
Motivation: 
Currently, there is a vast difference in runtime between below 2 queries run on tpch data of 
scale 42 in Parquet format with SNAPPY Compression: 

1.​ select * from lineitem where l_comment like 'blithely unusual pinto bean' 

(~33s) 

2.​ select l_orderkey from lineitem where l_comment like 'blithely unusual pinto 

bean' (~11s) 
** Both the queries are run on single impalad with mt_dot set to 1 to highlight the slowdown and make results more deterministic. But the behaviour 
can easily be extrapolated to bigger data sets in distributed settings. 

Both return 79 rows, scan the same table and filter on the same predicate. Still the second 
query is 3X faster than the first query. The reasons can be found in the counters below derived 
from the profile of each query: 

1.​ Query1 counters: 
     ​ - BytesRead: 8.75 GB (9392896748) // Total bytes read 

     ​ - DecodeTupleTime: 14s448ms // Total Time to decode, convert and validate 

                                   // parquet values 

     ​ - DecompressionTime: 13s712ms // Total time to decompress parquet pages. 

     ​ - MaterializeTupleTime: 17s919ms // Time to materialize all the tuples 

                                       //  includes DecodeTupleTime above 

     ​ - NumColumns: 16 (16)         // Total number of columns scanned 

     ​ - RowsRead: 252.01M (252010621) // Total Rows Read 

     ​ - RowsReturned: 79 (79)         // Final number of rows returned 

     ​ - ScanRangesComplete: 36 (36)    

     ​ - TotalTime: 33s055ms 
2.​ Query 2 counters 

       - BytesRead: 3.40 GB (3645729601) 

       - BytesReadLocal: 3.40 GB (3645729601) 

       - DecodeTupleTime: 1s118ms 

       - DecompressionTime: 7s683ms 

       - MaterializeTupleTime: 2s743ms 

       - NumColumns: 2 (2) 

       - RowsRead: 252.01M (252010621) 

       - RowsReturned: 79 (79) 

       - ScanRangesComplete: 36 (36) 

       - TotalTime: 10s915ms 

Looking at the counters there are 3 major reasons for Query 1 being slower than Query 2: 
1.​ More data is scanned in Query 1: 8.75 GB vs 3.4 GB. The reason for this is the number 

of columns being scanned in Query 1 is 16 vs 2 in Query2. As parquet is a columnar 
format, individual columns can be scanned and filtered separately. 

2.​ Decompression of the parquet columns: Data is compressed in Snappy format. With 
more columns to decompress, the decompression time taken by Query 2 is more too: 
17s919ms vs  7s683ms. 

3.​ Materialization Time: It is total time spent in materializing tuples and evaluating 
predicates against them. This also includes time to decode individual column values 



(shown in DecodeTupleTime). Materialization time for Query 1 is 17s919ms vs 2s743ms. 
This is also because the number of columns being materialized is different i.e., 16 vs 2. 

 

In Query2, since only 79 rows remained after filtering all the above 3 steps could have been 
avoided for columns except  l_comment. l_comment has to be scanned, decompressed and 
materialized as filter predicate has to be evaluated over it. But we could have selectively 
avoided it for the rest of the 15 columns. In this document we would discuss avoiding the 
Materialization phase for filtered out rows and speed up queries like Query 1. 

Problem Statement: 
For Parquet row groups scanned, all the required columns are materialized and then the static 
filters and dynamic filters filter out the rows. In this process, even materialization of columns of 
filtered out rows also happens. Avoiding materialization of it can improve the performance on 
scan. Overheads have been illustrated in the above section. 

Scope: 
●​ This document only addresses the problem of avoiding the materialization of the filtered 

column values. It doesn’t address the problem of avoiding scan or decompression. 
●​ Emphasis on no regression for cases where filtering doesn’t happen. 

Current Flow: 
For Parquet row groups scanned, it is processed in batches of 1024 size. Every batch of rows 
are read from decompressed data pages into scratch_batch_, materialized, filtered and 
transferred to the output batch. Core of this logic is here and explained below: 

PROCESSING OF ROW GROUP IN PARQUET [1] 
1.​ Allocate memory for scratch_batch_ to hold 1024 tuples of the row group. This 

memory will be transferred to the output batch reading the scan later on. 
2.​ Array of parquet column readers (ParquetColumnReader) column_readers_ 

exists to read individual logical columns from Parquet file. If the value is collection then 
the reader would be CollectionColumnReader else it would be 
BaseScalarColumnReader.  

3.​ For every column reader: 
a.​ Read ‘1024’ values in Batch. Either ReadNonRepeatedValueBatch or 

ReadValueBatch are used. 
b.​ On reading error, RowGroup is skipped and resources are freed. 
c.​ Readers fill the data in respective slots in every tuple at  

scratch_batch_->tuple_mem 

https://github.com/apache/impala/blob/84d784351c7a3606ec86abf6ea757aef72687b55/be/src/exec/parquet/hdfs-parquet-scanner.cc#L2095
https://github.com/apache/impala/blob/84d784351c7a3606ec86abf6ea757aef72687b55/be/src/exec/parquet/hdfs-parquet-scanner.cc#L2095


4.​ Transfer N values to output row batch: 
a.​ For every tuple, filter it against runtime filters and static filters. 
b.​ Finalize the transfer [5] 

i.​ If Scan is a selective, compact output batch i.e., copy surviving tuples to 
new memory and release ‘scratch_batch_->tuple_mem’[6]. 

ii.​ Else, pointers to surviving tuples are stored in the output batch. 
scratch_batch_->tuple_mem is made null and ownership of the 
memory is transferred to row batch. 

5.​ Goto Step 1 to decode the rest of data in RowGroup. 

Changes to avoid materialization: 
Proposed change to avoid materialization phase for column values of rows filtered out. The 
changes would avoid decoding, conversion and validation of such Parquet values like in the 
ReadSlot function here. 

PROCESSING OF ROW GROUP IN PARQUET 
1.​ PreProcess (Will be done in Scanner once): 

a.​ Extract list of ‘SlotId’ from runtime/static Filters. 
b.​ Map the list of ‘SlotId’ to the ColumnReaders. Based on this partition column 

readers into 2 groups:  
i.​ Filter Column Readers 
ii.​ Non-Filter Column Readers 

2.​ If Filter Column Readers is empty, revert to the old method else new method as follows: 
3.​ Allocate memory for scratch_batch_ to hold 1024 tuples of the row group. This 

memory will be transferred to the output batch reading the scan later on. 
4.​ Array of parquet column readers (ParquetColumnReader) column_readers_ 

exists to read individual logical columns from Parquet file. If the value is a collection then 
the reader would be CollectionColumnReader else it would be 
BaseScalarColumnReader. 

5.​ For every Filter Column Readers: 
a.​ Read 1024 values in Batch. Either ReadNonRepeatedValueBatch or 

ReadValueBatch are used. 
b.​ On reading error, RowGroup is skipped and resources are freed. 
c.​ Readers fill the data in respective slots in every tuple at  

scratch_batch_->tuple_mem 
6.​ Save the address stored at scratch_batch_->tuple_mem in ‘tuple_arr’ 
7.​ Create row_ranges_to_materilaize when filtering below and initialize vector 

prev_range to empty. 
8.​ Transfer 1024 values to output row batch (). 

a.​ For every tuple, filter it against runtime filters and static filters. 

https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L101
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L115
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exec/parquet/parquet-column-readers.cc#L668


b.​ If tuple survives then add index to prev_range else add  prev_range  to 
row_ranges_to_materilaize and initialize prev_range to empty vector. 

c.​ If Scan is a selective, compact output batch i.e., copy surviving tuples to new 
memory and release ‘scratch_batch_->tuple_mem’[6]. Save new address 
in ‘tuple_arr’. 

d.​ Else Pointers to surviving tuples are stored in the output batch, 
scratch_batch_->tuple_mem is made null and ownership of the memory is 
transferred to the output batch. 

9.​ If all the 1024 tuples have been filtered then Page batch can be skipped: 
a.​ For every column reader in Non-Filter Column Readers: 

i.​ Use SkipTopLevelRows to skip 1024 rows. 
ii.​ Goto Step 3 

10.​Merge ranges in row_ranges_to_materilaize that are separated less than 
MATERILIZATION_THREHOLD (see discussion below on this threshold) 

11.​For every column reader in Non-Filter Column Readers: 
i.​ rowIdx = 0 
ii.​ For every range r  in row_ranges_to_materilaize 

1.​ If (rowIdx < r.start) SkipTopRows(r.start-rowIdx); 
2.​ Read the range r using either ReadNonRepeatedValueBatch 

or ReadValueBatch. Reader fills the data in respective slots in 
tuples whose pointers are stored at tuple_arr. 

3.​ rowIdx = r.end + 1. 
iii.​ SkipTopRows(1023 - rowIdx) 

12.​Goto Step 1 to decode the rest of data in RowGroup. 

Materialization Threshold: 
The reason for MATERILIZATION_THRESHOLD in the proposed change was due to decoding 
done in a batched manner. For a long streak of non-null or null values batch decoding is done 
by ReadNonRepeatedValueBatch.Breaking down that batch processing can severely affect 
the performance. We ran few experiments to check the slowdown when we batch together 
smaller number of rows for decoding via ReadNonRepeatedValueBatch: 
https://docs.google.com/spreadsheets/d/1v6PN7C52Ar8wzHhwxiyezLjph07uG-Ti0EiqkGVrqdw/
edit?usp=sharing 
 
We can see the effect  in the charts below. As we reduce the batched values for decoding from 
1024 to 1 we see a slowdown of around 7.22X and 7.77X for integer and string columns 
respectively. Other details: 

1.​ Benchmark: TPCH 42 scale 
2.​ Table: lineitem 
3.​ Number of rows scanned or decoded: 252.01M (252010621). 

https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L115
https://docs.google.com/spreadsheets/d/1v6PN7C52Ar8wzHhwxiyezLjph07uG-Ti0EiqkGVrqdw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1v6PN7C52Ar8wzHhwxiyezLjph07uG-Ti0EiqkGVrqdw/edit?usp=sharing


  

 



 

 

 

Based on the above results, we check if it is worth it to skip the next ‘N’ rows (i.e., 
MATERILIZATION_THRESHOLD) as it has chances to cause slowdown. If ranges in 
row_ranges_to_materilaize are separated by more than 
MATERILIZATION_THRESHOLD, then we try to decode them in separate batches. Else those 
ranges are merged and decoded together in a single batch. MATERILIZATION_THRESHOLD 
will be configurable and will be set to default value of 10 (can change due to further 
experimentation). 

RELATED CHANGES: 
1.​ SkipTopLevelRows does not handle page boundaries. Either the batches need to be 

within the page boundary always or SkipTopLevelRows should handle those boundaries. 
2.​ ReadNonRepeatedValueBatch or ReadValueBatch currently fills data in 

respective slots in tuples pointed to by  scratch_batch_->tuple_mem. They need 
to be changed to take an array of tuple pointers instead (‘tuple_arr’). 

Future Tasks: 
1.​ Avoiding Decompression and Scanning of non-required column values. 
2.​ Supporting Late Materialization for Broadcast Joins. Probe side tuples can be filtered out 

by Join condition and hence avoiding materialization until then can give more savings.  
3.​ Work on supporting this for ORC format and other formats like Avro etc. 

 

Code Reference: 
1.​ AssembleRows (Core part of the processing that needs to change for Parquet): 

https://github.com/apache/impala/blob/84d784351c7a3606ec86abf6ea757aef72687b55/
be/src/exec/parquet/hdfs-parquet-scanner.cc#L2095 

2.​ Fetch SlotIds from filter: 
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/b
e/src/exprs/scalar-expr.cc#L330 

3.​ Processing Scratch Batch and applying filters to it: 
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/b
e/src/exec/hdfs-columnar-scanner-ir.cc#L25 

https://github.com/apache/impala/blob/84d784351c7a3606ec86abf6ea757aef72687b55/be/src/exec/parquet/hdfs-parquet-scanner.cc#L2095
https://github.com/apache/impala/blob/84d784351c7a3606ec86abf6ea757aef72687b55/be/src/exec/parquet/hdfs-parquet-scanner.cc#L2095
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exprs/scalar-expr.cc#L330
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exprs/scalar-expr.cc#L330
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exec/hdfs-columnar-scanner-ir.cc#L25
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exec/hdfs-columnar-scanner-ir.cc#L25


4.​ ReadSlot (Used to decode single slot): 
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/b
e/src/exec/parquet/parquet-column-readers.cc#L668 

5.​ FinalizeTuples 
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/
be/src/exec/scratch-tuple-batch.h#L101  

6.​ Compact Output Batch 
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/b
e/src/exec/scratch-tuple-batch.h#L115  

 
 
 
 
 
 
 
 

https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exec/parquet/parquet-column-readers.cc#L668
https://github.com/apache/impala/blob/b28da054f3595bb92873433211438306fc22fbc7/be/src/exec/parquet/parquet-column-readers.cc#L668
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L101
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L101
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L115
https://github.com/apache/impala/blob/9d46255739f94c53d686f670ee7b5981db59c148/be/src/exec/scratch-tuple-batch.h#L115
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