

History is about loops and continuums.

-Mike Bidlo

Chapter 6
Iteration and Reusability

Iterations, Loops, Nested Loops and Functions

___​
Summary​
​ In this chapter we will discover the true power of iterative constructs (called for loop, while loop
and do ... while , for loop). After learning these constructs we will integrate these ideas in solving more
challenging problems related to designing functions and conquer bigger problems by following the idea
of reusability and extensibility.

Loops and their variants
In C++ we have three types of loop versions. It will be a nice idea to know how their syntax is and at what
time one should use them.

The while statement
You may think of this instruction is like, if you want to do a repeated task such that if the condition is

true then statement instruction should be executed and then the condition should be checked again and if
the condition is true, the statement part should be repeated until the condition part gets false.

The syntax of this loop is the following

while (condition) ​
 statement;

It is possible that this statement part consists of multiple statements then in that scenario we will use
the block statement { } in place of the statement and then in that body of { } we will write all the required
instructions. Here is its syntax,

while (condition) ​
{ ​
 Statement1;​
 Statement1;​
}

There are many examples in daily life where you will be needing this type of work. E.g if you want to design a
robot which should serve all the people in a restaurant with tea. Now if you want to design a code then the
condition part must check that whether there is any person left in the room without any tea. Now if robots
checks that there is no customer present in the restaurant then it should immediately take rest. Hence first it
needs to check the condition. Now if there are few customers in the restaurant then after serving one, the

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

robot will check the condition again i.e. if there is any person left without tea, if so then it has to serve tea to
him. Hence we will be needing this sort of loop technique while coding the robot.
​
Examples: Use of kbhit() and while loop.​

EXAMPLE 1 prints “Hello” message until any key is pressed. Similarly Example 2 prints whichever key you
will press it also side by side prints in the message the key pressed and its ASCII value. The loops ends until
the user presses ESC (which has the ASCII value 27).

​
1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14

EXAMPLE 1​
#include<iostream>​
#include<conio.h>​
using namespace std;​
int main()​
{​
 int num = 1;​
 while (! kbhit())​
 {​
 cout<<num<<": Hello..."<<endl;​
 num++;​
 }​
}

EXAMPLE 2​
int main()​
{​
 char ch;​
 cout<<endl;​
 while(ch!=27) // ASCII value of ESC is 27.​
 {​
 if(kbhit())​
 {​
 ch = getch();​
 cout<<"\t"<<ch<<" Key pressed...! Its ASCII value is: "<<int(ch)<<endl;​
 }​
 }​
}

Link: http://codepad.org/cd2nmd3M ​
Output 1​ ​ ​ Output 2​ ​ ​

Description: In this example we have used kbhit() function defined in conio.h library, it returns true in case
any key is pressed (and it is still in the buffer and we haven’t received it yet using getch() function). ​

___​

Q1: Finding the arithmetic series size (1+2+3+... + N) which accumulates to the given bound B?

Q2: Finding the harmonic series size (1/1+½+⅓+¼+⅕+......) which accumulates to the given bound?​

The do...while statement
The only difference between while and do ... while statement is that in do while, the statement inside do is
executed for the first time without checking the condition inside the while parenthesis (). There are many
scenarios in real life where we might be needing this sort of work. E.g If you would like to do validation for
some input and want to make sure that until the user enters valid input the program should keep asking from
the user to enter the input again and again.

2

http://codepad.org/cd2nmd3M

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

The syntax of this type of iteration is the following:

do​
 Statement;
while(condition);

do
{
 Statement 1;
 Statement 2;
}
while(condition);

We had seen its examples in the previous chapter for validating the date of birth and current date for

age-calculator. See the syntax in the above table. In the second syntax, if you would like to perform many
tasks associated with each iteration of do … while then you need to use the block statement { } so that you
can add many statements associated to the do { } part of the loop. Let us do a very beautiful example related
to do ... while.

Escaping the Well (Help the frog to free)

Let us say there is a frog living in a well, but now would like to leave the well. If the walls of the well are
slippery, and the frog can jump on the wall with quantity J and it will slip with quantity S, find it will take how
many steps for the frog to escape from the well, if the height of the well is H units. Keep this thing in mind
that it is possible that the frog cannot escape from the well, in that case it must output that the frog is
imprisoned in the well.

​
In implementing, the first thing we need to check is if the slipping value S is greater than jump value J then
the frog cannot escape. Now if you would like to solve this problem there are two very important steps
happening again and again. The distance covered by the frog is covered by J units in each step and it also
get slip by S quantity. Intuitively it seems that the total number of jumps should be approximately H/(J-S). As
the accumulative effect of the jump is J-S on every step. But if you consider its boundary case than it is
possible that on the last jump taken by the frog doesn’t require the slipping, as it will already be outside the
well. So here is the program which solves this problem.​

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22

int main()​
{​
 int H=10, J=5, S=3, D=0; // H is Height, J is jump, S is slip, D is distance covered.​
 cout<< “enter H, J, S respectively : ”;​
 cin>>H>>J>>S;​
 int JumpCount=0; ​
 if(J<=S && H>J)​
 {​
 cout<<"Frog is imprisoned forever...!"<<endl;​
 return 0;​
 }​
 do​
 {​
 D+=J;​
 if(D<H)​
 D -= S;​
 JumpCount++;​
 }​
 while(D<H);​
 cout<<"Total Jumps: "<<JumpCount<<endl;​
 return 0;​
}

3

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

OUTPUT

​

​
​
If the jumping factor J is less than or equal to the slipping factor than in case if the jump length is lesser than
height than the frog is imprisoned forever (see line 7). Otherwise , of course frog can escape now. In the
code D variable measures the height covered by the frog so far (which in the beginning of the loop must be
0, as frog is at the pit of well). After each jump the value of D should be accumulated by adding the jumping
factor J and subtracting the slipping factor S (ONLY IF after taking the jump the frog is still in the well, hence
you can see the condition on Line 15). The moment the D distance covered becomes equal or greater than H
the loop breaks and the JumpCount will have the total jumps taken by the frog.

The for statement
The for statement is used when you exactly know the range in which you would like to iterate through. The
syntax of this loop is the following

​
// Single statement attached with the loop​
​
for(Initialization; Condition ; ChangeFactor)​
 Statement;

//Use { } when multiple statements you would like to attach​
​
for(Initialization; Condition ; ChangeFactor)​
{ ​
 Statement 1;​
 Statement 2;​
 }

In the for statement there are basically three parts. The first part is Initialization. In this part you may
declare as many variables with one data type as you want (specially those variables you would like to use
within the scope of the loop). In case if you need to use those variables after that loop ends then you might
need to declare the variable before that loop begins and only initialize the variables within that scope. Note:
The Initialization part executes once at the beginning of its first iteration.

In the condition part you can write any condition (it could be just one condition or a composition of
multiple conditions connected by logical connectors && and || operations). In every iterations the condition
part need to be checked, only the body part (the statement inside the loop or block of the statement)
executes if condition is true

The last part of the for loop is ChangeFactor of the statement you may change any variable you
would like (It is not mandatory that this change has to happen to the same variable which is declared in this
scope). So the sequence of execution of the for loop is the following,

1. evaluate the Initialization expression;
2. if the value of the condition expression is false, terminate the loop and goto Instruction 6.
3. execute the Statement
4. evaluate the ChangeFactor expression;
5. repeat steps 2–4.
6. Instruction/Statement after loop (All the variables allocated in Initialization steps destroyed).

Some examples of the for loop are as follows,

4

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

for(int i=1; i <= 10; i++)​
 cout<< “Hello”<<endl;

int N = 30, Sum=0;​
for(int c=1; c <= N; c+=2)​
 Sum+=c ;

int S = 10, E = 20, T=23;​
for(int i=S; i <= E; i++)​
 cout<< T*i <<endl;

The first example only displays the message “hello” on console 10 times, after every iteration the loop

. The second example calculates sum of odd values between 1 to N (i.e. 30 in this example), the loop starts
with c =1 and change by the addition of 2 which will make c equals 3 and then 5 and so on until c becomes
31 and then the loop breaks (as condition will become false). The third examples displays the the multiple of
T starting from S (in this example 23*10 = 230) till E (in this example 460).

REMEMBER
If you add a semicolon after the while or for loop statement then it means that an empty instruction is
associated with the loop. The the instruction or the block of instructions followed by the loop will become
independent of the loop.
e.g.

1.​ for(int i=0 ; i<10; i++) ;
2.​ cout<< “Hello”;

The above will run 10 times with empty instruction associated with it. The message printing statement is
independent of the loop. The message “Hello” will be printed exactly once.

REMEMBER
It is not necessary that the termination condition is also dependent on the same variable as of the
allocated variable in the loop. Here is an example which solves finding the maximum size of the Sum of the
arithmetic series (starting with 1 and with difference of 1) such that the Summation is less than a given
quantity N.
e.g.

1.​ int N = 30, Sum=0, c;
2.​ for(c=1; Sum <= N; c+=1)
3.​ Sum+=c ;
4.​ cout<< c -1;

The above will run until the Sum variable do not exceed the value 30. When the loop will terminate (as c is
allocated outside the loop hence it will not be destroyed as its scope is even beyond the loop) the c will
have one more value than the required series size. Hence it outputs 1 less than c.

Loop Invariant and Program Correctness

This is an extremely useful technique to figure out the correctness of your code. It also gives you insight
into how your algorithm/code is actually working. Basically it says that there is a statement or condition
which is true before and after each iteration of the loop, no matter which iteration of a loop is running, so in
a way it is invariant to the loop.
​ You remember the example we did in the Chapter 1 (problem solving section where a crazy cook
was drawing two beans at a time and throwing the two outside if there are two white beans and take one
black from the pile and put it in the jar, and if there is at-least one black then through that black in the pile
and through the 2nd inside the jar again…….). If you look carefully, the cook is repeating a step of taking
the two beans at a time and throwing beans on the pile or in the jar or picking a bean and placing it in the
jar. The loop/iteration invariant there is that the number of white beans always remains Odd. And that
actually gives you an insight that the last bean must have to be the white one.

5

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

While proving a loop invariant property what we usually show is that which property (usually
variable holding some kind of value) will always be true before and after executing every iteration. Here is
the general pattern of the loop invariant:

●​
●​
●​

​
 // the Loop Invariant must be true here​
 while (TEST CONDITION) {​
 // top of the loop, Invariant must be true here.​
 ...​
 // bottom of the loop​
 // the Loop Invariant must be true here​
 }​
 // Termination + Loop Invariant = Goal

Let us do some examples and argue how the invariants justify the correctness and working of our
algorithm/code (specially loop part of the code).

// This programs computes the summations of ​
// value 1 upto N

1. int Summation(int N)
2. {
3. int Sum=0;
4. for(int i=1; i<=N; i++)
5. {
6. Sum+= i;
7. }
8. return Sum;
9. }

1. int MaxSoFar;
2. cout<<"Enter the first value: ";
3. cin>>MaxSoFar;
4. char choice;
5. do
6. {
7. cout<<"Enter the next value: ";
8. int num;
9. cin>>num;
10. if(MaxSoFar<num)
11. MaxSoFar = num;
12. cout<<"continue (Y/N) : ";
13. cin>>choice;
14. }
15. while(choice!='N');
16. cout<<MaxSoFar<<" is the maximum value…!!!”<<endl;

Description: The Invariant is Sum variable has the
value Summation util i-1. It is extremely easy to
verify that Sum holds the invariant property before
the start of the loop i.e. having i-1 (1-1 = 0 value)
and after one iteration i will become 2 and Sum
has 1 value. Similarly after 2nd iteration i has 3
value and the Sum has 3 value (which is Sum of
1+2). Hence after the loop ends the i will N+1 and
the Sum will hold all the summation up to N values.

Description: The invariant here is MaxSoFar holds the Maximum
value user has entered so far. It is quite easy to see that before
the loop begins the user has entered just one value and that is
saved in MaxSoFar. So the invariant is valid. When the loop enters
first time the user enters the next value, if the next value is greater
than MaxSoFar (the previously stored value inside the variable),
than MaxSoFar gets updated with the new value entered, hence
the invariant is maintained. After the loop breaks (when user
enters ‘N’) the MaxSoFar has the highest value entered by the
user.

Another important thing while proving the correctness of the loop driven function is to think in your brain for
once that your loop will actually terminate or not. E.g. in the above two examples it's quite easy to see that
first loop only runs till N and the value of i is incrementing by 1 in each step hence the loop will break once.

6

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Similarly in the 2nd example we can see the moment user enters the choice ‘N’ for continue the while
conditions (checking on line 15) become false and hence the loop terminates.

Let us play with the power of loops and solve very fundamental and interesting problems. We will integrate
the power of using loops and functions and design very useful custom functions which we will be using again
and again wherever we will be needing them.

REMEMBER
You can perform all these different types of tasks with just one loop, but the good programming practice is
that you use the construct of the loop which you think is the best for solving a particular problem.

7.2 Playing with Numbers, Sequences and Series
In this section we will visit several problems related to numbers like Range Summation, Triangle numbers,
printing triangle sequences and how we will be using loops and functions to make our program much more
generalised and efficient.

7.2.1 Problem: Range Addition

Write a program which adds all the natural numbers within range R1 to R2 (e.g. 100 to 1000) that are
multiples of two numbers D1 and D2 but not both.

We have to write a program that add all natural numbers between the given range. We also have a
restriction that these summed values only have those which are divisible by two given numbers but not
divisible by both.

To make this program we need a function RangeAddition that can add all natural numbers within the
required range. For calculating the range summation, it requires to have two values R1, R2, and also for
restricting over conditions the two divisors D1, D2 must be passed as arguments/parameters.

For designing this function the first thing we need to perform is to calculate sum of numbers within
range starting from R1 to R2. we have to write the code something like this.

int Sum = R1;​
​ Sum += R1+1; // Sum = Sum+R1;

Sum += R1+2;
Sum += R1+3;
.
.
.
How many times do we need to add?
We have to write this step until R1 + i exceeds R2. (where i is the iteration integer starting from 0).

7

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

One idea is that we can do that summation until R1+constant exceeds R2 but this will be very cumbersome,
if we have a big range (R1-R2).
​
To overcome this problem we take help from the loops. We will write it as:

int Sum=0;​

 for(int i=1; R1+i<=R2; i++)
{

sum=sum+R1+i;
}

​
It is very easy to verify that this code will do summation from R1 to R2. You can see that while executing the
code, Whenever the loop starts with any value in i, Sum already has the summation until the R1+i-1.

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26

#include <iostream>​
using namespace std;​
//This Function Adding Numbers between a range (R1 to R2) that are multiples two divisors D1 or D2 but not both​
int RangeAddition(int R1, int R2, int D1, int D2);​
int main()​
{​
 char choice; ​
 int Start,End, D1, D2,Result; ​
 cout<<"Enter Range1: ";​
 cin>>Start;​
 cout<<"Enter range2: ";​
 cin>>End;​
 cout<<"Enter 2 numbers you want to get the multiples: ";​
 cin>>D1>>D2;​
 Result=RangeAddition(Start,End,D1,D2);​
 cout<<Result<<endl;​
 return 0;​
}​
int RangeAddition(int R1,int R2,int d1,int d2)​
{​
 int sum=0;​
 for(int i=0; R1+i <= R2 ; i++)​
 if (((R1+i) % d1 == 0 || (R1+i) % d2==0) && !((R1+i) % d1 == 0 && (R1+i) % d2 == 0))​
 sum=sum+(R1+i);​
 return sum;​
}

Output

8

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Description
From Line 7 to 14 all the required parameters are populated (by taking input from the user) and on

line 15 the entered value is passed to the function RangeAddition. For example if the two values passed are
1 and 10 then it means R1 will receive 1 and R2 will receive 10. Inside RangeAddition the variable is sum is
declared with its initial value assigned to 0 on line 21. Now if you look closely the loop must add up all the
range values starting from R1, R1+1, R1+2, ….. till R2 (i.e. R1+i<=R2). This is just one way to make this loop
run for R2-R1+1 times. One can easily verify that sum accumulates the value from start of R1, R1+1, R1+2 ….
till R2. And on the last line 25 the function returns the accumulated value stored in sum.

__​
Exercise
You have the following three tasks to perform.

1.​ Verify by replacing the following loop with the previously written loop and argue by looking into
watching how this loop and previous one will yield the exact same value?

1.​
for(int i=R1; i <= R2 ; i++)​
 if ((i % d1 == 0 || i % d2==0) && !(i % d1 == 0 && i % d2 == 0))​
 sum=sum+i;

2.​
int times = R2-R1+1 ;​
for(int i=0;i < times ; i++)​
 If (______________________________________)​
 sum=sum+ _______________ ;

2.​ What if you calculate first the number of times your loop will run and want to compute the exact same

value how will you fill the condition part and the summing part yielding the exact value?​

3.​ Debug and see in the watches how the two programs are working.
__​

Extending the Program to choice based option such that if after checking for one test-case the user wants
to recheck some other test-case one should keep checking.

While programing when you are done, usually, with coding the solution. One needs to make sure every
possibility of test-cases such that on all possible inputs cases the program must be running correctly. One
possible solution to this issue is to run the program again and again and keep giving different possible inputs
(for each test case) and see if the output of the programs matches with the solution.
​ This way is very tedious, executing again and again. Let us design a better way such that we will
augment some more code around the code written in the previous example such that now after running once
the program asks whether you would like to check another test-case and show the option Y(es)/N(o). If the
user enters Y then the program prompts for all the inputs again and executes the code and output the result
of the second test-case. Similarly it keeps checking the test-cases until user selects the option N.
​ This can be done by using a do{...} while loop. Around the previously written code in the main we will
put a block statement { } and around it we will write do and while. Now for the condition part we need to
make a char option variable before the do { } block. At the end of the last instruction of the do { } block we
will prompt cin>>option from user whether “You would like to continue Y(es)/N(o):”. Inside the condition part
of while we will check if option== ‘Y’ then do part will execute again. Any character other Y will be
considered as the termination condition of the loop. See the augmented code now. Note that option variable
needs to be declared outside the do { } scope, if you will make the char option variable inside the do { }
block then in the while condition option variable will be destroyed and compiler will generate an undeclared
identifier error.

9

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27

#include <iostream>​
using namespace std;​
//This Function Adding Numbers between Range_1 and Range_2 that are multiples of range 1 and range2​
int RangeAddition(int R1, int R2, int N1, int N2);​
int main()​
{​
 do​
 {

 char option;​
 int Start,End, D1, D2,Result;​
 cout<<"Enter Range1: ";​
 cin>>Start;​
 cout<<"Enter range2: ";​
 cin>>End;​
 cout<<"Enter 2 numbers you want to get the multiples: ";​
 cin>>D1>>D2;​
 Result=RangeAddition(Start,End,N1,N2);​
 cout<<Result<<endl;​
 cout<<"do you want to continue..?(Y/N)"<<endl;​
 cin>>option;​
 }​
 while(option=='Y' || option=='y');​
 return 0;​
}​
.​
.​
.

Output

Description
On line 7, you can see the char option variable. From line 8 we have added a do { } block containing all the
previous written code. Just before the blocks ends on line 19-20 the program prompts for an option whether
the user wants to continue for checking other test cases. Line 22 contains the condition for checking that.

10

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Program 7.2.2: Printing Nth Triangle Number.

Write a Function which takes as parameter N and returns Nth Triangle Number.

The Triangle number is a sequence in which we all add the natural numbers up to N e.g The 5th Triangle
Number is 1+2+3+4+5=15. In this program we need a function that all the previous upto N.

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27

#include <iostream>​
using namespace std;​
//This function is Calculating the Triangle Number.​
int TriangleNo(int N);​
int main()​
{​
 char option;​
 do​
 {​
 int N=0,Result;​
 cout<<"Which triangle Number Do you Want: ";​
 cin>>N;​
 Result=TriangleNo(N);​
 cout<<Result<<endl;​
 cout<<"Do you Want to continue...(Y/N)";​
 cin>>option;​
 }​
 while(option=='y' || option=='Y');​
 return 0;​
}​
int TriangleNo(int N)​
{​
 int TN=0;​
 for (int c=1; c<=N; c++)​
 TN=TN+c;​
 return TN;​
}

Description
In this program we are calculating the Triangle Number. As you can see that at Line 10 we have initialized a
variable N. At Line 11 and 12 we are taking input from the user. After this step we have called a function
TriangleNo. In this Function we are again using for loop because we have a limit N. We know that at N
point we have to stop so this is why we are using for loop.

11

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Program 7.2.3: Print Triangle Number Sequence

Write a program (using previous example) which prints the triangle numbers sequence up to M
(asked from the user).

In this program we have to print all the triangle numbers upto N. Where N is the number that is entered by
the user. In this Program we are just modifying the above problem.

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28

#include<iostream>​
using namespace std;​
//This Function is Calculating Triangle Numbers.​
int TriangleNo(int n);​
//This Function is printing Triangle Numbers.​
void PrintTriangleSequence(int m);​
int main()​
{​
 int m;​
 cout<<"How Many Triangle Numbers u want to print: ";​
 cin>>m;​
 PrintTriangle(m);​
 cout<<endl;​
}​
.​
. // The code of TriangleNo(int) function ​
.​
void PrintTriangleSequence(int m)​
{​
 for(int i=1;i<=m;i++)​
 {​
 cout<<TriangleNo(i);​
 if(i != m)​
 {​
 cout<<",";​
 }​
 }​
}

Output:

Link: http://codepad.org/tRWkCZBf
Description:
In this program first we have initialized a variable m at Line 9. At line 10 and 11 we are taking input from the
user.After that we have called a function named PrintTriangle.

12

http://codepad.org/tRWkCZBf

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

7.3 Reusability and functions(Factorials, Permutations, Combinations)

Factorial
In mathematics, factorial is the product of all the positive integers less than or equal to n. It is

denoted by n! For example
N! = Nx(N-1)x(N-2) x … x 1​

e.g. 5! = 5 x 4 x 3 x 2 x 1 = 120

Permutation(Ordered Arrangements)
An arrangement (or ordering) of a set of objects is called a permutation. In a permutation, the order

that we arrange the objects in is important. The number of permutations of n distinct objects taken r at a
time, denoted by nPr where repetitions are not allowed, is given by

nPr = n(n−1)(n−2)…(n−r+1) = n!/(n-r)!

Combination(Unordered Selections)
A combination is a way of selecting several things out of a larger group, where order does

not matter. The number of ways (or combinations) in which r objects can be selected from a set of n
objects, where repetition is not allowed, is denoted by:

nCr = nPr / r! = n!/r!(n-r)!

Program 7.3.1: Factorial of Number

Write a function that returns the factorial of a number.

This program requires one major task and that is factorial of number, so we need a function Factorial that
return the factorial of the user entered number. For example if the user enters 5 then factorial of 5 is 120 so
the function must return 120.
Inside the Factorial function for computing the factorial of the received value we can use for loop. The
reason is we know that multiplication must be accumulated through iteration within the range from 1 to the
received value.

13

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23

//This Program display the factorial of number​
#include <iostream>​
using namespace std;​
//This function return the factorial of given number​
int Factorial(int N); //prototype​
int main()​
{​
 int num;​
 cout<<"Enter a number for finding the factorial: ";​
 cin>>num;​
 int res=Factorial(num);​
 cout<<"Factorial of "<<num<< " is = "<<res<<endl;​
 return 0;​
}​
int Factorial(int N) //function​
{​
 int result = 1;​
 for(int a=1; a<=N; a++)​
 {​
 result = result * a ;​
 }​
 return result ;​
}

Link: http://codepad.org/KqmedMFl ​
Output

Description

This program outputs the factorial of user entered number, at line 10 the program ask from user to
enter any positive number which is passed to function Factorial(int N) at line 11 which return the factorial of
N. At line 5 the prototype of function is defined and at line 15 function is defined. As you see inside the
function we make an integer result and initialized it with 1 and after that for loop is used, iteration of loop
starts from 1 and ends at N, inside the for loop we simply multiply integer result with integer a and then
assigned the R-expression(right expression) result*a to result again and again until loop finish its iteration.

Program 7.3.2: Permutation of two Numbers

Write a function which will take two inputs and find nPr (number of permutations).

This program requires two major task first one is factorial of number and second is permutation because in
permutation we required factorial function, so we need two functions, first function returns the factorial of
number and that number is used for permutation and second function is for permutation. For example the
factorial of 5 is 120 so we required factorial function to find permutation by using formula as described in
permutation topic.
Code

14

http://codepad.org/KqmedMFl

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26

//this program takes 2 numbers from user and display its permutation​
#include <iostream>​
using namespace std;​
//this function return the factorial of first number​
int Factorial(int N);​
//this function return the permutation of numbers​
int PermutationsCount(int N, int R);​
int main()​
{​
 int N, R;​
 cout<<"For Permutations enter (N, R) : ";​
 cin>>N>>R;​
 int res = PermutationsCount(N, R);​
 cout << N<< "P" <<R <<"="<<res<<endl;​
 return 0;​
}​
.​
. // Factorial function already implemented​
.​
int PermutationsCount(int N, int R) //function nPr = N! / (n-r)!​
{​
 int numerator=Factorial(N);​
 int denominator= Factorial(N-R);​
 return numerator/denominator; // in short it could be written as return
Factorial(N)/Factorial(N-R);​
}

Output

Description

This program output the permutation of entered numbers by user. As you see we make two functions
in this program at line 5 we make prototype of function int Factorial(int N) which returns the factorial of
number. At line 20 we make another function int PermutationsCount(int N, int R) which returns the
permutation of two numbers which is entered by user, in this function integer variable numerator is declared
and initialized with Factorial(N), at line 23 we make another variable named denominator and initialized it
with Factorial(N-R) of factorial function, when the user entered both numbers first number is passed to
Factorial function from PermutationsCount function at line 22 and subtraction of N-R is passed to
Factorial function at line 23 and assigned it to denominator. At last at line 24 division(/) of numerator and
denominator is returned which is further received in variable res in int main() at line 13 and output that res
at line 14.
Link: http://codepad.org/X3fx6Wif

Program 7.3.3: Combinations of two Numbers

Write a function which will take two inputs and find nCr(number of combinations)

After taking two numbers from user, this program requires two major task first one is factorial of number and
second is permutation because in permutation we required factorial function and then combination function is
required in which we use factorial and permutation function. When the user enter 2 numbers we find factorial
of first number and by using both numbers we find permutation and at the end combination is being solved
by using these two functions.

15

http://codepad.org/X3fx6Wif

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Code
1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29

//this program takes 2 numbers from user and display its combinations​
#include <iostream>​
using namespace std;​
//this function return the factorial of first number​
int Factorial(int num);​
//this function return the permutation of numbers​
int PermutationsCount(int N, int R);​
//this function return the combination of numbers​
int CombinationsCount(int N, int R);​
int main()​
{​
 int N, R;​
 cout<<"For Combinations enter (N, R): ";​
 cin>>N>>R;​
 int res = CombinationsCount(N, R);​
 cout <<N<<"C"<<R<<"="<<res<<endl;​
 return 0;​
}​
.​
. // Factorial function already implemented​
. // Permutations function already implemented​
.​
int CombinationsCount(int N, int R) // nCr = nPr / r!​
{​
 int denominator=Factorial(R);​
 int numerator=PermutationsCount(N, R);​
 return numerator/denominator; // in short it can written as PermutationsCount(N,R) /
Factorial(R)​
}

Link: http://codepad.org/AjSYWOZN

Output

Description

7.4 Evens/Odds, Min/Max

Evens/Odds
All the Numbers that are divided by 2 are called even numbers. The Number which are not divisible of

two are called Odd Numbers.

16

http://codepad.org/AjSYWOZN

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Problem 7.4.1 Frequency of Even and Odd Numbers

Write a program that takes inputs until user enters -1 and your program tell the frequency of even
and odd nos.

In this Problem we have to write a program that will enter numbers until the -1 entered and tell how many of
them from total are even and how many of them are odd. For it we will check whether the number entered is
even or odd if we will add 1 in even count else we will add in odd count.

17

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41​
42​
43​
44​
45​
46​
47​
48​
49​
50​
51​
52​
53​
54​
55​
56​
57​

#include <iostream>//This program will enter Some numbers from user until user enter​
#include<Windows.h>//and tell how many entered numbers are even and how many numbers ​
using namespace std;//are odd​
bool IsEven(int Number);//It will return true if number enter is even else it will return false​
bool IsMinusOne(int Number);//It will return true if number enter is -1 else false​
void Print(int Evens,int Odds,int Total);//it will print output on screen​
void Message();//It will display input message on the screen​
void Delay(int number);//It will cause delay ​
int main()​
{​
 int Total=0,Evens=0,Odds=0,Number=0;​
 Message();​
 cin>>Number;​
 while(!IsMinusOne(Number))​
 {​
 if(IsEven(Number))​
 {​
 Evesn++;​
 }​
 else​
 {​
 Odds++;​
 }​
 Total++;​
 Print(Evens,Odds,Total);​
 Delay(10);​
 system("cls");​
 Message();​
 cin>>Number;​
 }​
 Print(Evens,Odds,Total);​
 return 0;​
}​
bool IsEven(int Number)​
{​
 if(Number%2==0)​
 {​
 return true;​
 }​
 return false;​
}​
bool IsMinusOne(int Number)​
{​
 if(Number==-1)​
 {​
 return true;​
 }​
 return false;​
}​
void Print(int Evens,int Odds,int Total)​
{​
 cout<<"total Number Entered="<<Total<<endl;​
 cout<<"total Even Number Entered="<<Evens<<endl;​
 cout<<"total Odd Number Entered="<<Odds<<endl;​
}​
void Message()​
{​

18

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

58​
59​
60​
61​
62​
63​
64​

 cout<<"enter -1 to finish program"<<endl;​
 cout<<"enter Number YOu want to check"<<endl;​
}​
void Delay(int number)​
{​
 for(int i=0; i<number*90000000; i++);​
}

Output During Running

Final Output

Description
In this program our main start from the line number 11 firstly we initialize all the integers we needed.

Then we Display our Message using the Message Function after displaying message we enter the input in
int Number after the user enter the number we start our while loop in our while loop Braces instead of
condition we called a function which is written on line number (42-49) in which there is if the number entered
is -1 which is our program ending condition so it will return false else it will return true and on which iteration
it will enter -1 our while loop end and after that our program main output is displayed on the screen.In while
loop first we check that the number is even or odd for this we use the function Is Even in which there is an if
condition which has condition that if the number % 2 is equal to zero then this
Function will return true else it will return false. So in the while loop if it return true we increment 1 in even
else in odd. After that we increase one in total and then we use a function delay in which their is a single
empty for loop which will run until Number Passed*90000000 we use it to stop the program for some time
and time can be controlled by the number passed to it as parameter. Then we clear our screen using system
cls. And at the end we again display the message and take the input of user in the number it go soo on until
user enter -1.
Link
http://codepad.org/vJr7ZkSA

Problem 7.4.2: Maximum and Minimum of Numbers
Write a program that takes inputs until user enter -1 and your program tells the maximum and
minimum no.
In this problem we have to write a program that will enter numbers from user until user enter -1 and tell which
number is minimum and which number is maximum in the user entered number show the output on the
console screen.So firstly we Make two Variables and assign the first number to max and min variables and
then check the other enter number with these numbers and replace if max or min.
Code

19

http://codepad.org/vJr7ZkSA

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41​
42​
43​
44​
45​
46​
47​
48​
49​
50​
51​
52​
53​
54​
55​
56​
57​

#include <iostream>//It will enter numbers from user until -1 entered and tell which number is​
#include<windows.h>//Maximum and which number is minimum​
using namespace std;​
bool MaxUpdate(int Maximum,int Number);//It will return true whether number is max or not​
bool MinUpdate(int Minimum,int Number);//It will return true whether number is min or not​
bool IsMinusOne(int Number);//It will return true if number entered is -1 else false​
void Print(int Max,int Min,int Total);//It will Print Output on the screen​
void Message();//It will show Input Message on the screen​
void Delay(int number);//It will cause delay​
int main()​
{​
 int Number=0,Max=0,Min=0,Total=0;​
 Message();​
 cin>>Number;​
 Max=Min=Number;​
 while(! IsMinusOne(Number))​
 {​
 Total++;​
 if(MaxUpdate(Max,Number))​
 {​
 Max=Number;​
 }​
 if(MinUpdate(Min,Number))​
 {​
 Min=Number;​
 }​
 Print(Max,Min,Total);​
 Delay(10);​
 system("CLS");​
 Message();​
 cin>>Number;​
 }​
 if(Total!=0)​
 Print(Max,Min,Total);​
 return 0;​
}​
bool MaxUpdate(int Maximum,int Number)​
{​
 if(Maximum<=Number)​
 {​
 return true;​
 }​
 return false;​
}​
bool MinUpdate(int Minimum,int Number)​
{​
 if(Minimum>=Number)​
 {​
 return true;​
 }​
 return false;​
}​
bool IsMinusOne(int Number)​
{​
 if(Number==-1)​
 {​
 return true;​

20

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

58​
59​
60​
61​
62​
63​
64​
65​
66​
67​
68​
69​
70​
71​
72​
73​
74​
75

 }​
 return false;​
}​
void Print(int Max,int Min,int Total)​
{​
 cout<<"Total Numbers Entered="<<Total<<endl;​
 cout<<"Max Number ="<<Max<<endl;​
 cout<<"Min Number ="<<Min<<endl;​
}​
void Message()​
{​
 cout<<"enter -1 to finish program"<<endl;​
 cout<<"enter Number YOu want to check"<<endl;​
}​
void Delay(int number)​
{​
 for(int i=0; i<number*90000000; i++);​
}

Output During Run

Final Output

Description
This Code has the same sequence as in the problem (7.4.1). But as according to the problem we have to
change our code a little bit Firstly we assign the first entered number to max and min as first enter number at
that time is max and min we check it with all other entered numbers and change max and min according to
checks and as for checks instead of IsEven we use two functions MaxUpdate and MinUpdate. IN Max
Update we just return true or false if(max<=Number) then true else false and vice versa in the min update
and the second change is in the while loop instead of adding or incrementing the value is assigned to max or
min according to the conditions as you see there are two conditions first if the max update return true then
max is equal to number and if min update return true then number is assigned to min. At the end in the same
way it is printed on the console screen.
Link: http://codepad.org/MxoTSkKv

Problem 7.4.3 Combine above given two problems
In this problem we have to combine the above two problems of the max min and even odd the input format
will be same.

21

http://codepad.org/MxoTSkKv

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41​
42​
43​
44​
45​
46​
47​
48​
49​
50​
51​
52​
53​
54​
55​

bool Max1(int Maximum,int Number);//IT will return true if number is bigger then max​
bool IsEven(int Number);//It will Return true if number is even​
bool Min1(int Minimum,int Number);//it wil return true if number is smaller then minimum​
bool IsMinusOne(int Number);//It will return true if number is -1​
void Print(int Max,int Min,int Total,int Evens,int Odds);//It will print output on the screen​
void Message();//It will print input message on the screen​
void Delay(int number);//It will cause some delay according to passed number.​
int main()​
{​
 int Total=0,Evens=0,Odds=0,Number=0;​
 int Max=0,Min=0;​
 Message();​
 cin>>Number;​
 Min=Max=Number;​
 while(!IsMinusOne(Number))​
 {​
 Total++;​
 if(IsEvenOrOdd(Number))​
 {​
 Evens++;​
 }​
 else​
 {​
 Odds++;​
 }​
 if(Max1(Max,Number))​
 {​
 Max=Number;​
 }​
 if(Min1(Min,Number))​
 {​
 Min=Number;​
 }​
 Print(Max,Min,Total,Evens,Odds);​
 Delay(10);​
 system("CLS");​
 Message();​
 cin>>Number;​
 }​
 if(Total!=0)​
 Print(Max,Min,Total,Evens,Odds);​
 return 0;​
}​
.​
. // Previous Implementations​
.​
​
void Print(int Max,int Min,int Total,int Even,int Odd)​
{​
 cout<<"Total Numbers Entered="<<Total<<endl;​
 cout<<"Max Number ="<<Max<<endl;​
 cout<<"Min Number ="<<Min<<endl;​
 cout<<"total Even Number Entered="<<Even<<endl;​
 cout<<"total Odd Number Entered="<<Odd<<endl;​
}

22

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Output

Description
This code is just combination of the problem number(7.4.1 & 7.4.2) In it all the code and functions are same
but there is a slight change in the inner part of while loop and print function. In print function we added
some parameters and show complete output on the screen and in the inner part of while loop all the if
conditions used in (7.4.1 & 7.4.2) and our code is completed.
Link
 http://codepad.org/CA8a18Qc

7.5 GCD, LCM, Fraction and its Relatives

7.5.1 GCD
In mathematics, the greatest common divisor (GCD) of two or more integers, is the largest positive integer
that divides each of the integers. For example, the GCD of 8,16 and 12 is 4. Sometimes it is also called HCF
(Highest common factor).

7.5.1.1 Problem: Finding the GCD of two numbers.

In this problem we need to determine the biggest number which divides two number. By keeping in mind the
reusability aspect of programming we will make a function Gcd which will take two integers n1, n2 and
determines the highest number which divides both the numbers. Our idea of solving this problem is that first
we will find the smallest s of the two numbers n1,n2. Now we can easily argue that the GCD will be one of
the number between 1 to s. So we have two option i.e. First, iterate from 1 to s and keep remembering if the
any number between the range divides both n1 and n2. The last number which divides both n1 and n2 will be
our GCD. Second option is if we iterate from s to 1 and return the first number which divides both n1 and n2.

Code:

23

http://codepad.org/CA8a18Qc

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32

#include <iostream>​
using namespace std;​
int Smaller(int n1, int n2);​
int Gcd(int n1,int n2);​
int main()​
{​
 int n1,n2;​
 cout<<" Enter Two Numbers";​
 cin>>n1>>n2;​
 int res=Gcd(n1,n2);​
 cout<<res<<endl;​
}​
int Smaller(int n1, int n2)​
{​
 if(n1<n2)​
 return n1;​
 else​
 return n2;​
}​
int Gcd(int n1,int n2)​
{​
 int result=0;​
 int limit=Smaller(n1,n2);​
 for(int d=1;d<=limit;d++)​
 {​
 if(n1%d==0&&n2%d==0)​
 {​
 result=d;​
 }​
 }​
 return result;​
}

.​

.

.

.

.

.

.

.

.

.

.

.

.

int Gcd2(int n1,int n2)​
{​
 int result=0;​
 int limit=Smaller(n1,n2);​
 for(int d=limit;d>=1;d++)​
 {​
 if(n1%d ==0 && n2%d==0)​
 {​
 result=d; break;​
 }​
 }​
 return result;​
}

Output:​

Link: http://codepad.org/fHQrqGUv

Description:
In above code at line 7 we initialize two variables n1, n2 and at line 8 and 9 we get input from user. At line 10
we call Gcd which returns an integer which is stored in res. In Gcd we get smaller of two number by calling
Smaller which returns the smaller between two numbers, which is ending point of our For-loop in Gcd. At
line 11 we display this res on console. In above codes we use For-loop because we know the starting and
ending point of our iteration. In Gcd we uses For-loop whose starting value is 1(int d=1) and it iterates till
limit(d<=limit), which in itself checks every value from 1 to limit which divides and their answer is zero and if
this condition fulfils it saves that value in result and it returns the last/biggest value which divides both of the
numbers. On the other hand in Gcd2 we starts iteration in reverse order i.e. from limit to 1 and returns the
very first value which divides both of the numbers. It is more efficient way to determine GCD of two numbers.

24

http://codepad.org/fHQrqGUv

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

7.5.1.2 Problem: Write a program that takes a number n from the user and then
 takes n inputs from user and find their GCD, Reuse the i) part.

Here in this problem we need to calculate GCD of n numbers. So the idea is to reuse the already solved
problem of finding GCD of two numbers which we have already implemented using function GCD(int n1, int
n2).
The idea for extending that previous solution is inspired by this idea that is e.g we can calculate GCD of
three numbers by calculating first GCD of the two numbers and storing it in some variable and then taking
GCD of previously calculated GCD and the third number entered by the user.
While focusing on this problem, we notice that we need to get number from user many times. Firstly we get
numbers from user n1 and NextNum and store their GCD in a variable. Now we ask another number from
user in n2(as we won’t need this variable further in our program) and calculating GCD of this number and the
firstly calculated GCD and store this in another variable. Here we can also use G to store result because it is
not used in program furthermore. This code is as followed.

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​

 int n=0;​
 cout<<"Enter N : ";​
 cin>>n;​
 int n1,NextNum,G;​
 cout<<"Enter N1 : ";​
 cin>>n1;​
 cin>>NextNum;​
​
 G= Gcd(n1, NextNum);​
​
 cin>>NextNum;​
 G= Gcd(G, NextNum);​
​
 cin>>NextNum;​
 G= Gcd(G NextNum);​
​
 cin>>NextNum;​
 G= Gcd(G, NextNum);​
 ​
 cout<<n1<<" Is the GCD"<<endl;

Link: http://codepad.org/zxcHuiZH

Now we can see from above that a highlighted part of code is repeated. We can use a loop here to make it a
generic.

Code:

25

http://codepad.org/zxcHuiZH

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21

#include <iostream>​
using namespace std;​
int Smaller(int n1, int n2);​
int Gcd(int n1,int n2);​
int main()​
{​
 int n=0;​
 cout<<"Enter N : ";​
 cin>>n;​
 int n1, NextNum, G;​
 cout<<"Enter N1 : ";​
 cin>>n1;​
 G = n1;​
 for(int i=2;i<=n;i++)​
 {​
 cout<<"Enter Next Number : ";​
 cin>>NextNum;​
 G=Gcd(G,NextNum);​
 }​
 cout<<n1<<" Is the GCD"<<endl;​
}

Output:

Link: http://codepad.org/Qwdn9nm3

Description
In above code at line 7 we make a variable n(which stores how many numbers user will enter) and at line 8
and 9 we get from user how many numbers he/she will enter. At line 10 we make two new variables n1,
NextNum(which get inputs from user). At line 11 and 12 we get a number from user and from line 13 to 18
we use a for-loop as we know we want loop till n. Our for-loop is controlled by i, where i is started from
from i=2 because we have already saved one variable in n1 and in G. In this loop we get another number
from user and simultaneously we calculate GCD of both numbers and store this new GCD in G. So basically
our loop saves GCD of i-1 numbers in n1. And at line 19 we display the last GCD calculated on console
which is stored in G.

7.5.2 L.C.M
A common multiple is a number that is a multiple of two or more numbers. The common multiples of 3 and 4
are 0, 12, 24, and so on. The least common multiple (LCM) of two numbers is the smallest non-zero
number that is a multiple of both hence LCM of 3 and 4 is 12, similarly LCM of 12 and 18 is 36.

26

http://codepad.org/Qwdn9nm3

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

LCM, GCD and Multiplication of Two Numbers
LCM, GCD and the product of the two numbers N1, N2 are associated with a following equality

N1 x N2 = LCM (N1, N2) x GCD (N1, N2)

Using the above equality relation we will find the LCM of the the two numbers.

Problem: find LCM of two numbers.
In this code we need to have a function LCM of two numbers. This function will further call Gcd to determine
largest divisor of both numbers and dividing by the multiplication of the two numbers by GCD will yield LCM
of the two numbers.
Code:

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18

int Gcd(int n1,int n2);​
int Lcm(int n1,int n2);​
int main()​
{​
 int n1,n2;​
 cout<<"Enter Two Number";​
 cin>>n1>>n2;​
 int res=Lcm(n1,n2);​
 cout<<res<<endl;​
}​
.​
. //Here we will have all the function which we had already made in the previous examples ​
.​
​
int Lcm(int n1,int n2)​
{​
 return n1*n2/Gcd(n1,n2);​
}

Output:

Link: http://codepad.org/fJrNBRvk

Description
In above code at line 8 we make variables n1, n2. At line 9 and 10 we get both numbers from user. At line 11
we call Lcm and its returned integer is stored in result. At line 12 we display this result on console.

7.5.3 Reduced fraction
To reduce a fraction to lowest terms (also called its simplest form), divide both the numerator and
denominator by the GCD. For example, 2/3 is in lowest form, but 4/6 is not in lowest form (the GCD of 4
and 6 is 2) and 4/6 can be expressed as 2/3.

27

http://codepad.org/fJrNBRvk

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

 reduced(n1,n2)=n1/GCD(n1,n2) , n2/GCD(n1,n2)

Problem: calculate and display reduced fraction.
In this problem after getting two numbers from user we need to determine GCD of these two numbers and
then we divide these two numbers by this calculated GCD to get reduced form. So here we need function
ReducedFraction which will get two integers and after finding their GCD g it will divide these numbers by
this calculated g and display this result on console.
Code:

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​

#include <iostream>​
using namespace std;​
int Smaller(int n1, int n2);​
int Gcd(int n1,int n2);​
void ReducedFraction(int n,int d);​
int main()​
{​
 int n,d;​
 cout<<"Enter Two Number : ";​
 cin>>n>>d;​
 ReducedFraction(n,d);​
}​
.​
. //Here we will have all the function which we had already made in the previous examples​
.​
void ReducedFraction(int n,int d)​
{​
 int g=Gcd(n,d);​
 cout<<"reduced fraction is : "<<n/g<<"/"<<d/g<<endl;​
}

Output:

Link: http://codepad.org/uz17qPyj
Description
In above code at line 8 we define two variables ‘n,d’. At line 9 and 10 we we get these two variables from
user and at line 11 we call ReducedFraction which finds reduced fractions and display it on console.

28

http://codepad.org/uz17qPyj

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

7.6 Perfect Squares, Integer Square-root

Perfect square

Problem 7.6.1: Perfect Square or Not
Write a program that keeps on taking input from user, until the user enters -1 and tell whether the
input number is a complete square or not(It should use a function that returns true if a function is
complete square else returns false).
Perfect square means that a if any number multiplies with its own then give another number is a perfect
square of that number. We can check by multiplying number by its own from 1 to half of the entered perfect
square. Why half because if the entered number is too large then we multiply the numbers one by one that
will be very lengthy and also perfect square is always smaller than the half of number.
Code:

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​

//this program tells us that the entered number is perfect square or not until user enters -1.​
#include <iostream>​
using namespace std;​
//this function tells us that either the number is perfect square or not.​
bool IsPerfectSquare(int);​
​
int main()​
{​
 int num=0;​
 cout << "Enter a number to know is a perfect square : ";​
 cin>>num;​
 for(int cnt=0;num!=-1;cnt++)​
 {​
 if(IsPerfectSquare(num))​
 {​
 cout<<" The number is a perfect square. \n";​
 }​
 else​
 {​
 cout<<" The number is not a perfect square. \n";​
 }​
 cout << "Enter a number to know is a perfect square : ";​
 cin>>num;​
 }​
 return 0;​
}​
bool IsPerfectSquare(int num)​
{​
 for(int cnt=0;cnt<num/2;cnt++)​
 {​
 if(cnt*cnt==num)​
 {​
 return true;​
 }​
 }​

29

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

36​
37

 return false;​
}

Output

Link: http://codepad.org/plHPrahG

Description
​ In this problem first we input a number to operate(weather is a perfect square) on, until user enters -1
this condition is written in the for loop on line 12. Then on line 14 we called our function and according to the
returned value we print the message accordingly either the number is perfect square or not, and then we ask
the number to input again and then our loop will check again. Thus our loop iterate until user enters -1.
Now, in our function IsPerfectSquare we passed a number, On line 29 our loop is being started with a
counter from 0 to that n number which is equal or smaller than the square of s. Now on line 31 we check that
square of counter is equal to that number or not, if the number is equal to square of counter that means the
number is perfect square and we return true from that function, otherwise we return false.

Integer Square-root

Problem 7.6.2:
Modify your program to such that until user enters -1 it keeps on asking Numbers and telling side by
side the number is Perfect Square of which number(make a separate function to return this
number).

Code

30

http://codepad.org/plHPrahG

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41​
42​
43​
44​
45​
46​
47​
48​
49​
50​
51

/*this program tells us that the entered number is perfect square​
of which number, if not then the closest number until user enters -1.*/​
#include <iostream>​
using namespace std;​
//this function tells us that either the number is perfect square or not.​
bool IsPerfectSquare(int);​
/*this function tells us that the number is perfect square​
or which of the closest number.*/​
int IntegerSquareRoot(int);​
int main()​
{​
 int num=0;​
 cout << "Enter a number (for finding its square-root) : ";​
 cin>>num;​
 for(int cnt=0;num!=-1;cnt++)​
 {​
 if(IsPerfectSquare(num))​
 {​
 cout<<" The number is a perfect square of : "​
 <<IntegerSquareRoot(num)<<" .\n";​
 }​
 else​
 {​
 cout<<" The number is not a perfect square. It’s integer square root is : "​
 <<IntegerSquareRoot(num)<<" .\n";​
 }​
 cout << "Enter a number (for finding its square-root) : ";​
 cin>>num;​
 }​
 return 0;​
}​
bool IsPerfectSquare(int N)​
{​
 for(int s = 0; s*s <= N ; s++)​
 {​
 if(s*s==N)​
 {​
 return true;​
 }​
 }​
 return false;​
}​
int IntegerSquareRoot(int N)​
{​
 int s;​
 for(s=0; s*s <= N;s++)​
 { ​
 // This loop will end when s will be one greater than integer square root of N.​
 }​
 return s-1; ​
}

Link : http://codepad.org/ZrQnH7Ox

31

http://codepad.org/ZrQnH7Ox

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Output

Description
​

7.7 Primes and its relatives

Prime and Composite Integers
Those positive Integers (other than 1 and 0) which are divisible by 1 and itself are called prime numbers
(excluding 1 here). E.g. 2, 3, 5, 7, 11, 13 , …. Is the prime number sequence. All the other positive numbers
other than 0 and 1 are called composite numbers. E.g. 4, 6, 8, 9, 10, 12, 14, 15, …

Write a function which takes a positive number as input and tells whether the number is a prime
number or not?

For designing the function, let us name it as IsPrime, first we need to define its input and output types.
IsPrime should take as parameters an integer hence its input type must be an int and return type must be
bool (true/false) because it has to tell whether the given number is prime or not. For checking the number
to be prime one needs to check for all the numbers from 2 till 1 less than the received number, let’s call it N,
whether any number divides the given value (if it does we can immediately return false as the number
doesn’t qualify to be a prime number and we have found it’s at-least one divisor). If we checked all the
possible divisors between the range of 2 to N-1 if none of the number divides N then we should return true,
as this number isn’t divisible by any number other than 1 and N itself (no need to check whether the number
is divisible by 1 or N (as every number is divisible by itself and 1).

Here is the implementation of the Isprime function.

32

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26

#include <iostream>​
using namespace std;​
bool IsPrime(int N)​
{​
 if(N<=1)​
 return false;​
 for(int d=2; d < N; d++)​
 {​
 if(N % d == 0)​
 {​
 return false;​
 }​
 }​
 return true;​
}​
int main()​
{​
 int num;​
 cout<<"Enter a number (for Primality testing): ";​
 cin>>num;​
 if(IsPrime(num))​
 cout<<num<<" is a prime number...!"<<endl;​
 else​
 cout<<num<<" is a composite
number...!"<<endl;​
 return 0;​
}

.​

.​
bool IsPrime(int N)​
{​
 if(N<=1)​
 return false;​
 for(int d=2; d < N/2; d++)​
 {​
 if(N % d == 0)​
 {​
 return false;​
 }​
 }​
 return true;​
}​
.​
.

.

Output

7.8 Palindrome and Reverse and binary numbers

Palindrome
A palindrome is a word, phrase, number, or other sequence of characters which reads the same

backward as forward, such as 12321.

33

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Binary Number
In mathematics and digital electronics, a binary number is a number expressed in the binary

numeral system or base-2 numeral system which represents numeric values using two different symbols:
typically 0 (zero) and 1 (one). For example the binary of 10 is 1010.

Program 7.8.1: Reverse of Number
Write a function that takes an input integer N from the user and makes another variable with M
reverse of the number entered and prints it.(write a function which returns M).
Input: 12345 ​
Output: 54321
This program require one major task and that is reverse of number, so we need a function that return the
reverse of user entered number. For example if the user enter 1234 then function returns 4321.
Code

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24

//this program shows the reverse of user entered number​
#include <iostream>​
using namespace std;​
//this function returns the reverse of number​
int Reverse(int num); //prototype​
int main()​
{​
 int num;​
 cout << "enter number: ";​
 cin >> num;​
 cout << "reverse is: " << Reverse(num) << endl;​
 return 0;​
}​
int Reverse(int num) //function​
{​
 int rem, m=0;​
 while(num!=0)​
 {​
 rem=num%10;​
 m=(m*10)+rem;​
 num=num/10;​
 }​
 return m;​
}

Output

Description
In this program when user enter some number it is passed to function int Reverse(int num) at line 14,
inside this function we make two integer variables rem, m and initialize the m with 0 after that while loop is
used with condition num!=0, inside while loop we are separating the passed number by using modulus(%)
digit by digit from least significant digit side and assigned it to variable m, but before assigning any value you
must know that we need space to accommodate that number so that's why we multiply m with 10. For
example user enter 123 and we have to reverse it, first we take a modulus of that number as we did at line

34

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

19 and assigned it to variable rem, now rem contain 3 if we don't multiply it with 10 the next separated
number is added in it (3+2 = 5) which we don't want, we want 32. After multiply m with 10 (as we did at line
20) m becomes 30, now if we add 2 in 30 it will become 32. At last we simply divide our number(num) with
10 to erase the last digit because we don't want it again after dividing our actual number which is 123
becomes 12. This whole process is repeated until our actual number does not become 0. See the image
below you will understand it better.

Link: http://codepad.org/KerrXi3v

Program 7.8.2: Palindrome Check
Write a program(function) that Takes An Integer N from User and tells(returns) whether N is a
Palindrome or Not. ​
Input:​ N = 12321​
​ palindrome​
​ N = 12320​
​ not palindrome
This program require two major tasks first one is reverse of number and second one is to check that number
is palindrome or not, so we need two functions, first function take a reverse of number and second function is
to check that number is palindrome or not.
Code

35

http://codepad.org/KerrXi3v

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41

//this program tells the number is palindrome or not​
#include <iostream>​
using namespace std;​
//this function returns the reverse of number​
int Reverse(int num); //prototype​
//this function tell the number is palindrome or not​
bool IsPalindrome(int num); //prototype​
int main()​
{​
 int num;​
 cout << "enter number: ";​
 cin >> num;​
 if(IsPalindrome(num))​
 {​
 cout << "It is palindrome."<<endl;​
 }​
 else​
 {​
 cout << "It is not Palindrome."<<endl;​
 }​
 return 0;​
}​
int Reverse(int num) //function​
{​
 int rem, m=0;​
 while(num!=0)​
 {​
 rem=num%10;​
 m=(m*10)+rem;​
 num=num/10;​
 }​
 return m;​
}​
bool IsPalindrome(int num) //function​
{​
 if(num==Reverse(num))​
 {​
 return true;​
 }​
 return false;​
}

Output

Description
In this program, when user enter any number it is passed to Reverse function which return the reverse of
that number as we use in previous program. The important thing is that we call Reverse function inside
another function which is of bool type as condition (num==Reverse(num)) at line 36 which check if the user
entered number and reversed number is same then this function return true else return false. At last we

36

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

simply check in int main() at line 13 if the function IsPalindrome(int num) returns true then display
message that the number is palindrome otherwise it is not palindrome.
Link: http://codepad.org/RQyJo1s9

Program 7.8.3: Decimal to Binary Number
Write a program(function) that takes number in decimal and outputs its binary representation. Test it
using main program.
This program require one major task and that is to convert decimal number to binary so we need function,
which takes a decimal number and return its binary representation.
Code

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26

//this program display binary representation of decimal number​
#include <iostream>​
using namespace std;​
//this program convert decimal number to binary​
int DecimalToBinary(int number); //prototype​
int main()​
{​
 int number;​
 cout<<"Enter a number between 0 to 1023: ";​
 cin>>number;​
 cout<<"Binary representation is : "<<DecimalToBinary(number);​
 return 0;​
}​
int DecimalToBinary(int number) //function​
{​
 int i=1,rem,result=0;​
 do​
 {​
 rem=number%2;​
 result=result+(rem*i);​
 i=i*10;​
 number=number/2;​
 }​
 while(number!=0);​
 return result;​
}

Output

Description

Link: http://codepad.org/QIxsatC2

Fibonacci Number
Definition
A series of numbers in which each next upcoming number is the sum of the two preceding numbers and
initial two values are constant as 0 and 1. The simplest is the series 1, 1, 2, 3, 5, 8, etc.

37

http://codepad.org/RQyJo1s9
http://codepad.org/QIxsatC2

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Problem 7.9.1
Write a function which takes as parameter N>=0 and tells(returns) Nth Fibonacci number​

Code

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35

#include<iostream>​
using namespace std;//This Program Will tell the nth Fibonacci number​
int Fibonacci(int t0,int t1,int Nth);//It will return nth Fibonacci term ​
int main()​
{​
 int Nth=0;​
 cout<<"Enter Nth value: ";​
 cin>>Nth;​
 cout<<"Nth Fibonacci is equal to : "<<Fibonacci(Nth);​
 return 0;​
}​
int Fibonacci(int Nth)​
{

 int t0=0;​
 int t1=1;​
 int NthFibonacci=0;​
 if(Nth==0)​
 {​
 return t0;​
 }​
 else if(Nth==1)​
 {​
 return t1;​
 }​
 else​
 {​
 for(int i=2;i<=Nth;i++)​
 {​
 NthFibonacci=t0+t1;​
 t1=NthFibonacci;​
 t0=NthFibonacci-t0;​
 }​
 return NthFibonacci;​
 }​
}

Output

Description
In this code the most essential part is the Fibonacci function In which firstly there are two checks that if the
value entered is 0 so it will return t0 and if the value is 1 it will return t1. As you see for this problem we need
a loop as if user enter five we have to write a same calculation for the five times. So after if statement in
else our for loop start which will go up to the nth term in it first we add both numbers and assign it to nth
Fibonacci in the loop the value stored in the nth fibonacci will be the i-1th fibonacci term and the value
stored in the t0 and t1 will be the two preceding values. As you see the sum of t0 and t1 is assigned to nth
fibonacci and the t0-nth fibonacci which is equal to t1 is assigned t0 and t1 is assigned the nth fibonacci

38

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

as when loop start again the preceding values will have i-1 preceding terms. In main we only enter the value
and send parameters and it and show output on the screen.

Problem 7.9.2

Write a program that takes input ‘k’ from user which means user is interested in k Fibonacci numbers and
then ask again one by one these k Fibonacci numbers who wants to know.(Reuse part i)​
e.g. Fn = Fn-1 + Fn-2, F0 = 0, F1 = 1​
​ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…....

Code

39

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25​
26​
27​
28​
29​
30​
31​
32​
33​
34​
35​
36​
37​
38​
39​
40​
41​
42​
43​
44​
45​

#include <iostream>​
using namespace std;​
int Fibonanci(int t0,int t1,int Nth);​
void FibonaciPrinting(int t0,int t1,int NumberOfTerms);//It will show all output on screen.​
int main()​
{​
 int t0=0,t1=1,nthvalue=0;​
 cout<<"enter Number of values you want to know: ";​
 cin>>nthvalue;​
 FibonaciPrinting(t0,t1,nthvalue);​
 return 0;​
}​
int Fibonanci(int t0,int t1,int Nth)​
{​
 int i_1_thFibonanci;​
 if(Nth==0)​
 {​
 return t0;​
 }​
 else if(Nth==1)​
 {​
 return t1;​
 }​
 else​
 {​
 i_1_thFibonanci=t1;​
 for(int i=2;i<=Nth;i++)​
 {​
 i_1_thFibonanci=t0+t1;​
 t1=i_1_thFibonanci;​
 t0=i_1_thFibonanci-t0;​
 }​
 return i_1_thFibonanci;​
 }​
}​
void FibonaciPrinting(int t0,int t1,int NumberOfTerms)​
{​
 int NthValue=0;​
 for(int i=0;i<NumberOfTerms;i++)​
 {​
 cout<<"enter Nth Fibonanci number you want to know:";​
 cin>>NthValue;​
 cout<<NthValue<<"="<<Fibonanci(t0,t1,NthValue)<<endl;​
 }​
}

Link
http://codepad.org/zKGz63x7
Output

40

http://codepad.org/zKGz63x7

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Description
In this code we use the same function of Fibonacci But in it the extra use function is Fibonacci printing. First
we take input how many Fibonacci you want to know next that is given to Fibonacci printing in it we have a
for loop in it we enter which fibonacci you want to know and then after that fibonacci function is called which
will return the nth fibonacci then after that Output is shown on screen and so on the for loop work until the
user entered value and output is shown on the screen.

​
Exercise

Problem 1
Write a program which takes as parameter T and prints all the Fibonacci numbers less
than T. (Reuse part i)​
Input:​You want to Print Up to:​ 50​
​ The Sequence Up to <50 is:​ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34
Hint
In this Problem you can use the above function of fibonacci just you need to design a loop which will
Work until the fibonacci number return number greater than number entered.
Problem 2
Write a program which takes two parameters Start and End and prints all the Fibonacci
numbers between them.(Reuse part i)
Problem 3
By considering the terms in the Fibonacci sequence whose values do not exceed four
million, find the sum of the even-valued terms.

41

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

7.10 Some Problem
After doing above problems, here we have to proceed to some other problems of loops do that we can clear
our concepts about loops.

42

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Program 7.10.1: Triplets

Write a Program which finds a triplet a, b and c (3 integers) whose sum satisfies this:
a2+b2+c2=1000

In this problem we are given a condition, and by using loops we have to determine an equation which will
fulfil this condition for any value. In this problem we won’t need any function but we will use nested loops to
solve this problem.

Nested loop
The placing of one loop inside the body of another loop is called nesting. When you "nest" two
loops, the outer loop takes control of the number of complete repetitions of the inner loop.
While all types of loops may be nested, the most commonly nested loops are for loops.
nested loops.

Code

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​

#include <iostream>​
using namespace std;​
int main()​
{​
 int a,b,c;​
 for(a=0;a<=1000;a++)​
 {​
 for(b=0;b<=1000;b++)​
 {​
 for(c=0;c<=1000;c++)​
 {​
 if(a+b+c==1000)​
 cout<<a<<" + "<<b<<" + "<<c << " = 1000" <<endl;​
 }​
 }​
 }​
}

Output

 Link: http://codepad.org/ugnjGmMS

43

http://codepad.org/ugnjGmMS

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Description
In above code at line 5 we declare three integers a,b,c. At line 6 we use a for-loop which is controlled by a
variable a=0 and terminates at a=1000. Inside this loop we declare another for-loop at line 8 which starts
from b=0 and terminates at b=1000 and inside this loop we also declares another for-loop which starts
from c=0 and terminates from c=1000. Inside this loop we use an if condition which become true if sum of
these loop controllers is equal to 1000 then these loops controllers are displayed on console screen.

Exercise

7.10.2 Write a Program which Prints all the triplet a, b and c which satisfies this: a+b+c = 1000.

7.10.3 Find three consecutive numbers whose multiplication is equal to the Required Number,
(Your program should prompt for the number N and outputs 3-numbers those if we multiply
equals to N. Also if there isn’t any 3–tuple of numbers then it should say NO).

44

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

CHALLENGE SECTION

Shapes Printing
As we discussed earlier the power of functions, how we divide our problems in small pieces and

make a complete picture by attaching/matching all these parts and use any small part anywhere if we want
that function to perform such operation. This is called divide and conquer. You will see in a while the beauty
of this.

Classically other books use nested loop to print these shapes(we will do this with classical method
also) but we are going to print these generically in short simple way. You will see in while how beautifully we
are going to do this.

The above shapes is our target to achieve. Now think for a while what kind of coding module we need

again and again until we print these shapes in classical way.

Shape 1

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20

#include <iostream>​
using namespace std;​
int main()​
{​
 int height;​
 char symbol;​
 cout << "enter height: ";​
 cin >> height;​
 cout << "enter symbol: ";​
 cin >> symbol;​
 for(int ln = 1; ln <= height; ln++)​
 {​
 for(int c = 1; c <= ln; c++)​
 {​
 cout << symbol;​
 }​
 cout << endl;​
 }​
 return 0;​
}

Line # symbol(no of times)

1 1 - star(‘*’)

2 2

3 3

. .

. .

ln ln

Link: http://codepad.org/ccDtt1ya
Output

45

http://codepad.org/ccDtt1ya

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Description

Shape 4

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24

#include<iostream>​
using namespace std;​
int main()​
{​
 int height;​
 char symbol;​
 cout << "enter height: ";​
 cin >> H;​
 cout << "enter symbol: ";​
 cin >> symbol;​
 for(int ln = 1; ln <= H; ln++)​
 {​
 for(int k = H; k > ln; k--)​
 {​
 cout<<" ";​
 }​
 for(int j = 1; j <= ln; j++)​
 {​
 cout<<symbol;​
 }​
 cout<<endl;​
 }​
 return 0;​
}

Line # space symbol(‘*’)

1 H-1 1

2 H-2 2

3 H-3 3

. . .

. . .

ln H-ln ln

Link: http://codepad.org/uQ6j9byX
Output

Description

46

http://codepad.org/uQ6j9byX

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

Generic Function for Printing Stars
Code

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17

#include <iostream>​
using namespace std;​
void PrintASymbolKtime(char sym, int k);​
//this function print the symbol(sym) k times​
int main()​
{​
 char symbol = '*';​
 PrintASymbolKtime(symbol, 10);​
 return 0;​
}​
void PrintASymbolKtime(char sym, int k)​
{​
 for(int a=1; a<=k; a++)​
 {​
 cout<<sym;​
 }​
}

Link: http://codepad.org/b0P4Z6jF
Output

Description

Lets see how to print different shapes using divide and conquer strategy

Shape 1
Code

47

http://codepad.org/b0P4Z6jF

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24

#include <iostream>​
using namespace std;​
void PrintASymbolKtime(char sym, int k);​
void Shape1(char sym, int H);​
int main()​
{​
 char symbol;​
 int lines;​
 cout << "enter symbol and number of lines: ";​
 cin >> symbol >> lines;​
 Shape1(symbol, lines);​
 return 0;​
}​
.​
. //PrintASymbolKtime function here​
.​
void Shape1(char sym, int H)​
{​
 for(int ln=1; ln<=H; ln++)​
 {​
 PrintASymbolKtime(sym,ln);​
 cout<<"\n";​
 }​
}

Line # symbol(no of times)

1 1

2 2

3 3

. .

. .

ln ln

Link: http://codepad.org/nIHcqCRS
Output

Description

Shape 2
Code

48

http://codepad.org/nIHcqCRS

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24

#include <iostream>​
using namespace std;​
void PrintASymbolKtime(char sym, int k);​
void Shape2(char sym, int H);​
int main()​
{​
 char symbol;​
 int lines;​
 cout << "enter symbol and number of lines: ";​
 cin >> symbol >> lines;​
 Shape2(symbol, lines);​
 return 0;​
}​
.​
. //PrintASymbolKtime function here​
.​
void Shape2(char sym, int H)​
{​
 for(int ln=1; ln<=H; ln++)​
 {​
 PrintASymbolKtime(sym, H+1-ln);​
 cout << endl;​
 }​
}

Line # symbol(no of times)

1 15 - star(‘*’)

2 14

3 13

. .

. .

ln H + 1 - ln

Link: http://codepad.org/c1VFwSFc
Output

Description

Shape 2
Code

49

http://codepad.org/c1VFwSFc

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

1​
2​
3​
4​
5​
6​
7​
8​
9​

10​
11​
12​
13​
14​
15​
16​
17​
18​
19​
20​
21​
22​
23​
24​
25

#include <iostream>​
using namespace std;​
void PrintASymbolKtime(char sym, int k);​
void Shape3(char sym, int H);​
int main()​
{​
 char symbol;​
 int lines;​
 cout << "enter symbol and number of lines: ";​
 cin >> symbol >> lines;​
 Shape3(symbol, lines);​
 return 0;​
}​
.​
. //PrintASymbolKtime function here​
.​
void Shape3(char sym, int H)​
{​
 for(int ln=1; ln<=H; ln++)​
 {​
 PrintASymbolKtime(' ', H-ln);​
 PrintASymbolKtime(sym, ln);​
 cout<< "\n";​
 }​
}

Line # space symbol(‘*’)

1 H-1 1

2 H-2 2

3 H-3 3

. . .

. . .

ln H-ln ln

Link: http://codepad.org/DsvmkfkN
Output

Description

Print Diamond

Practice Exercise

1.​ The following iterative sequence is defined for the set of positive integers:

n → n/2 (n is even)

n → 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

50

http://codepad.org/DsvmkfkN

Chapter 7​ ​ ​ ​ ​ ​ ​ Reusability and Scalability

It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms.

Although it has not been proved yet (Collatz Problem), it is thought that all starting

numbers finish at 1.

Which starting number, under one million, produces the longest chain?

2.​ The sequence of triangle numbers is generated by adding the natural numbers. So the 7
th

triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …

Let us list the factors of the first seven triangle numbers:

 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?

​

51

	Chapter 6
	Iteration and Reusability
	Loops and their variants
	The while statement
	The do...while statement
	The for statement

	7.2 Playing with Numbers, Sequences and Series
	7.2.1 Problem: Range Addition
	Program 7.2.2: Printing Nth Triangle Number.
	Program 7.2.3: Print Triangle Number Sequence

	7.3 Reusability and functions(Factorials, Permutations, Combinations)
	Factorial
	Permutation(Ordered Arrangements)
	Combination(Unordered Selections)
	Program 7.3.1: Factorial of Number
	Program 7.3.2: Permutation of two Numbers
	Program 7.3.3: Combinations of two Numbers

	7.4 Evens/Odds, Min/Max
	Evens/Odds
	Problem 7.4.1 Frequency of Even and Odd Numbers
	Problem 7.4.2: Maximum and Minimum of Numbers
	Problem 7.4.3 Combine above given two problems

	7.5 GCD, LCM, Fraction and its Relatives
	7.5.1 GCD
	7.5.1.1 Problem: Finding the GCD of two numbers.
	7.5.1.2 Problem: Write a program that takes a number n from the user and then takes n inputs from user and find their GCD, Reuse the i) part.

	7.5.2 L.C.M
	Problem: find LCM of two numbers.

	7.5.3 Reduced fraction
	Problem: calculate and display reduced fraction.

	7.6 Perfect Squares, Integer Square-root
	Perfect square
	Problem 7.6.1: Perfect Square or Not

	Integer Square-root
	Problem 7.6.2:

	7.7 Primes and its relatives
	Prime and Composite Integers

	7.8 Palindrome and Reverse and binary numbers
	Palindrome
	Binary Number
	Program 7.8.1: Reverse of Number
	Program 7.8.2: Palindrome Check
	Program 7.8.3: Decimal to Binary Number

	Fibonacci Number
	Problem 7.9.1
	Problem 7.9.2
	Write a program that takes input ‘k’ from user which means user is interested in k Fibonacci numbers and then ask again one by one these k Fibonacci numbers who wants to know.(Reuse part i)​e.g. Fn = Fn-1 + Fn-2, F0 = 0, F1 = 1​​0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…....
	Code

	7.10 Some Problem
	Program 7.10.1: Triplets
	
	
	CHALLENGE SECTION

	Shapes Printing
	Shape 1
	Shape 4
	Generic Function for Printing Stars
	Lets see how to print different shapes using divide and conquer strategy
	Shape 1
	Shape 2
	Shape 2

