
navigator.clipboard API Proposal
(public strawman doc)

started by:
last updated:

canonical link (for Googlers):
crbug:

lgarron@
2016-03-09
bit.ly/navigator-clipboard
593475

See Supporting navigator.clipboard in Chrome for Chrome-specific details.

Contents

Overall TODO
Disclaimer
Motivation
History

Abuse
Benefits of the proposed API
Proposal

Type Definitions
navigator.clipboard.copy()
navigator.clipboard.paste()
navigator.clipboard.addEventListener(“change”)

Appendix A: “Simple” code to copy a string
Appendix B: Why not use document.execCommand()?

Overall TODO

TODO
●​ Will document.execCommand() have to stick around?
●​ Interaction with existing baggage.
●​ Other MIME types (images, etc.)
●​ Sequence numbers
●​ Are there times you want to trigger a “real” paste but can’t emulate it using

clipboard reading?
●​ Talk about how you can almost shim the proposed API already (see

lgarron/clipboard.js), although you still need to register a global listener for the
“copy” event.

●​ Figure out how to read all messages in this thread.

https://bit.ly/navigator-clipboard
https://crbug.com/593475
https://docs.google.com/document/d/12Yj6GeSBBLIP7ff5vor_D-jA1TY2P-PtcbLGy-wegL8/edit#heading=h.6j5hxcqrm2vp
https://lists.w3.org/Archives/Public/public-webapps/2015JulSep/0235.html

●​ Interaction with the Permissions API?
●​ Requestion permission separately from using the API?
●​ Copying/pasting “files” to/from the OS (similar to drag/drop considerations?)
●​ If we implement the paste API, could Google Docs stop shipping as an extension

and instead just ship with built-in clipboard permission?
●​ Frames should not have access to the clipboard.
●​ Can we avoid three permissions? (write, read, listen)
●​ Listen: only allow on desktop?
●​ Extensions

Disclaimer

As of right now, this is a very basic strawman by Lucas Garron, whose main relevance so far
is that he is the the engineer in charge of the security UI review for the clipboard API in
Google Chrome. It does not (yet?) reflect any intent to implement this in Chrome, and still
needs lots of feedback from stakeholders before anyone should even consider it.

Motivation

Example from github.com

Web apps commonly offer a convenient “copy to clipboard” button. A few apps built on the
web platform also have advanced use cases that benefit from more clipboard access. In ​
particular:

●​ Some apps want to be able to copy a selection without requiring specific user
interactions to copy/select the content.

●​ Some apps (e.g. rich document editors) want to read the clipboard without requiring
the user to initiate an OS “paste” action every time.

●​ Some apps (e.g. remote desktop) want to receive updates about clipboard changes.

History

Since the introduction of designMode, there has been a web specification that supports
clipboard access: document.execCommand(). This API was originally not available to

https://developer.mozilla.org/en-US/docs/Web/API/Document/designMode
https://w3c.github.io/editing/execCommand.html

ordinary web pages in most browsers, due to concerns about clobbering the clipboard and
sniffing clipboard content . 1

Thus, the only reliable way to implement this feature across browsers until 2015 was
through Flash (e.g. ZeroClipboard). Anecdotally, for some sites this was the last remaining
use of Flash that did not have an open web API alternative . 2

However, as of 2015 all major browsers support document.execCommand(“copy”):

●​ Internet Explorer 9 (2011-04-14)
●​ Chrome 42 (2015-04-14; email thread, bug)
●​ Opera 29 (2015-04-28)
●​ Firefox 41 (2015-09-22)
●​ Safari Technology Preview (2016-03-30; announcement)

Internet Explorer allows “paste” as well as “copy” for plain text, but shows a permission
prompt to the user for both.
All other browsers allow copying “text/plain” and/or “text/html” upon user gesture
(without a user prompt).
Also, “cut” is currently supported everywhere “copy” is supported.

There is work on a Clipboard API specification by Hallvord R. M. Steen of Mozilla. However,
this API is strongly rooted in the assumption that it should be based on
document.execCommand(), and Hallvord has even started a thread questioning whether
this is appropriate in the long term.

Regarding potential for abuse, see Appendix C.

Benefits of the proposed API

Here are the main benefits over this proposal over the existing
document.execCommand(“copy”) technique:

●​ Asynchronous: navigator.clipboard can use the same Promise-style API as other
powerful web features. This:

○​ Allows user agents to show a permission prompt without blocking the page
in the same way as other APIs.

○​ Allows sanitizing security-sensitive data types without blocking the main
page.

2 citation needed
1 Wording taken from this Blink intent.

http://zeroclipboard.org/
https://googlechromereleases.blogspot.com/2015/04/stable-channel-update_14.html
https://groups.google.com/a/chromium.org/d/msg/blink-dev/3QL6mAhC3Lw/rZ2S3YM-9XIJ
https://crbug.com/437908
https://dev.opera.com/blog/opera-29/
https://www.mozilla.org/en-US/firefox/41.0/releasenotes/
https://webkit.org/blog/6017/introducing-safari-technology-preview/
https://www.w3.org/TR/clipboard-apis/
https://lists.w3.org/Archives/Public/public-webapps/2015JulSep/0235.html
https://groups.google.com/a/chromium.org/d/msg/blink-dev/3QL6mAhC3Lw/Uue4XoxcSOgJ

■​ In particular, one main reason Chrome does not support images using
the existing API is because of a desire to transcode any images written
to/from the clipboard in order to guard against exploits in external
parsers.

●​ Easy to use: document.execCommand() has a lot of baggage from its designMode
origins, and is difficult to use correctly (see Appendix B for more).

●​ The navigator object is available from workers, which means this API is not
artificially restricted to the UI thread.

Proposal

Introduce a new object: navigator.clipboard

For now, this proposal:

●​ ignores the existing
document.execCommand()/document.addEventListener(“copy”) approach,

●​ ignores that the Clipboard.clipboardData type exists, and
●​ attempts to suggest an API “as if we were introducing it from scratch”.

TODO
●​ Be pragmatic and use Clipboard.clipboardData in the APIs.

Type Definitions

/*
 * @enum {string}
 */
MIMETypeString = [“text/plain”, “text/html”, ...]

/** @typedef {Object<MIMETypeString, *>} */
MIMETypeObject;

TODO
●​ Instead of MIMETypeObject, we should actually use DataTransferItems (see

Hallvord’s example) or ClipboardEvent.clipboardData. However, the basic goal
remains to map MIME types to values.

navigator.clipboard.write()

https://developer.mozilla.org/en-US/docs/Web/API/DataTransferItem
https://lists.w3.org/Archives/Public/public-webapps/2015JulSep/0235.html
https://developer.mozilla.org/en-US/docs/Web/API/ClipboardEvent/clipboardData

JSDoc:

/**
 * @param {MIMETypeObject} content
 * @returns {!Promise<>}
 */
function navigator.clipboard.write(content) {}

Examples:

// Markup with specified MIME type.
navigator.clipboard.write({
 “text/html”: “Howdy, partner!”
});

// Multiple MIME types.
navigator.clipboard.write({
 “text/plain”: “Howdy, partner!”,
 “text/html”: “Howdy, partner!”
});

// Use the Promise outcome to perform an action.
navigator.clipboard.write(“text”).then(function() {
 console.log(“Copied successfully!”);
}, function() {
 console.error(“Unable to write. :-(”);
});

TODO
●​ Be pragmatic and use Clipboard.clipboardData in the APIs.
●​ Also provide convenience functions like

navigator.clipboard.writeText(/*string*/),
navigator.clipboard.writeElement(/*DOMElement*/), or a way to write
the selection?

navigator.clipboard.read()

JSDoc:

/**
 * @returns {!Promise<MIMETypeObject>}

 */
function navigator.clipboard.read() {}

/** @typedef {Object<string, *>} */
MIMETypeObject;

TODO
●​ Is it possible to make the argument type simpler for the “paste plain text” case?
●​ What if the only MIME type is text/html and you want plain text? Should the UA

convert to plain text? Which ones already do?

Examples:

// Common use case: pasting a string
navigator.clipboard.read().then(function(clipboardData) {
 if (“text/plain” in clipboardData) {
 console.log(“Your string:”, clipboardData[“text/plain”])
 } else {
 console.error(“No string for you!”);
 }
})

// General case: pasting a string
navigator.clipboard.read().then(function(clipboardData) {
 // Do stuff with clipboardData
})

navigator.clipboard.addEventListener(“change”)

Usage:

/**
 * @param {ClipboardEvent}
 */
function listener(clipboardEvent) {
 // Do stuff with clipboardEvent.clipboardData
}

navigator.clipboard.addEventListener(“change”, listener);

TODO
●​ Attach clipboardChange to document instead?

Appendix A: “Simple” code to copy a string

Suppose you want a simple copyToClipboard(stringMessage) function without
manipulating the DOM or modifying the document selection. This is fairly minimal “safe”
implementation that works in today’s browsers.

var copyToClipboard = (function() {
 var _dataString = null;
 document.addEventListener("copy", function(e){
 if (_dataString !== null) {
 try {
 e.clipboardData.setData("text/plain", _dataString);
 e.preventDefault();
 } finally {
 _dataString = null;
 }
 }
 });
 return function(data) {
 _dataString = data;
 document.execCommand("copy");
 };
})();

TODO
●​ Add the simplest way using DOM modification.

Appendix B: Why not use document.execCommand()?

Although the web thrives by building on existing features (even if they are imperfect),
document.execCommand() has a lot of historical baggage.

Here is how to use "copy":

document.addEventListener("copy", function(event) {
 // Approach 1: set individual values
 event.clipboardData.setData(“text/plain”, “some text”);

 // Approach 2: modify the document selection

 // Bookkeeping
 event.preventDefault();

}

document.execCommand("copy")

Paste:

document.addEventListener("paste", function(event) {
 // read event.clipboardData
}
document.execCommand("paste")

Points:

●​ document.execCommand() is synchronous. This makes it tricky for user agents to
ask for user permission to execute a command.

○​ The event listener synchronously fires before control returns to the callsite of
document.execCommand(), but this is not completely obvious until you try to
work with them.

○​ Image encoding/decoding issues (via @dcheng):
■​ When pasting, we transcode the image from bitmap to PNG. This

takes time, but the way the API is written forces us to do this
synchronously and block the main thread. The DataTransferItem
interface has a getAsFile() member, but it's not possible to construct a
File object of unknown size. Thus we have to block on the image
transcode before we can return the File object. This is extremely
noticeable when pasting large images.

■​ When copying, we need to decode the image as well. We could offload
the decode to another thread and unblock the main thread but…

■​ If you immediately execCommand("paste") after
execCommand("copy"), you would expect the image you just copied to
the clipboard to be there. But it might not be if the image decode isn't
done. So we'd end up blocking the main thread on image decode on
image copy too (!!!)

●​ In order to modify the clipboard, use of document.execCommand(“copy”) also
requires intercepting a “copy” event on the document (or the relevant part of the
DOM) that you have to register ahead of time using
document.addEventListener("copy”).

○​ You have to call one function (execCommand) to trigger copy event, but you
have to use another function (the listener) to modify the clipboard. If you
want to be able to copy a dynamic value, the listener needs to be able to
reference it dynamically. Even the common case of trying to copy a string
“safely” becomes complicated. See below.

○​ Since the event also fires for user-initiated copy events, this makes it easy
for a web developer to introduce unintended side effects.

○​ If you use multiple libraries that try to do anything with the clipboard (not
unreasonable in the near future, given client-side packaging trends), you can
end up with conflicting listeners.

○​ Similar for paste.
●​ In practice, document.execCommand(“copy”) requires a library to use “properly”

(see lgarron/clipboard.js and zenorocha/clipboard.js). It is better to give modern
web apps the right tools out of the box.

○​ zenorocha/clipboard.js is less than 5 months old and has 11,000 stars on
GitHub. The library also provides some declarative conveniences, but its
popularity is a strong indicator that developers want more a more
convenient way to use the clipboard API.

●​ In order to copy part of the DOM using document.execCommand(“copy”), you have
to change the current selection.

●​ document.execCommand(“copy”) was introduced as an incidental part of
designMode, even though none of the browsers that support
document.execCommand(“copy”) require any part of the document to be in
designMode in order to call it. Therefore, the use of
document.execCommand(“copy”) has compromises based on a 10-year old API
designed for editing the DOM. It is natural to edit the DOM/selection with some copy
operations, but this is not necessary for most use cases.

●​ document.execCommand() has many commands unrelated to copying, with
various interoperability bugs, and using it to control the clipboard is awkward (more
below). This doesn’t necessarily impact the usability of the copy command, but it
would be simpler if a web developer only needed to reference a straightforward API
dedicated to what they need.

●​ Conceptually, the clipboard is not a property of the document. It makes more sense
to consider it a property of the navigator.

○​ window might make sense, but workers don’t have a window global.
Regardless of whether it seems wise at the moment to give workers access to
the clipboard, this problem has hit in the past with window.crypto.

●​ The “Clipboard API” spec is still a draft (strongly based on designMode roots). Note
that contains the definition of the Clipboard.clipboardData type.

●​ Unless we want document.execCommand() to stay the recommended API forever,
the best time to introduce a change is before starting supporting paste on the
open web.

●​ There is currently no way to register a listener for clipboard changes. In order to
support this, we would require a spec change anyhow.

●​ The latest execCommand spec has the following strongly worded warning:

https://github.com/lgarron/clipboard.js
https://github.com/zenorocha/clipboard.js
https://github.com/zenorocha/clipboard.js
https://developer.mozilla.org/en-US/docs/Web/API/Document/designMode
https://github.com/guardian/scribe/blob/master/BROWSERINCONSISTENCIES.md
https://lists.w3.org/Archives/Public/public-webcrypto-comments/2013Jul/0012.html
https://w3c.github.io/clipboard-apis/#widl-ClipboardEvent-clipboardData
https://w3c.github.io/editing/execCommand.html

“
WARNING

This spec is incomplete and it is not expected that it will advance beyond draft status.
Authors should not use most of these features directly, but instead use JavaScript
editing libraries. The features described in this document are not implemented
consistently or fully by user agents, and it is not expected that this will change in the
foreseeable future. There is currently no alternative to some execCommand actions
related to clipboard content and contentEditable=true is often used to draw the caret
and move the caret in the block direction as well as a few minor subpoints. This spec
is to meant to help implementations in standardizing these existing features. It is
predicted that in the future both specs will be replaced by Content Editable Events
and Input Events.

”

Appendix C: Abuse

Even though the existing API on the open web easily allows any site on the web to
overwrite the clipboard, there does not appear to be significant abuse.

Also note that even without document.execCommand(“copy”) it has long been possible to
intercept a user-initiated copy command and modify the content before it reaches the
clipboard:

document.addEventListener("copy", function(e) {
 // modify the document selection or call e.clipboardData.setData()
}

Anecdotally, this is also not abused much. The main “arguably user-hostile” use of this
technique is to insert links and copyright notices into text that the user copies from a page . 3

3 citation needed

	navigator.clipboard API Proposal
	(public strawman doc)
	Overall TODO
	Disclaimer
	Motivation
	History
	Benefits of the proposed API
	Proposal
	Type Definitions
	navigator.clipboard.write()
	
	navigator.clipboard.read()
	navigator.clipboard.addEventListener(“change”)

	
	
	
	Appendix A: “Simple” code to copy a string
	Appendix B: Why not use document.execCommand()?
	Appendix C: Abuse

