Problems of the Day

Note: all problems should be coded in the same (single) Corona/Solar2D
project, unless otherwise noted.

1. Scope of variables - local vs. global

a. lItis strongly recommended that you try to answer the following questions on
paper first (i.e., run this “in your head”), and only then type in the following into a
Lua interpreter (e.g., http://www.lua.org/demo.html) and verify/validate your
answers/understanding.

b. Then write down the results:

i. locala=5
print(a)

ii. locala=5
a==6
print(a)

iii. locala=5
print(a)
do
locala=6
print(a)
end
print(a)

iv. function bar()
print(x)
local x =6
print(x)
end

function foo()
local x =5
print(x)
bar()
print(x)

end

foo()

v. function bar()
print(x)
local x =6
print(x)
end

http://www.lua.org/demo.html

function foo()
x=5
print(x)
bar()
print(x)
end

foo()

2. Atfirst, skip this: In a new Corona/Solar2D project: Abbreviations (with Corona Ul, see
User Interface (Ul) below) - Create a program which has 3 (or more, if you'd like) buttons
with an abbreviation displayed/printed on each one (e.g. “CU”, “BRB”, “LOL”").

Each abbreviation will be associated with a full text sentence (e.g. “See You Later”, “Be
Right Back”, Laughing Out Loud”, respectively).
When the user clicks on a button it will print/display the full text sentence in an area of
text below the buttons.
Extra Experience
Make the layout of the screen such that you leave room for more than 3 buttons,
and implement the area of text (below the abbreviation buttons) as an area where
you can type in additional text through the keyboard and associate this text with
the additional buttons.

3. Exploring prime numbers (“Primeness” Project)

a. Write a function isPrime(n) to determine if a number n is a prime. Make sure it is
as optimized/fast as you can make it since you will be using it later in large
number calculations/loops.

i. Checkif 1234511 is prime.
ii. What about 3555555537

b. Use your FAST isPrime() function above, to find “twin primes”.
Twin primes are pairs of primes adjacent (next) to each other. For example: (3,5),
(5,7), or(11,13).
i. Print the first twins up to 100.
i. (Forthe following part, don’t print the actual primes! It's going to take too
much time/space): How many twin primes (pairs) are there between 3
and 10,0007 (you should get 205)

c. Use your FAST isPrime() function above, to find “triplet primes”.
Triplet primes are three consecutive primes such that the first and the last
differ by six, and there is only one prime in between. E.g., (11, 13, 17),
(103, 107, 109), (641, 643, 647).
i. Print the first triplet primes up to 100.

i. (Don’t print the actual primes! It's going to take too much time/space):
How many triplets (groups of 3 primes) are there between 3 and
10,0007 (you should get 112)

d. Use your FAST isPrime() function above, to find “pal primes”.
Pal(indromic) primes are primes which can be read the same way from left-to-right,
or right-to-left, e.g., 93239, 133020331.
i. How many pal primes are there between 3 and 100,000? (you should get
112)

e. Similarly, find how many of the following primes there are between 3 and 10,000:
i. plateau primes: prime numbers which start and end with the same
digit, and have a “flat/plateau” middle, consisting of the same digit.
Note: by this definition, some single digit and double digit primes
are plateau primes!
e.g., 3, 1M, 1777771, 355555553. (you should get 19)

ii. circular primes: remain prime when we “rotate” their digits (e.g., 11,
13,17, 37,79, 113, 197, 199, 337, 1193, 3779, 11939, 19937,
193939, 199933).

ii. Extra Extra Experience - absolute primes: remain prime for all
permutations (e.g., 199, 919, 991).

Robber's Language app - without a GUI (Graphical User Interface):

In a new Corona/Solar2D project: Write a function translate(s) that will translate a
sentence, s, into "rovarspraket” (Swedish for "robber's language"). That is, double every
consonant and place an occurrence of "0" in between.
a. For example, translate("this is fun") should return the string "tothohisos isos
fofunon"
b. Extra Experience: add reverse translation from "rovarspraket" to plain text.
i. For example reverse("tothohisos isos fofunon") will return "this is fun".

Robber's Language app - with a GUI (Graphical User Interface): Enhance your

Corona/Solar2D project above:

a. Create a Ul with one text field for entering the “plain sentence”, and one display
field for showing the “révarspraket sentence”. Clicking a button should start the
translation, or if you'd like, hitting ‘enter’ on the keyboard should start the
translation.

b. Extra Experience: add a reverse translation User Interface element (button)
from "rovarspraket" to plain text. Clicking on this reversing button will take the
text in the “rovarspraket sentence” text field and display the plain text in the “plain
text” field.

6. Same colors - What's the chance of randomly picking the same colors from a Lua
table (AKA list in Python)? Create a table of 16 non-repeating colors. For example:

"red", "orange", "yellow", "green", "blue", "indigo", "violet", "black", "gray", "magenta",
"LightBlue", "gold", "LightGreen", "SkyBlue", "aqua", "lime"

Write a program which randomly picks a number between 1 and 16, and then selects
that many colors from the predefined table (AKA list in Python) of colors (see above).
The program then prints the table of the randomly selected colors, and counts how many
times each color shows up in this random list.

For example, in the randomly selected table of 6 colors 'green’, 'green’, 'LightGreen’,
'green’, 'gold’, 'black’, your program should produce the following:

| selected 6 colors:
green, green, LightGreen, green, gold, black

They show up:

green, 3 times
LightGreen, 1time

gold, 1 time

black, 1 time

Hint: use tables as dictionaries and counters (see the Lua Data Structures doc)

7. Same birthdays (builds on similar “logic” to the “Same colors” exercise above): In a
room of 23 people, what are the chances that at least two of them will have the same
birthday (same month and day, not necessarily year)?

Write a program to run an experiment with R rooms and P people in each room, to see
how often it happens.

For each room, each person in the room is randomly assigned a valid birthday, namely a
month and day (you don’t have to deal with leap years/months, so there will not be a
Feb. 29 b-day). If a person has the same birthday as another person in the room (i.e.,
same month and same day of the month), it increments a counter for that room.

You can hardcode the user input or: Ask the user how many times they want to run the
experiment (i.e., the number of rooms; say, anywhere in the range 20-100) and how
many people they want in each experiment (i.e., room) (say, 20-100). At the end print the
number of rooms you found at least 1 pair of people with the same birthday.

The result should be like the following:

https://docs.google.com/document/d/1YMMsBeFAYdpLfDgJW0sD32FUW4F7U9ljQse5FPBHHr4/edit?usp=drive_link

How many rooms to run?
How many people in each room?

Room: 0
no duplicate b-days

Room: 1
guests 10 & 16 have b-day=5/23

Room: 2
guests 10 & 12 have b-day=3/6
guests 17 & 19 have b-day=8/24

Room: 3
no duplicate b-days

2 rooms out of 4 (50 %) rooms had at least
2 people with the same b-day

The program should calculate the percentage of times it found at least 2 identical
birthdays.

8. Fairness of random() - write a program which asks the user how many times they want
to roll a 6-sided die (singular of dice :) or hardcode the value (say, a number between
100 and 1000), and then “rolls the die” (i.e. creates random numbers) that many times,
and counts how many times each side came up.

Is the random() function “fair’?

9. Pangram - write a program which takes a sentence and checks whether it's a pangram
(a sentence containing at least one instance of each letter of the alphabet).

For example: "Barely a few quips galvanized the jury box in the court of my king" is
a pangram.

Hint: you can break up the problem and write and use 2 functions in your solution:
found(c, sentence) which returns True if the character/letter ‘c’ is found in
‘sentence”, and false otherwise.
missingLetters(sentence) which will use found() above to check if each letter of
the alphabet is in ‘sentence’ and either return an empty table if ‘sentence’ is a pangram,
or a table of all the missing alphabet letters in ‘sentence’, if ‘sentence’ is not a pangram.

Test your program with:
- The quick brown fox jumps over the lazy dog
- The five boxing wizards jump quickly

Use your program to identify the missing letters and then manually fix the following
(non-pangrams) and make them pangrams:
- Few quips galvanize the King’s court jury
- The five boxing champs jumped quickly

Come up with a few new pangrams of your own.

10. Printing M x N Matrix in “Spiral Order”
For Example, given the 4 x 4 Matrix:

111213 14

15161718

19 20 21 22

23 24 25 26

Your program should print in Spiral Order (going clockwise) like so:
1112 13 14 18 22 26 25 24 23 19 15 16 17 21 20

Extra Experience: you can solve it by recursion. Print the “outer layer” of the
matrix (in the example above, the numbers from 11 all around the matrix up to
15), then print the remaining sub-matrix (e.g. the layer starting at 16 and all
around to 20) recursively. And if the smaller number between M and N is odd,
then we have to handle the base case (m == 1orn == 1).

11. Optional: Write a module (see tutorial at

http://www.tutorialspoint.com/lua/lua_modules.htm) called binarymath.lua, which
supports the following operations:

a. dAdd(5, 6) -- decimal addition; returns 11

b. dSub(101, 10) -- decimal subtraction; returns 91
c. bAdd(101, 11) -- binary addition; returns 1000
d. bSub(1001, 10) -- binary subtraction; returns 111

Extra Experience: each function/operation should handle invalid arguments (e.g.
non-binary numbers for binary operations)

12. Look-and-Say: Watch the clip Conway's Look-and-Say Sequence explained.
As shown in the clip you have just watched (you have watched it, haven't you?):
The look-and-say sequence is such a sequence that for creating each new generation of
this sequence you have to say (out-loud) the numbers in the current generation, and
then write what you have said numerically. You can take any generation as a starting
point (the “seed”), and then follow this rule to produce the next generation.

For example, if you start with generation 3 as your seed (see row 3 below), and want to
produce generation 4, you read (for gen. 3): | have one 1, one 2, and two 1s, and this
produces gen. 4: 11 12 21

https://chesterli0130.wordpress.com/2012/10/27/printing-mn-matrix-in-spiral-order/
http://www.tutorialspoint.com/lua/lua_modules.htm
https://www.youtube.com/watch?v=LpjX3kHXcR0

The output below shows the "Conway Look-and-Say Sequences" for 11 generations (not
counting the "baseline" on line 0).

1

11

21

1211

111221

312211

13112221

1113213211

31131211131221
13211311123113112211
11131221133112132113212221
3113112221232112111312211312113211

- 2 OO NG~ WN-~O0O

- O

Write a function lookAndSay(seed, gen), which prints gen generations starting with seed.
You can print the output to the console (no need to code an app displaying this on a
device screen (unless you like to ;)).

. Using your knowledge and code for Primeness (see your solution to a PotD above),
create an app which displays Ulam’s Spiral.
Watch the video at https://www.youtube.com/watch?v=3K-12i0jcIM before you start.

Here is an example of the display of Ulam’s Spiral starting from 1 in the middle
(you should not draw it with arrows!):

257 256 255 254 253 252 251 250 249 248 247 246 245 244 243 242 241 306
258 197 196 195194 193 192 191 190 189 188 187 186 185 184 183 240 305
259198 145144 143 142141 140 139138 137 136 135134 133 182 239 304
260199146 10110099 98 97 96 95 94 93 92 91 132181238303
261200147 10265 64 63 62 61 60 59 58 57 90 131180237 302
26220114810366 37 36 35 34 33 32 31 56 89 130179236301
26320214910467 38 17 16 15 14 13 30 55 88 129178235300
26420315010568 39 18 5<«4<«3, 12 29 54 87 128177234299
265204 151106 69 40 19‘6 ‘»21 114 28 53 86 127176233298
266205152 10770 41 20‘?-»8-»9 —-10 27 52 85 126175232297
267206 15310871 42 21 22 23 24 25 26 51 84 125174231296
268207 154 10972 43 44 45 46 47 48 49 50 83 124173230295
26920815511073 74 75 76 77 78 79 80 81 82 123172229294
270209 156 111 112 113 114 115 116 117 118 119 120 121 122 171 228 293
271210157 158 159 160 161 162 163 164 165 166 167 168 169 170 227 292
272211 212213214 215216 217 218 219 220 221 222 223 224 225 226 291
273274275276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

If you start Ulam’s Spiral from 41 in the middle: notice the straight line
on the bottom-left to top-right diagonal):

https://drive.google.com/open?id=1NTK8XWkULdi22V07EhhhOyGahQqcELNt4UgsBAzevoA
https://www.youtube.com/watch?v=3K-12i0jclM

185184 183182 181180179178 177176 175174 173
186 141 140 139 138 137 136 135134 133 132 131 172
187 142105104 103102101 10099 98 97 130171
18814310677 76 75 74 73 72 71 96 129170
189144 10778 57 56 55 54 53 70 95 128169
19014510879 58 45 44 43 52 69 94 127 168
19114610980 59 46 41 42 51 68 93 126 167
19214711081 60 47 48 49 50 67 92 125166
19314811182 61 62 63 64 65 66 91 124165
194 14911283 84 85 86 87 88 89 90 123164
195150 113 114 115 116 117 118 119 120 121 122 163
196 151 152 153 154 155 156 157 158 159 160 161 162
197

Write an app that displays Ulam spiral on the device screen, using a function
drawUlamSpiral(start, finish), where start is the beginning number (in the middle of the
spiral), and finish is the largest/final number to display in the spiral.

14. Happy Numbers - Read the description and examples for happy and sad numbers, and
write a program that finds all Happy and Sad numbers in a given range (e.g., 1-1000).

Print your results to the console.

15. Next ...

Answers to Question 3 (Primes):
There are 205 twin primes between 3 and 10000
There are 112 triplets between 3 and 10000

https://docs.google.com/document/d/1RhQZFiWNTu7H3CgWaXVX1NiSj8doV_fjWHi0BNcTXmk/edit?usp=sharing

	Problems of the Day
	10.​Printing M x N Matrix in “Spiral Order”

