
First Order Boolean Logic, part 1 
  
“Logic” is an immense area of human knowledge; I have no plans to even mention all the 
aspects, and focus here only on simple notions and language, reasonable enough to be used in 
our daily practice as software developers. Lawyers or philosophers or physicist or linguist will 
probably need a very different kind of logic; we just won’t even look in those directions. 

The Language of First Order Logic 
  
Before talking about logic, even vaguely, we introduce a language that we will use throughout 
this text. It is neither loose nor strict, but somewhere in the middle. 
  
Definition 1. A first-order language consists of the following: 

-       Names that are supposed to denote some object from some kind of universe (like John 
denotes a certain human being in a small world where it does it uniquely, or 10 denotes a 
number, if we know exactly which numbers we are talking about); 
-       Functions that are used to form terms out of names and other terms; this includes infix 
notation, like 2+3; a function takes its parameters and has a result value; 
-       Terms that are essentially expressions built out of names and functions; 
-       n-ary relationships, which denote the fact that some terms have certain properties see 
examples below); 
-       formulas, which are expressions built from n-ary relationships applied to terms. 

  
We could write all this in Backus normal form, but probably there is no need. 
Summing up, terms are built from names and functions, using parentheses; formulas that use 
terms; and that’s it so far. 
  
Examples 
sin(ln(2.718285)) < cos(exp(0.001)) 
phoneNumber(John) = “314 159 2654” 
Alaska 
  
Note that “first order language” is not something universal; on the contrary, you just come up 
with a bunch of names, functions, relationships – and voilà, you have a language. 
  
Example 1 
Take integer numbers, operations on them, comparisons and equality relationships. 
  
Example 2 



Planar geometry. We will need numbers, symbols for points, lines, circles and angles; then we 
add functions and relationships: 

-       line(L1, P1, P2) – L1 is a line that contains points P1 and P2 
-       circle(P, R) – this term denotes a circle with center at P and radius R 
-       center(C) – this term denotes a point that is center of circle C 
-       liesOn(P1, L1) – point P1 lies on line L1 
-       liesOn(P1, C1) – point P1 lies on circle C1 
-       between(P1, P2, P3) – points P1, P2, P3 are on the same line, and P1 is between P2 and 
P3 
-       parallel(L1, L2) – lines L1 and L2 are parallel 

  
Example 3 
A version of naïve set theory can also be expressed as first-order language: 
  
1.  Names denote sets or elements (may not be sets) 

2.  a ∈ b, where a is an element, b must be a set 

3.  a = b 

4.  {a1,...an} is a set, where a1...an are elements 

5.  s1 ∩ s2 is a set, where s1 and s2 are sets 

6.  s1 ∪ s2 is a set, where s1 and s2 are sets 
  
Example 4 
Directed graphs. We have nodes and edges, and the only relationship: 
between(Node1, Node2, Edge3). 
  

Logical Operations 
  
The logical formulas we had before (just relationships/predicates) are actually called atomic 
formulas. We can build more formulas by combining them. 
  

Negation 
  
Having a formula P, its negation is denoted as ¬P, and is true if and only if P is false. It is clear 
from the definition that double negation of a formula P is true if and only if P is true. 

Conjunction 
  



Having two formulas, P and Q, their conjunction is denoted as P∧Q, and is true if and only if 
both P and Q are true. 

Disjunction 
  
Having two formulas, P and Q, their disjunction is denoted as P∨Q, and is true if and only if at 
least one of P and Q is true. 

Sentences: Combining Operations 
  
Out of atomic formulas we build sentences, using negation, conjunction and disjunction; to avoid 
disambiguation, we also use parentheses. 
  
Example 
((x < 7)∨((y < x)∧¬isEmpty(”hello world”))) 
  

Properties of Operations 
  
Describing these properties, we use symbol ≡, which vaguely means that the expressions on 
the left and on the right are equivalent. The exact meaning of such equivalence may vary from 
theory to theory. 

Associativity 
Both conjunction and disjunction are associative 
(P∨Q)∨R ≡ P∨(Q∨R) 
 (P∧Q)∧R ≡ P∧(Q∧R) 

Commutativity 
Both conjunction and disjunction are commutative 
P∨Q ≡ Q∨P 
P∧Q ≡ Q∧P 

Idempotence 
Both conjunction and disjunction are idempotent 
P∨P ≡ P 
P∧P ≡ P 

Double Negation 
¬¬P ≡ P 

DeMorgan Laws 
¬(P∨Q) ≡ ¬P∧¬R 
¬(P∧Q) ≡ ¬P∨¬R 



More Operations 
  
We saw negation, conjunction and disjunction; can we have other operations? 
  
Negation is a unary operation; conjunction and disjunction are binary. How about other arities? 
  
We can start with zero arity, that is, with constants, and remember two constants that were 
always lurking in the background – True and False. There may be more nullary operations, but 
for the sake of this discussion let us limit ourselves with just two; we need both. The first one, 
True, is a neutral element for conjunction; the second one, False, is a neutral element for 
disjunction. 
  
Now take a look at the unary operations. How many can we define on two logical constants? 
Obviously just 4: here’s the table. 
  

  identity always True always False negation 

True True True False False 

False False True False True 

  
  
For binary operations there’s more combinations (any idea how many?); we will not list them all 
here, just mention the important ones. 
  

x y x∧y x∨y x→y 
(implication

) 

x↔y 
(equivalenc

e) 
  

x↓y 
(Pierce 
arrow, 
NOR) 

  

x↑y, 
(Sheffer 
stroke, 
NAND) 

T T T T T T F F 

T F F T F F F T 

F T F T T F F T 

F F F F T T T T 

  
You see conjunction and disjunction; implication can be defined as ¬x∨y; equivalence can be 
defined as (x∧y)∨(¬x∧¬y); actually, any formula has a standard representation via negation, 
conjunction and disjunction. But there are two operations each of which can be used to 



represent all other operations. One of them is called Pierce Arrow, or NOR (because it is 
equivalent to  ¬(x∧y)); the other is called Sheffer Stroke, or NAND (because it is equivalent to  
¬(x∨y)). 
  
Imagine you have to use just one circuit to build a logical schema; which one would you use? 
You have two choices, either take NAND, or NOR. 
  

 
  

Proving Something 

Premises and Conclusions 
  
When we have first-order language, we can connect our formulas (see definition), calling some 
of them premises and some – conclusions. Informally, you list premises, and then come up with a 
conclusion, or go in the opposite direction: conclusions, because we have premise1, premise2, 
etc. Nobody said we have to do it right. 
  
Example 1 
  
“All men are mortal; Superman is a man, hence Superman is mortal.” 
Some may agree with this, some may disagree; some will ask “which Superman”, thus 
invalidating the whole discussion. 
  
Example 2 
  
“Pavlova is a man: after all, Pavlova is mortal, and all men are mortal”. May would argue that, 
judging by the name, Pavlova must be a female; I will also add that Pavlova is a cat. 
  



 
  
  
The sequence of premises followed by a conclusion is called argument. Arguments are formally 
written in the following form, using the character ⊢ (called “turnstile”): 
  
Premise1, Premise2, …, Premisen ⊢ Consequence 
  

Valid and Sound Arguments 
  
As you see from examples above, some conclusions make sense, some don’t; also some 
premises make sense, and some don’t. Let’s disambiguate these situations. 
  
Definition 
An argument is called valid if the conclusion is true, assuming that the premises are true. An 
argument is called sound if it is valid, and the premises are true. 
  
Note that we have just introduced the word “true” in our discourse. This is a little bit unusual; but 
we are not quite formal here. 
  
You can check by yourself whether each of the examples above is valid or sound or neither or 
both. 
  
Premises are called inconsistent if they contradict each other, that is, you can deduce ⊥ (that is, 
false) out of them. Remember, in this case the argument is not sound (wrong premises!), but it is 
always valid. This may be the easiest way to prove literally anything – just start with inconsistent 
premises. 
  

Proofs, Formally 
  
Definition 
A proof is a step-by-step demonstration that a conclusion follows from the premises (that is, that 



the argument is valid). 
  
How do we know that our proof makes sense? There are a variety of approaches. One of these 
is applying rules; we will walk through such rules, without questioning them (questioning them 
means proving theorems, and it is beyond the scope of this book). 
  
Below are the proof rules; some of them are obvious, some less obvious. 
  

Elimination Rule 

Also known as Indiscernibility of Identicals, Substitution Principle, and Identity Elimination. 
  
The rule is this: 
  
P(a), a=b ⊢ P(b) 
  
For example, 
x2 > x2 – 1, x2 - 1 = (x+1)*(x-1) ⊢ x2 > (x+1)*(x-1) 
  

Introduction Rule 
Also known as Reflexivity of Identity. 
  
The rule is this: 
  
P ⊢ x=x 
  
Have you noticed that we are using variables already? Strictly speaking, we write this rule, but 
we mean anything can be substituting x. 
  
From these two rules we can deduce symmetry and transitivity of identity: 
a=b, a=a ⊢ b=a 
a=b, b=c ⊢ a=c 
  
Neat, right? Now let’s have more rules. 

Negation Elimination 
¬¬P ⊢ P 
  
Informally, it means that if we have “non not P”, we can say that P holds. This may sound 
obvious, but look at it like this. We could not prove P. We only could prove that assuming “not P” 
leads to contradiction. Does it give us P? Probably not, generally speaking. But in this classical 
logic we assume that it does. 



Conjunction Elimination 
P∧Q ⊢ Q 
  
Informally, if we have a conjunction of P and Q, then we have Q. This is a part of definition of 
conjunction. 
  

Conjunction Introduction 
P, Q ⊢ P∧Q 
  
Informally, if we have P and Q, then we have a conjunction, P∧Q. This is a part of definition of 
conjunction. 

Disjunction Introduction 
P ⊢ P∨Q 
  
Informally, if we have P, a disjunction of P and Q, also holds. This is a part of definition of 
disjunction. 
  

Disjunction Elimination 
P∨Q, P ⊢ R, Q ⊢ R 

R 
  
The meaning of this schema above is the following: we have P∨Q, and we have subproofs that P 
yields R and Q yields R; then we have R. 
  

Negation Introduction 
P ⊢ ⊥ 

¬P 
  
This can be considered as a definition of negation. 

⊥ Introduction 
P, ¬P ⊢ ⊥ 
  
This property of negation consists of deducing “bottom” from both P and its negation. 

⊥ Elimination 
⊥ ⊢ P 
  
This is the property of “bottom”: anything follows from it. Good for proving existence of 



supernatural creatures or entities, as well as their non-existence. 

Proof by Contradiction 
  

The trick consists of the following: To prove ¬S, assume S, and deduce ⊥ (that is, false). 

  
Example 
Let’s prove that sqrt(2) is irrational. 
  
Assume it is rational, sqrt(2)=p/q , where p and q are natural numbers, mutually prime (have no 
common divisors). You may ask why mutually prime? Because common divisors don’t count, 
p*x/q*x=p/q. 
  
If we have sqrt(2)=p/q , then p2=2*q2. 

Can p be odd? No! It is 2*something. But if p is even, p2=p1
2*4, right? So q2=2*p1

2. So q is even 
too, so p and q do have a common divisor, oops. Contradiction! Our assumption was wrong. 

Proof by Cases 
  
To prove that P∨Q ⊢ R, it is enough to prove that P ⊢ R and Q ⊢ R. 
This can be extended to a list of P1,P2,…,Pn and proving that P1∨P2∨…∨Pn ⊢ R 
  
Example 
Prove that a rational number a can be represented as bc where both b and c are irrational 
numbers. 
Proof. We know that sqrt(2) is irrational; now take d=sqrt(2)sqrt(2). If d is rational, we have it; if it is 
not, take (dsqrt(2))sqrt(2)= dsqrt(2)* sqrt(2) = sqrt(2)2 = 2, and it is rational. 
  

Conclusion 
  
This was the first part of three; next we will see how we can do without Booleanness… and what 
does being Boolean means; then we cover quantifiers. 

 
 


	First Order Boolean Logic, part 1 
	The Language of First Order Logic 
	Logical Operations 
	Negation 
	Conjunction 
	Disjunction 
	Sentences: Combining Operations 
	Properties of Operations 
	Associativity 
	Commutativity 
	Idempotence 
	Double Negation 
	DeMorgan Laws 

	More Operations 

	Proving Something 
	Premises and Conclusions 
	Valid and Sound Arguments 
	Proofs, Formally 
	Elimination Rule 
	Introduction Rule 
	Negation Elimination 
	Conjunction Elimination 
	Conjunction Introduction 
	Disjunction Introduction 
	Disjunction Elimination 
	Negation Introduction 
	⊥ Introduction 
	⊥ Elimination 
	Proof by Contradiction 
	Proof by Cases 

	Conclusion 



