd) that bake in sizes and other
properties. For example, the autograd formula for Tensor.expand saves the input sizes for
backwards:

- name: expand(Tensor(a) self, int[] size, ...) -> Tensor(a)​
 self: at::sum_to(grad, self.sizes())

Actionable:
●​ Some analysis of what all the problems are would give more flavor to the problem.

E.g. . Dynamic shape exploration
●​ Analysis of uses of size-related methods in maskrcnn . Sheet 2 contains broader

categories that still need to be drilled into.
●​ Analysis of uses of size-related methods in Bert

III. What are some approaches to solving this?

Claim: Rank-specialization is OK
It’s really difficult (for users and us) to avoid baking in the rank (dimensionality) of a Tensor into
a graph.

-​ This is because user code commonly branches on the rank of a Tensor (if dim == 2 then
do f() else do g()).

-​ PyTorch framework code also does this: e.g. the implementation of matmul depends on
the rank of the Tensor.

-​ Rank generalized code is also more difficult to symbolically reason over, as you must
reason about (unknown length) lists rather than equations over a fixed number of
unknown integers.

Furthermore, there is little benefit to avoiding rank-specialization: the claim is that most Pytorch
programs will not use inputs with a large number of different ranks. All of the proposals
mentioned share this in common: baking in ranks to the graph is OK.

Actionable: We’ve been saying “rank-specialization is OK” but we don’t have empirical
evidence. A data-driven analysis of all of the shapes used in e.g. the torchbenchmark suite
would help here.

https://docs.google.com/spreadsheets/d/1vM6VhEOj-QGNQbUDF1jP_tmhbNPyy5X4U64BbQw10tQ/edit#gid=1955146245
https://docs.google.com/spreadsheets/d/1_V4NqjYWudpqVNvsKOrhWZ8P-VgTx9Zdis9flPrwyMw/edit#gid=784235391
https://docs.google.com/spreadsheets/d/1JuTr5hmJYrfie2A3IB0AmbSp76_oLJWJuwFDEQgMVJ8/edit?usp=sharing

Symbolic Shapes (in Python...)
torch.fx (unlike LazyTensor/AOTAutograd) is able to extract dynamic-shape traces.

-​ When one calls Tensor.shape, torch.fx returns a “Proxy” object.
-​ The Proxy object records all operations that happen to it in the fx graph.
-​ So, in the flatten example, y.shape returns a Proxy object, y.shape[0] is another Proxy,

numel is the product of two Proxys, and the indexing, multiplication, and usage in
Tensor.view all get recorded!

def sin_then_flatten(x):​
 y = x.sin()​
 numel = y.shape[0] * y.shape[1]​
 return y.view(numel)

On the LazyTensor side, Nick Korovaiko is prototyping something similar to be used with
torch/xla. LazyTensor.shape returns a “DynamicShape” object.

How to handle C++?
It’s important to note that the previous solution only works in Python. In C++, Tensor.sizes()
is statically typed to return an IntArrayRef. Figuring out something that works in C++ is a big part
of the problem.​
​
From first principles, we could change Tensor.sizes() to return “Tuple[Union[Int, SymbolicInt]]”.
However, this leads to some performance and memory concerns:

-​ A Union[Int, SymbolicInt] might be more than 64 bits (uh oh)
-​ All of PyTorch C++ code would need to be updated to understand that sizes are

Union[Int, SymbolicInt]...

Actionable: We don’t have a clear picture of how different C++ solutions would slow down the
fast-path (standard eager PyTorch). Ideally we would measure this somehow and use it to
determine how aggressive of a design we need.

How to handle C++?

Integer packing (the leading proposal)
See
https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8YLw-jxEw/
edit for the winning proposal!

To avoid performance implications... we can do some bit-packing.

https://docs.google.com/spreadsheets/d/1jpoogGEZOac8r3g8wWBJCLmFMqVgFm4cvo8vzsByS2o/edit#gid=0
https://docs.google.com/spreadsheets/d/1jpoogGEZOac8r3g8wWBJCLmFMqVgFm4cvo8vzsByS2o/edit#gid=0
https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8YLw-jxEw/edit
https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8YLw-jxEw/edit

We can have a simple enum (let’s call it SizeVal in this discussion) that can be both an int64_t
or represent a pointer to an abstract structure. In particular, we know that all values `< -1` are
invalid sizes and can be used to store such pointers.

A simple upgrade path to make a function support dynamic size is to replace all explicit
mentions of int64_t by SizeVal.

From offline discussions, a simple way to move toward this without having to do a giant PR is to
introduce a new `t.dynamic_sizes()` that returns such objects. The functions that need to be
updated then just do things as usual.
Using this, we could migrate targeted c++ subsystems to work with dynamic shapes without
major changes to code we don’t try to get dynamic shapes through.

Older discussions below:
This solves a “representation” problem (aka, how do we represent our dynamic sizes) but does
not solve a dispatch problem. For example -- how would c10::multiply_ints know that it is
operating on symbolic ints and not a good-to-honest int64_t size?

Tensor flatten(const Tensor& x) {​
 int64_t numel = c10::multiply_ints(x.sizes().begin(), x.sizes().end());​
 return x.view(numel)​
}

Discussions here

Do it in Python and pray to the transpiler

Tensor flatten(const Tensor& x) {​
 int64_t numel = c10::multiply_ints(x.sizes().begin(), x.sizes().end());​
 return x.view(numel)​
}

Back to the flatten example - if we could somehow run the above code in Python (instead of in
C++) while tracing... then we could use the “Symbolic Shape in Python” solution and not worry
about modifying C++.

-​ This is really easy to hack, e.g. LazyTensor.flatten does something special that runs the
above code in Python.

-​ A more long-term solution is: instead of maintaining a Python version of flatten and a
C++ version, we pray for a Python->C++ transpiler and rewrite problematic things in
Python

https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8YLw-jxEw/edit?usp=sharing

This doesn’t answer the question of what to do when subsystems bake in sizes/shapes though
-- rewrite many parts of PyTorch in Python and use a transpiler?

There’s also user’s C++ code (custom ops) that we won’t have access to. The user may be
willing to rewrite their code in python but we need to make sure that the transpiler tool will be
easy to use for users as well.

There could be a performance concern if we have to do substantial rewrites into python from
C++

This approach may not compose nicely with other pytorch systems such as functionalization,
autograd.
Consider implementing `view` in python. Functionalization kernels intercept calls to `view` at the
dispatcher level, set up alias tracking and then dispatch to `view_copy` on a device. If we
intercept `view` in python and dispatch it to the lazy implementation that can handle dynamic
shapes, we will need to continue maintaining all the view infrastructure since functionalization
kernels wouldn’t know how to handle it.

Tensor.sizes returns a Tuple[Tensor]

Say that Tensor.sizes returns a Tuple[Tensor]. All shape math would go through the dispatcher.
There’s also a slight change in the semantics of operations such as addition assignment.
Consider this example:

>>> a = 2
>>> b = a
>>> b += 2
>>> print(a, b)
2 4

>>> import torch
>>> a = torch.tensor([2])
>>> b = a
>>> b += 2
>>> print(a, b)
tensor([4]) tensor([4])

Segmenting graphs on ops that use static shapes and stitching graphs
together later

If we don’t have dependencies lazy graph 2 depends on lazy graph 1 we could consider
stitching two graphs together and making the input to view a parameter

``` 
lazy graph1 :  

 

   produces x,y  

 

c++: 

  d = x.size(0) + y.size(1) 

 

 

lazy graph 2: 

   z.view(d) 

``` 

Actionable: Identify the cases in either Bert or MaskRCNN where this approach may work. Do
we think these cases are prevalent enough. Ponder on the feasibility of graph stitching.

Other directions

Mintorch

A lot of these are research-y and need more investigation but I think they are promising
because they aim to solve the problem at the root and that we should seriously consider
bringing them to PyTorch.

Zach’s Mintorch project has a concept of first-class dimension objects. These are local variables
that bind to dimensions of a Tensor and can be manipulated and passed to PyTorch operations.
For example, in mintorch, a user could rewrite the flatten example as (pseudocode):

def flatten(x):​
 i, j = dim()​
 x = match(x, [i, j])​
 # reshape combines dimensions i and j​
 return x.reshape(i, j)

And this would, in theory, produce shape-independent traces under the assumption that
dimension object manipulation goes through the PyTorch dispatcher. The best thing about it is
that assertions can also be captured in the graph! The match statement has an implicit
assertion that x has two dimensions.

https://fb.workplace.com/notes/1222095608246598

Dex (from Google) also has a notion of dimension indices and JAX is developing a type system
based off of that.

Falling back to TS (TorchDynamo) to capture

The issue of capturing symbolic sizes when tracing seems to be somewhat similar to the issue
of capturing CF when running torch.jit.trace. Our recommendation to our users was to outline
problematic code into a function and `torch.jit.script` it. LTC could trace such cases by creating a
JitFunctionCall node which eventually will be inlined into a lowered graph.
This approach might be able to handle a number of hard-to-trace scenarios such as CF, size
arithmetic. Unfortunately, it would require a user to refactor model code or it would require us to
automate refactoring for the user.
Also, this approach won’t work with the XLA backend as they aren’t using the TS integration
point.

https://github.com/google/jax/pull/8955

	Dynamic Shapes: A brief survey
	I. What do we want to do?
	II. Why can’t we do it?
	Existing tracing mechanisms bake shapes/properties into the graph
	Shape assertions aren’t captured in a graph
	This happens in both user-level code and framework-level code

	III. What are some approaches to solving this?
	Claim: Rank-specialization is OK
	Symbolic Shapes (in Python...)
	How to handle C++?
	How to handle C++?
	Integer packing (the leading proposal)
	Do it in Python and pray to the transpiler
	Tensor.sizes returns a Tuple[Tensor]
	Segmenting graphs on ops that use static shapes and stitching graphs together later

	Other directions
	Mintorch
	Falling back to TS (TorchDynamo) to capture

