
What’s new for developers 



What’s new for 
developers? (August 2025) 
 

It’s already August, and we have a freshly printed Roadmap to 6.9. 

Everything from evolving the site editor to refining content creation to 

performance improvements is on the docket. That means the last few 

months of 2025 are bound to be exciting ones. 

 

If you’re up for some light reading before jumping into the rest of this 

month’s news, I encourage you to at least peruse: 

 

●​ Admin Materials and Surfaces: A discussion on the structure of the 

future admin and mapping out the main elements that compose it. 

●​ Abilities & Workflows Overview: An overview of the elements 

needed to unify admin commands, shortcuts, and AI-assisted 

workflows. 

●​ Admin Redesign: A solid routing foundation: A tracking document of 

the tasks for building the routing foundation for the WordPress 

admin redesign. 

 

— INSERT TABLE OF CONTENTS — 

https://make.wordpress.org/core/2025/07/28/roadmap-to-6-9/
https://github.com/WordPress/gutenberg/issues/70913
https://github.com/WordPress/gutenberg/issues/70710
https://github.com/WordPress/gutenberg/issues/70862


Highlights 

Expanding the Core block library? It might be in 
the cards 

 

 

There are always discussions of new blocks for Core happening. Just hop 

over to read the [current] 63 tickets labeled New Block in the Gutenberg 

repository. 

 

In the past, there has seemed to be a hardline stance against anything that 

seemed too niche to include in Core, leaving third-party developers to fill 

the gaps. This has been a good system over the last two decades, but 

blocks are unlike other plugins. Theme authors rely on having a full toolkit 

to create unique designs without making users jump through hoops. 

https://github.com/WordPress/gutenberg/issues?q=state%3Aopen%20label%3A%22New%20Block%22


 

The good news is that the previous stance may be softening. Gutenberg 

lead architect Matías Ventura stated in the ticket New Block additions for 

the Block Library: 

 

I think not having these blocks in the core library severely limits the 

expressiveness that theme builders (and users) can depend upon to 

build great designs and it can fracture the overall experience, forcing 

people to go for more fully equipped block libraries instead or desist 

altogether if they plan to release something broadly. One of the 

promises of blocks is that we can finally make themes interoperable 

without dulling down expression. A separate plugin for these blocks 

won't help much if a person needs to release a theme or a pattern in 

the directory, cannot rely on the presence of the block, or is excluded 

because it doesn't use core blocks. 

 

My opinion is that we should add a lot more blocks and revise a 

stance that I think harms adoption in this day and age. 

 

We’re still a few steps away from completely opening the floodgates, but 

there are already several tickets and PRs linked in the GitHub issue that 

make for possible block candidates. I wouldn’t doubt it if the Icon block 

proposal has the most support. At the very least, it has stirred up a lot of 

discussion in recent weeks. 

 

https://github.com/WordPress/gutenberg/issues/71026
https://github.com/WordPress/gutenberg/issues/71026
https://github.com/WordPress/gutenberg/issues/16484
https://github.com/WordPress/gutenberg/issues/16484


What do you think? The more blocks in Core the merrier? Or leave it to 

plugins? 

Proposing more theme.json settings control 
In the last week, a new ticket landed in the Gutenberg repository that 

would allow deeper control over the block editor’s user interface and 

experience from `theme.json`. The ticket also pushes for such control via 

post type registration. 

 

This is another idea that’s not a done deal yet, but it is an exciting proposal 

that could have some real momentum behind it. Currently, `theme.json` 

control of the user experience is a far call from being feature complete. But 

there is hope. Now that the UI for all the  Core blocks has been 

standardized via the `ToolsPanel` component, contributors have taken the 

first step toward making this secondary proposal a reality. 

 

The ticket outlines the next two steps that must be taken to make this 

level of control possible: 

 

●​ Audit all block tool panels, ensuring that all inspector controls and 

toolbar options can be enabled/disabled via `theme.json`. It would 

require all Core blocks to adhere to those standards. 

●​ Ensure this new mechanism can be used both globally and at the 

granular level. 

 

https://github.com/WordPress/gutenberg/issues/71013
https://github.com/WordPress/gutenberg/issues/67813
https://github.com/WordPress/gutenberg/issues/67813


As a theme author, I’m excited about the prospect of enacting more control 

over the user experience. It would give me the freedom to implement 

some of the ideas I’ve had in these last few years but have lacked Core 

support for. 

Customize Block Bindings support 
I’ve rattled on enough about things that might happen at some point. Let 

me dive into a feature that is about as much of a sure thing as it gets. 

 

With the latest WordPress trunk active, you can customize which blocks 

and their attributes can be bound. As of WordPress 6.8, this support has 

been limited to the Heading, Paragraph, and Button blocks. But now 

things are wide open with the new 

`block_bindings_supported_attributes_{$block_type}` filter hook. 

 

It didn’t take me long to tinker with this once the patch was committed in 

WordPress trunk. My first test was making the Video block’s `src` attribute 

bindable, as shown in this screenshot (yep, that’s really a custom binding 

under the hood): 

 

https://core.trac.wordpress.org/ticket/62090
https://core.trac.wordpress.org/ticket/62090


PHP

 

 

Want to test your own bindings? Here’s the filter I used for making the 

Video block’s `src` attribute bindable: 

 

add_filter( 'block_bindings_supported_attributes_core/video', 

'devblog_bindable_video_attrs' ); 

 

function devblog_bindable_video_attrs( array $attrs ): array 

{ 

​ return array_merge( $attrs, [ 'src' ] ); 

} 

 



I’ll let you take the rest from there. Be sure to check out the Block Bindings 

API tutorials right here on the Developer Blog if you need to freshen up 

your knowledge. 

 

The only problem I have run into is not having enough time to try out all 

the ideas I’ve had for the last year or so since the API graced us all with its 

initial featureset. I’m going to have so much fun with this! 

Plugins and tools 

Keep a close eye on 
In last month’s edition of the monthly roundup, I noted a ticket that 

WordPress co-founder Matt Mullenweg opened: Phased releases and 

roll-outs of plugins. Over the last couple of weeks, contributors have 

steadily pushed new code to WordPress.org to make this possible. There’s 

been no official word via the Make Plugins P2 yet, but it’s worth keeping 

track of if you have plugins in the official directory. 

 

A discussion on “composite” blocks is in the early stages on the Gutenberg 

repository. The idea is that there should be an easier way for blocks that 

contain specific nested blocks to surface those children for styling in the UI 

but be granular enough to style separately through `theme.json`. The 

Details block was noted as a suitable candidate for the concept (i.e., 

styling its `<summary>` element).  

https://developer.wordpress.org/news/tag/block-bindings/
https://developer.wordpress.org/news/tag/block-bindings/
https://meta.trac.wordpress.org/ticket/8009
https://meta.trac.wordpress.org/ticket/8009
https://make.wordpress.org/plugins/
https://github.com/WordPress/gutenberg/issues/70994


 

It’s still too early to tell where the discussion leads, but it could potentially 

cater to both theme authors with more granular design control and users 

with a simpler interface. 

AI building blocks 
The Core AI team published its AI Building Blocks for WordPress post, 

which gave a quick overview of the four building blocks with dedicated 

posts detailing each one: 

 

●​ PHP AI Client SDK 

●​ Abilities API 

●​ MCP Adapter 

●​ AI Experiments Plugin 

 

If you’re interested in bringing these tools to Core, join the discussions in 

the #core-ai Slack channel. 

WordPress Coding Standards 3.2 released 
The latest iteration of the WPCS landed in the last month with several 

new additions and quite a few changes. Some of these include: 

 

●​ Stricter meta usage checks 

●​ Sniffs for PHP heredoc syntax 

●​ Improved PHP 8.1+ callable support 

https://make.wordpress.org/ai/2025/07/17/ai-building-blocks/
https://make.wordpress.org/ai/2025/07/17/php-ai-api/
https://make.wordpress.org/ai/2025/07/17/abilities-api
https://make.wordpress.org/ai/2025/07/17/mcp-adapter
https://make.wordpress.org/ai/2025/07/17/ai-experiments-plugin
https://wordpress.slack.com/archives/C08TJ8BPULS


●​ Expanded deprecated feature detection to WP 6.8.1,  

 

And that’s just to name a few items. The release also includes improved 

documentation and other optimizations to make your code better. Check 

out the release changelog for details on all the updates. 

New date calendar components 
Gutenberg 21.3 added the `DateCalendar` and `DateRangeCalendar` 

components, a needed improvement over the current `DatePicker` 

component, which doesn’t support date ranges. 

 

The new components create a unified approach to calendars that supports 

both single dates and date ranges. They also provide more flexible layout 

options. 

Data Views progress 
Contributors merged several notable tickets on Data Views over the past 

month: 

 

●​ The View config has a new `perPageSizes` option for controlling the 

available sizes in the Items Per Page panel. 

●​ Over two dozen new fields, controls, and operators were added in 

one giant ticket to help customize how Data Views and Data Forms 

work for a plethora of new use cases. 

https://github.com/WordPress/WordPress-Coding-Standards/releases/tag/3.2.0
https://github.com/WordPress/gutenberg/pull/70578
https://github.com/WordPress/gutenberg/pull/70604
https://github.com/WordPress/gutenberg/pull/70604
https://github.com/WordPress/gutenberg/pull/70567


●​ Grouping functionality is now supported via the `groupByField` 

property. 

●​ A new date field type was introduced with sorting and validation 

functions. 

Playground 
WordPress Playground has had a big month, especially when you consider 

that 39 pages of its documentation was translated into five languages: 

Gujarati, Spanish, Japanese, Filipino, and Portuguese. 

 

There’s also a new Playground CLI doc, an updated Web Instances doc, 

and new video resources. 

General updates 
Several general updates landed in the last month: 

 

●​ PHP 8.3 is now the default version for playground.wordpress.net 

and Playground CLI. 

●​ Added support to query monitor in the SQLite integration plugin. 

●​ Added OPCache support. 

●​ New multi-worker support for Node.js Asyncify builds. 

●​ Playground now defaults to CORS proxy in embedded instances. 

●​ Cleaned up and improved data flows for error logging. 

https://github.com/WordPress/gutenberg/pull/70752
https://github.com/WordPress/gutenberg/pull/70657
https://wordpress.github.io/wordpress-playground/
https://wordpress.github.io/wordpress-playground/developers/local-development/wp-playground-cli
https://wordpress.github.io/wordpress-playground/web-instance
https://wordpress.github.io/wordpress-playground/resources#videos
https://github.com/WordPress/wordpress-playground/pull/2371
http://playground.wordpress.net
https://github.com/WordPress/wordpress-playground/pull/2415
https://github.com/WordPress/wordpress-playground/pull/2400
https://github.com/WordPress/wordpress-playground/pull/2317
https://github.com/WordPress/wordpress-playground/pull/2369
https://github.com/WordPress/wordpress-playground/pull/2357


CLI additions 
A few nice additions to the Playground CLI include: 

 

●​ Blueprints v2 added via the `--experimental-blueprints-v2-runner` 

flag. 

●​ An `--internal-cookie-store` option if you need Playground to own 

the cookie session in your workflow. 

●​ Stop printing the stack trace if the `--debug` flag isn't set and reject 

unrecognized options. 

Xdebug support updates 
Experimental Xdebug support had already shipped during the last 

monthly roundup, but contributors continued improving it by: 

 

●​ Bridging DBGP sessions with CDP servers. 

●​ Enabling the `--experimental–devtools` and `--xdebug` CLI options. 

Themes 

Poster image for Cover block videos 
Over the last few years, several theme authors have implemented custom 

solutions for implementing the `poster` attribute for the Video block. 

Typically, these would fall back to using the attachment’s featured image if 

https://github.com/WordPress/wordpress-playground/pull/2323
https://github.com/WordPress/wordpress-playground/pull/2401
https://github.com/WordPress/wordpress-playground/pull/2402
https://github.com/WordPress/wordpress-playground/pull/2411
https://github.com/WordPress/wordpress-playground/pull/2346


JSON

it existed. But most users wouldn’t make the jump to uploading the image 

since the UI for it is removed from the block inspector controls. 

 

Gutenberg 21.3 introduced a dedicated control for uploading a poster 

image for Video blocks.  

 

The downside of the PR is that the image is only stored on the block level 

and not added to the media attachment itself. So you might still need that 

custom script as a fallback in cases where the user doesn’t add their own 

poster. 

Button element inherits typography 
As of Gutenberg 21.3, the button element defined in the default 

`theme.json` inherits typographical styles from its parent. The full styles 

for the element now look like this: 

 

{ 

​ "styles": { 

​ ​ "elements": { 

​ ​ ​ "button": { 

​ ​ ​ ​ "typography": { 

​ ​ ​ ​ ​ "fontSize": "inherit", 

​ ​ ​ ​ ​ "fontFamily": "inherit", 

​ ​ ​ ​ ​ "fontStyle": "inherit", 

​ ​ ​ ​ ​ "fontWeight": "inherit", 

​ ​ ​ ​ ​ "letterSpacing": "inherit", 

https://github.com/WordPress/gutenberg/pull/70816
https://github.com/WordPress/gutenberg/pull/70816
https://github.com/WordPress/gutenberg/pull/70676


​ ​ ​ ​ ​ "textTransform": "inherit", 

​ ​ ​ ​ ​ "lineHeight": "inherit", 

​ ​ ​ ​ ​ "textDecoration": "none" 

​ ​ ​ ​ } 

​ ​ ​ } 

​ ​ } 

​ } 

} 

 

This should not negatively affect most themes, but it’s worth testing your 

design to ensure compatibility. If it does impact your design, it’s likely that 

button elements were not consistent between the front end and editor in 

your themes in the past. 

HTML tag selector for the Post Content block 
Gutenberg 21.3 also added support for selecting a tag via the Advanced 

→ HTML Element dropdown for the Post Content block, giving you more 

flexibility over the document markup. The block now supports four 

selectable elements: 

 

●​ `<div>` (default) 

●​ `<main>` 

●​ `<section>` 

●​ `<article>` 

https://github.com/WordPress/gutenberg/pull/70698


Welcome bug fixes 
Contributors addressed several theme-related issues over the last couple 

of Gutenberg releases: 

 

●​ Line breaks are now preserved in the caption for Image blocks. 

●​ Core will decode HTML entities in the RSS block’s feed titles before 

displaying them. 

●​ Padding for the Archives block was removed to remain consistent 

with the List block. 

●​ You can now style the button element in the File block via 

`theme.json` because the specificity of the block’s CSS has been 

lowered. 

Notable user changes 
As usual, there are some changes that are more specific to users but are 

noteworthy in this development-related roundup because they directly 

impact your users. 

 

Both the Gallery and Site Logo blocks now use the `ToolsPanel` 

component for their settings. This is a part of a larger effort to bring 

consistency to the block inspector across all Core blocks. It’s also possible 

that this effort leads to making all block settings configurable via 

`theme.json`. 

 

https://github.com/WordPress/gutenberg/pull/70476
https://github.com/WordPress/gutenberg/pull/70491
https://github.com/WordPress/gutenberg/pull/69008
https://github.com/WordPress/gutenberg/pull/70358
https://github.com/WordPress/gutenberg/pull/67904
https://github.com/WordPress/gutenberg/pull/70599
https://github.com/WordPress/gutenberg/issues/67813
https://github.com/WordPress/gutenberg/issues/67813


The Video block also has support for adding multiple tracks at once. This 

eliminates the need to repeat the process for each file. 

Resources and news 
There is one additional item from the Developer Blog in the past month. 

It’s a tutorial that showcases how to style block themes without 

`theme.json`. 

 

This section is a bit light this month. And while I think the pace of new 
articles will pick up pretty soon, the Developer Blog still needs you! 
Consider joining us and sharing your knowledge with the community. It 
can be a rewarding experience. 

 

Props to @yournamehere, …. 

 
 

 

https://github.com/WordPress/gutenberg/pull/70689
https://developer.wordpress.org/news/2025/07/you-dont-need-theme-json-for-block-theme-styles/
https://developer.wordpress.org/news/2025/07/the-developer-blog-needs-you/


Notes 



Notes 
 
Reviewers, this document section is not a part of the final post. Please 
ignore. 
 
 
Resources: 
 

●​ Keeping up with Gutenberg: Index 2022 

●​ A Week in Core (nothing since March 2024) 

○​ Trac changesets (starts June 10 going back 61 days to April 

10) 

●​ Gutenberg plugin release posts 

●​ Core editor chat (nothing since 2023), dev chat, performance team 

meeting summaries 

●​ Dev Notes 

●​ #design-share (nothing since Dec 2023) 

●​ What’s new in Gutenberg? 

●​ https://github.com/WordPress/gutenberg/pulse 

 

Key: 
 

●​ ⭐ Highlights 
●​ ❗ Deprecations and warnings 
●​ 👍 Intro mention 
●​ 🐛 Bugs 
●​ ❓ Needs more investigation 

https://make.wordpress.org/core/handbook/references/keeping-up-with-gutenberg-index/
https://make.wordpress.org/core/tag/week-in-core/
https://core.trac.wordpress.org/timeline?from=06%2F10%2F2025&daysback=61&authors=&changeset=on&repo-=on&repo-design=on&repo-tests=on&sfp_email=&sfph_mail=&update=Update
https://make.wordpress.org/core/tag/gutenberg-new/
https://make.wordpress.org/core/tag/core-editor-summary/
https://make.wordpress.org/core/tag/dev-chat+summary/
https://make.wordpress.org/core/tag/performance-chat+summary/
https://make.wordpress.org/core/wp-admin/edit.php?tag=dev-notes-6-2
https://make.wordpress.org/design/tag/design-share/
https://make.wordpress.org/core/tag/gutenberg-new/
https://github.com/WordPress/gutenberg/pulse


 

Plugins & Tools 
●​ Keep track of phased plugin rollouts: 

https://meta.trac.wordpress.org/ticket/8009  

●​ Block Bindings: Add filter to set supported block attributes. 

●​ DataViews: Introduce perPageSizes to control the available sizes of 

the items per page. (70604) 

●​ More fields, controls and operators. (70567) 

●​ Add groupByField support to grid layout. (70752) 

●​ DataViews: Add date field type. (70657) 

●​ Add DateCalendar and DateRangeCalendar components. (70578) 

●​ Add ValidateControls components. (70620) 

●​ wp-env: Add wp-cli configuration when creating environment. 

(70661) 

●​ Notable tickets: 

○​ Explore a concept for composite blocks (a container block with 

a fixed set of inner blocks, with some UX tweaking) #70994 

●​ JRF released v3.2 of the WordPress Coding Standards, 
PHP_CodeSniffer rules (sniffs) to enforce WordPress coding 
conventions. This release adds stricter meta usage checks, new sniffs 
for heredoc, better PHP 8.1+ callable support, expanded deprecated 
feature detection to WP 6.8.1, improved documentation, higher PHPCS 
requirements, and various optimizations. These help developers ensure 
cleaner, more up-to-date, and future-proof code. 

https://meta.trac.wordpress.org/ticket/8009
https://core.trac.wordpress.org/changeset/60611
https://github.com/WordPress/gutenberg/pull/70604
https://github.com/WordPress/gutenberg/pull/70567
https://github.com/WordPress/gutenberg/pull/70752
https://github.com/WordPress/gutenberg/pull/70657
https://github.com/WordPress/gutenberg/pull/70578
https://github.com/WordPress/gutenberg/pull/70620
https://github.com/WordPress/gutenberg/pull/70661
https://github.com/WordPress/gutenberg/issues/70994
https://github.com/WordPress/WordPress-Coding-Standards/releases/tag/3.2.0


WordPress Playground 
At the Playground project, we implemented several performance 

improvements, including OPCache, and supported multiple Workers. On 

error handling, we included better messaging on PHP error logging and 

error reporting with the CLI, improving some flows by rejecting 

unrecognized options. At playground.wordpress.net, and the CLI, PHP 8.3 

is the new default version. 

 

About the Xdebug support, it is already available as an experimental 

feature with a lot of cool integrations, bridging DBGP sessions with CDP 

servers, and enabling Xdebug via CLI flags. Another important 

experimental feature is that Blueprints V2 is available via a flag. 

 

Finishing with the documentation, more content has been translated into 

other languages, and now the documentation has content in Filipino, 

together with Gujarati, Spanish, Portuguese, and Japanese. A new page 

explaining how to use the new Playground CLI was added to the 

documentation. 

 

General updates 

●​ Added support to query monitor in the SQLite integration plugin 

#2415 

●​ Added OPCache support #2400 

●​ Makes PHP 8.3 the default version for playground.wordpress.net 

and Playground CLI. #2371 

https://github.com/WordPress/wordpress-playground/pull/2415
https://github.com/WordPress/wordpress-playground/pull/2400
https://github.com/WordPress/wordpress-playground/pull/2371


●​ Support multiple workers for NODEFS /wordpress mounts – 

Asyncify #2317 

●​ Use CORS proxy in embedded Playgrounds #2369 

●​ Improve error logging #2357 

 

Adding experimental support to Xdebug 

●​ Bridge DBGP session with CDP server with Xdebug #2402 

●​ Introduces an --experimental-devtools option in the Playground CLI 

to start the Xdebug-to-CDP bridge process. #2411. 

●​ Add --xdebug option in php-wasm CLI and wp-playground CLI 

#2346. 

 

Playground CLI 

●​ Add --internal-cookie-store option for Playground CLI #2323: Some 

workflows need Playground to own cookie persistence, e.g., VS Code 

webview does not store cookies, so any Blueprint with autologin 

enabled results in an infinite redirection loop. 

●​ Improve error reporting #2401: Stop printing the stack trace if the 

--debug flag isn't set and reject unrecognized options. 

●​ Expose Blueprints v2 runner in Playground CLI: Adds Blueprints v2 

support to Playground CLI via the 

--experimental-blueprints-v2-runner flag. #2394 

 

Documentation 

●​ Added a new page about the playground CLI #2337, updated 

Playground Web instance page #2365, and new video content 

https://github.com/WordPress/wordpress-playground/pull/2317
https://github.com/WordPress/wordpress-playground/pull/2369
https://github.com/WordPress/wordpress-playground/pull/2357
https://github.com/WordPress/wordpress-playground/pull/2402
https://github.com/WordPress/wordpress-playground/pull/2411
https://github.com/WordPress/wordpress-playground/pull/2346
https://github.com/WordPress/wordpress-playground/pull/2323
https://github.com/WordPress/wordpress-playground/pull/2401
https://github.com/WordPress/wordpress-playground/pull/2394
https://github.com/WordPress/wordpress-playground/pull/2337
https://github.com/WordPress/wordpress-playground/pull/2365


related to Playground in Polish, Spanish, Japanese, and English was 

added to the resources page. #2348. 

●​ Translations: 39 new pages of the documentation have been 

translated into four languages: Gujarati, Spanish, Japanese, Filipino, 

and Portuguese. #2448, #2343, #2358, #2391, #2340, #2352, 

#2386, #2434, #2438, #2431, #2351, #2450, and another 15 

translated pages were updated. 

Themes 
●​ Navigation Link: Add "Open in new tab" toggle to navigation block 

sidebar. (67262) 

●​ Image Block: Preserve line breaks in media caption. (70476) 

●​ RSS Block: Decode HTML entities in feed titles before display. 

(70491) 

●​ Cover: Enable support for adding posters over video. (70816) 

●​ Navigation Submenu Link: Add Open in new tab toggle to navigation 

block sidebar. (70687) 

●​ Post Content Block: Add tagName selector. (70698) 

●​ Archives: Update padding for archives block to remain consistent 

with list. (69008) 

●​ Fix: Preserve hasParallax when switching from video to image in 

Cover block. (70703) 

●​ Core/File: Reduce specificity of pseudo-selector styles for better 

override support via theme.json. (70358) 

https://github.com/WordPress/wordpress-playground/pull/2348
https://github.com/WordPress/wordpress-playground/pull/2448
https://github.com/WordPress/wordpress-playground/pull/2343
https://github.com/WordPress/wordpress-playground/pull/2358
https://github.com/WordPress/wordpress-playground/pull/2391
https://github.com/WordPress/wordpress-playground/pull/2340
https://github.com/WordPress/wordpress-playground/pull/2352
https://github.com/WordPress/wordpress-playground/pull/2386
https://github.com/WordPress/wordpress-playground/pull/2434
https://github.com/WordPress/wordpress-playground/pull/2438
https://github.com/WordPress/wordpress-playground/pull/2431
https://github.com/WordPress/wordpress-playground/pull/2351
https://github.com/WordPress/wordpress-playground/pull/2351
https://github.com/WordPress/gutenberg/pull/67262
https://github.com/WordPress/gutenberg/pull/70476
https://github.com/WordPress/gutenberg/pull/70491
https://github.com/WordPress/gutenberg/pull/70816
https://github.com/WordPress/gutenberg/pull/70687
https://github.com/WordPress/gutenberg/pull/70698
https://github.com/WordPress/gutenberg/pull/69008
https://github.com/WordPress/gutenberg/pull/70703
https://github.com/WordPress/gutenberg/pull/70358


●​ Make Button element inherit all typography styles on the frontend. 

(70676) 

●​ Notable tickets: 

○​ New Block additions for the Block Library #71026 

○​ Controlling the editor: Theme.json settings to disable/enable 

all block controls. #71013 

User 
●​ Gallery: Refactor "Settings" panel of Gallery block to use ToolsPanel 

instead of PanelBody. (67904) 

●​ Site Logo: Refactor the media panel to use ToolsPanel. (70599) 

●​ Video: Enable support for adding multiple tracks. (70689) 

●​  

Resources 
●​ General: 

○​ Roadmap to 6.9 

○​ Admin Materials and Surfaces, 

○​ Abilities & Workflows Overview, 

○​ Admin Redesign: A solid routing foundation, 

○​ Core AI team published their AI Building Blocks for WordPress 

post, briefly mention the four projects, their GitHub 

repositories, and that interested parties can join the #core-ai 

Slack channel 

https://github.com/WordPress/gutenberg/pull/70676
https://github.com/WordPress/gutenberg/issues/71026
https://github.com/WordPress/gutenberg/issues/71013
https://github.com/WordPress/gutenberg/pull/67904
https://github.com/WordPress/gutenberg/pull/70599
https://github.com/WordPress/gutenberg/pull/70689
https://make.wordpress.org/core/2025/07/28/roadmap-to-6-9/
https://github.com/WordPress/gutenberg/issues/70913
https://github.com/WordPress/gutenberg/issues/70710
https://github.com/WordPress/gutenberg/issues/70862
https://make.wordpress.org/ai/2025/07/17/ai-building-blocks/
https://wordpress.slack.com/archives/C08TJ8BPULS


●​ Developer Blog: 

○​  


	What’s new for developers 
	What’s new for developers? (August 2025) 
	Highlights 
	Expanding the Core block library? It might be in the cards 
	Proposing more theme.json settings control 
	Customize Block Bindings support 

	Plugins and tools 
	Keep a close eye on 
	AI building blocks 
	WordPress Coding Standards 3.2 released 
	New date calendar components 
	Data Views progress 

	Playground 
	General updates 
	CLI additions 
	Xdebug support updates 

	Themes 
	Poster image for Cover block videos 
	Button element inherits typography 
	HTML tag selector for the Post Content block 
	Welcome bug fixes 

	Notable user changes 
	Resources and news 

	Notes 
	Notes 
	Plugins & Tools 
	WordPress Playground 
	Themes 
	User 
	Resources 


