

Table of content

1. INTRODUCTION​ 3

1.1 Project Title​ 3
1.2 Problem​ 3
1.4 Background​ 3
1.5 Solution

​ 3
2. Project Goals​ 4

2.1 Project Objectives​ 4
2.2 Expected Deliverable

​ 4
3. Implementation Plan​ 4

3.1 Project Methodology​ 4
3.2 Project Technical Elements​ 5
3.3 Challenges and Proposed Solutions​ 5

4. Implementation Plan​ 6

4.1 Deliverable Plan and Schedule​ 6

5.Wireframe​ 7

6. BIOGRAPHICAL INFORMATION​ 8

6.1 Education Background​ 8
6.2 Experience​ 8
6.3 Technical Strength​ 9
6.4 Contact​ 10

1.​INTRODUCTION:

1.1 Project Title:
Advanced OpenRAM LVS Mismatch Visualisation and Debugging
Interface

1.2 Problem:
The problem we are trying to solve is the difficult and time-consuming
process of identifying and debugging Layout vs. Schematic (LVS)
mismatches in VLSI design when using the Magic layout editor and
OpenRAM framework. Mismatches between the physical layout and
the schematic can lead to incorrect functioning of the integrated circuit,
which makes it crucial for designers to identify and resolve these
issues effectively.

1.4 Background:
In the current state, users working with the Magic layout editor and
OpenRAM framework lack a dedicated user-friendly interface for
viewing and debugging LVS mismatches. The identification and
debugging process often involves manual inspection of layout and
schematic files, which can be complex and time-consuming. This
inefficiency slows down the overall design process and may lead to
overlooked errors in the final design.

1.5 Solution:
The proposed solution is to develop an advanced, interactive
Python-based GUI that efficiently visualizes LVS mismatches between
layout and schematic representations. The interface will parse LVS
result files, highlight mismatched nets, and visually represent extra nets
in the schematic graph if any. This will enable designers to easily
identify and resolve LVS mismatches, leading to an enhanced user
experience and faster design process.

2. Project Goals:
1.​ Develop an advanced, interactive GUI for efficient visualization of LVS

mismatches.
2.​ Streamline the LVS debugging process.
3.​ Enhance the overall user experience for designers working with

OpenRAM.

2.1 Project Objectives:
1.​ Provide an efficient visualization interface that simplifies the LVS

debugging process.
2.​ Increase productivity and satisfaction for designers working with

OpenRAM.
3.​ Encourage wider adoption of the OpenRAM framework in the ASIC

design community.

2.2 Expected Deliverable:
1.​ A fully functional, advanced LVS mismatch visualization and debugging

interface.
2.​ Comprehensive documentation on the usage, integration, and

maintenance of the interface with existing OpenRAM tools.

3. Implementation Plan:
3.1 Project Methodology:

To achieve the project objectives, I will collaborate closely with mentors
and engage with the OpenRAM community. Regular meetings,
progress updates, and feedback sessions will be scheduled to ensure
the project stays on track and meets the community's needs and
expectations.

3.2 Project Technical Elements:

1.​ Conduct a thorough analysis of user requirements and existing LVS
debugging processes.

2.​ Design the GUI layout and user experience, focusing on efficient
visualization and interaction for LVS mismatches.

3.​ Develop a robust Python-based parser for LVS result files, capable of
handling complex cases.

4.​ Implement advanced visualization features that highlight mismatched
nets and visually represent extra nets in the schematic graph.

5.​ Conduct extensive testing and validation of the interface with real-world
use cases.

6.​ Develop comprehensive documentation, including usage guides,
integration instructions, and maintenance procedures.

3.3 Challenges and Proposed Solutions:

1.​ Parsing complex JSON output from Netgen and accurately mapping it
to layout and schematic graphs.

Solution: Perform an in-depth analysis of JSON output structures and
design a robust parser capable of handling various cases while
efficiently mapping the mismatches to the respective graphs.

2.​ Designing an intuitive, user-friendly interface that effectively visualizes
LVS mismatches and facilitates efficient debugging.

Solution: Conduct user research, gather feedback, and implement
iterative design improvements to ensure the interface meets user
needs and provides an efficient debugging experience.

3.​ Ensuring seamless integration with existing OpenRAM tools and
compatibility with various design cases.

Solution: Collaborate closely with the OpenRAM community and
mentors to identify compatibility requirements, and rigorously test the
interface to ensure it works well with existing tools and design
scenarios.

4. Implementation Plan:

4.1 Deliverable Plan and Schedule:

May 4 - 28 (Community Bonding Period):

●​ Get to know mentors, read documentation, and familiarise
myself with the OpenRAM framework and Magic layout editor.

May 29 (Coding officially begins):

Week 1 (May 29 - June 4):

●​ Analyze user requirements and existing LVS debugging
processes. Design the GUI layout and user experience.

Week 2-3 (June 5 - June 18):

●​ Develop the JSON parser for Netgen output and implement
advanced visualization features.

Week 4 (June 19 - June 25):

●​ Integrate the interface with existing OpenRAM tools and ensure
compatibility and seamless user experience.

Week 5-6 (June 26 - July 9):

●​ Conduct extensive testing and validation of the interface with
real-world use cases. Begin preparing for the midterm
evaluation.

Week 7 (July 10 - July 16):

●​ Gather feedback from mentors, iterate on the design, and refine
the interface based on user needs and requirements.

Week 8-10 (July 17 - August 6):

●​ Further refine the interface, implement additional features based
on feedback, and address any remaining issues.

Week 11 (August 7 - August 13):

●​ Develop comprehensive documentation, including usage guides,
integration instructions, and maintenance procedures.

Week 12 (August 14 - August 20):

●​ Perform final testing, bug fixing, and polish the interface.
Prepare for the final evaluation.

August 21 - 28 (Final week):

●​ Submit the final work product and final mentor evaluation.

5.Wireframe:
If you want to map the layout to the json file you will need to read in an
additional file called a .ext file. This file is generated from the magic layout file
and contains information including the coordinates of different nets. The
description for that file is here. So the UI is going to need to include an input for
that file as well.

According to my understanding, the rough idea presented serves to showcase
the envisioned process and layout for the Python-based GUI for Efficient LVS
Mismatch Visualization and Debugging.

http://opencircuitdesign.com/magic/manpages/ext_manpage.html

6. BIOGRAPHICAL INFORMATION:

6.1 Education Background:
 I have done Bachelors of Science in Software Engineering from
Usman Institute of technology (UIT) in 2022.

6.2 Experience:
I have worked as a Research Assistant in the MicroElectronics
Research lab (MERL). And as an Embedded Software engineer at
Intensivate.

The work i have done so far is,

1.​ Development of the "BURQ SUITE," an automated core
verification suite based on RISC-V. It produces verification
reports of regression tests performed on the core against the
RISC-V Standard Golden Model Instruction Set Simulator (ISS)
either Spike or Whisper.

2.​ Simulation of TensorFlow (TF) Lite Application on Zephyr RTOS
upon Litex Vex RISC-V SoC, on top of RENODE Framework.

Currently Working On:
1.​ Hardware Accelerator developed in CHISEL HDL specifically for

accelerating Generic Matrix Multiply (GeMM) based on Network
on Chip (NoC) architecture with generic interfaces.

2.​ Hardware Accelerator developed in CHISEL HDL specifically for
accelerating Secure Hash Algorithm (SHA-3) encryption and
decryption with generic interfaces.

3.​ In Extended version of "BURQ SUITE", Integrated RISC-V DV
and also looking into cocotb.

4.​ ChipShop, a cloud based GUI for accelerating SoC Design. It is
based on Chipyard which is a CHISEL based SoC generator
developed by UC Berkeley. ChipShop provides a cloud based
web interface GUI with which users can generate SoCs with
ease and prototype it on an FPGA without diving into code. Also,
user’s can share their designs with each other and collaborate
easily with real time collaboration features. (This is being
presented in the First Firesim/Chipyard workshop happening in
ASPLOS’23)

6.3 Technical Strength:
●​ Python
●​ Data Structure and algorithm
●​ Artificial Intelligence
●​ TCL
●​ C++
●​ Chisel
●​ Scala
●​ Script automation
●​ Web development
●​ Html & CSS
●​ Javascript
●​ UI Designing
●​ Software prototyping
●​ Software Quality Assurance
●​ RISC-V ISA
●​ Technical report writing

https://fires.im/workshop-2023/#program
https://fires.im/workshop-2023/#program
https://fires.im/workshop-2023/#program

6.4 Contact:
5.4.1 Full Name:

Mahnoor Ismail
5.4.2 Email:

mahnoorismail011@gmail.com
5.4.3 Github:

https://github.com/Mahnoor-ismail01
5.4.4 LinkedIn:

http://linkedin.com/in/mahnoor-ismail-b8017a179

mailto:mahnoorismail011@gmail.com
https://github.com/Mahnoor-ismail01
http://linkedin.com/in/mahnoor-ismail-b8017a179

	Table of content
	1.​INTRODUCTION:
	1.1 Project Title:
	1.2 Problem:
	1.4 Background:
	1.5 Solution:

	2. Project Goals:
	2.1 Project Objectives:
	2.2 Expected Deliverable:

	3. Implementation Plan:
	3.1 Project Methodology:
	3.2 Project Technical Elements:
	3.3 Challenges and Proposed Solutions:

	4. Implementation Plan:
	4.1 Deliverable Plan and Schedule:

	5.Wireframe:
	6. BIOGRAPHICAL INFORMATION:
	6.1 Education Background:
	6.2 Experience:
	6.3 Technical Strength:
	6.4 Contact:

