

Homework 2 | Basic SQL Queries
CSE D 514 - Data Management for Data Science

Objectives: To create and import databases and to practice simple SQL queries using SQLite.

Assignment tools: SQLite 3, the flights dataset hosted here.

What to turn in: create-tables.sql and hw2-q1.sql, hw2-q2.sql, etc (see below).

Assignment Details

In this homework, you will write several SQL queries on a relational flights database. The data in
this database is abridged from the Bureau of Transportation Statistics The database consists of
four tables regarding a subset of flights that took place in 2015:

FLIGHTS (fid int,
 month_id int, -- 1-12
 day_of_month int, -- 1-31
 day_of_week_id int, -- 1-7, 1 = Monday, 2 = Tuesday, etc
 carrier_id varchar(7),
 flight_num int,
 origin_city varchar(34),
 origin_state varchar(47),
 dest_city varchar(34),
 dest_state varchar(46),
 departure_delay int, -- in mins
 taxi_out int, -- in mins
 arrival_delay int, -- in mins
 canceled int, -- 1 means canceled
 actual_time int, -- in mins
 distance int, -- in miles
 capacity int,
 price int -- in $
)

CARRIERS (cid varchar(7), name varchar(83))
MONTHS (mid int, month varchar(9))
WEEKDAYS (did int, day_of_week varchar(9))

https://www.sqlite.org/
https://courses.cs.washington.edu/courses/cse414/19au/hw/flight-dataset.zip
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

(FYI All data except for the capacity and price columns are real.) We leave it up to you to decide
how to declare these tables and translate their types to sqlite. But make sure that your relations
include all the attributes listed above.

In addition, make sure you impose the following constraints to the tables above:

●​ The primary key of the FLIGHTS table is fid.
●​ The primary keys for the other tables are cid, mid, and did respectively. Other than

these, do not assume any other attribute(s) is a key / unique across tuples.
●​ Flights.carrier_id references Carrier.cid
●​ Flights.month_id references Months.mid
●​ Flights.day_of_week_id references Weekdays.did

We provide the flights database as a set of plain-text data files in the linked .zip archive. Each
file in this archive contains all the rows for the named table, one row per line.

In this homework, you need to do two things:

1.​ import the flights dataset into SQLite
2.​ run SQL queries to answer a set of questions about the data.

IMPORTING THE FLIGHTS DATABASE (20 points)

To import the flights database into SQLite, you will need to run sqlite3 with a new database file.
for example sqlite3 hw2.db. Then you can run CREATE TABLE statement to create the tables,
choosing appropriate types for each column and specifying all key constraints as described
above:

CREATE TABLE table_name (...);

Currently, SQLite does not enforce foreign keys by default. To enable foreign keys use the
following command. The command will have no effect if you installed your own version of
SQLite was not compiled with foreign keys enabled. In that case do not worry about it (i.e., you
will need to enforce foreign key constraints yourself as you insert data into the table).

PRAGMA foreign_keys=ON;

Then, you can use the SQLite .import command to read data from each text file into its table
after setting the input data to be in CSV (comma separated value) form:

.mode csv

.import filename tablename

See examples of .import statements in the section notes, and also look at the SQLite
documentation or sqlite3's help online for details.

Put all the code for this part (four create table statements and four .import statements) into a file
called create-tables.sql inside your homework directory.

Writing SQL QUERIES (80 points, 10 points each)

HINT: You should be able to answer all the questions below with SQL queries that do
NOT contain any subqueries!

For each question below, write a single SQL query to answer that question. Put each of your
queries in a separate .sql file as in HW1, i.e., hw2-q1.sql, hw2-q2.sql, etc. Add a comment in
each file indicating the number of rows in the query result.

Important: The predicates in your queries should correspond to the English descriptions.
For example, if a question asks you to find flights by Alaska Airlines Inc., the query
should include a predicate that checks for that specific name as opposed to checking for
the matching carrier ID. Same for predicates over months, weekdays, etc.

Also, make sure you name the output columns as indicated! Do not change the output
column names / return more or fewer columns!

In the following questions below flights include canceled flights as well, unless otherwise
noted. Also, when asked to output times you can report them in minutes and don’t need to do
minute-hour conversion.

If a query uses a GROUP BY clause, make sure that all attributes in your SELECT clause for
that query are either grouping keys or aggregate values. SQLite will let you select other
attributes but that is wrong as we discussed in lectures. Other database systems would reject
the query in that case.

1.​ (10 points) List the distinct flight numbers of all flights from Seattle to Boston by Alaska
Airlines Inc. on Mondays. Also notice that, in the database, the city names include the
state. So Seattle appears as Seattle WA. Please use the flight_num column instead of
fid. Name the output column flight_num.​
 [Hint: Output relation cardinality: 3 rows]​

2.​ (10 points) Find all itineraries from Seattle to Boston on July 15th. Search only for
itineraries that have one stop (i.e., flight 1: Seattle -> [somewhere], flight2: [somewhere]
-> Boston). Both flights must depart on the same day (same day here means the date of
flight) and must be with the same carrier. It's fine if the landing date is different from the

departing date (i.e., in the case of an overnight flight). You don't need to check whether
the first flight overlaps with the second one since the departing and arriving time of the
flights are not provided.​
​
 The total flight time (actual_time) of the entire itinerary should be fewer than 7 hours
(but notice that actual_time is in minutes). For each itinerary, the query should return the
name of the carrier, the first flight number, the origin and destination of that first flight, the
flight time, the second flight number, the origin and destination of the second flight, the
second flight time, and finally the total flight time. Only count flight times here; do not
include any layover time.​
​
 Name the output columns name (as in the name of the carrier), f1_flight_num,
f1_origin_city, f1_dest_city, f1_actual_time, f2_flight_num, f2_origin_city, f2_dest_city,
f2_actual_time, and actual_time as the total flight time. List the output columns in this
order. [Output relation cardinality: 1472 rows]​

3.​ (10 points) Find the day of the week with the longest average arrival delay. Return the
name of the day and the average delay.​
 Name the output columns day_of_week and delay, in that order. (Hint: consider using
LIMIT. Look up what it does!)​
 [Output relation cardinality: 1 row]​

4.​ (10 points) Find the names of all airlines that ever flew more than 1000 flights in one day
(i.e., a specific day/month, but not any 24-hour period). Return only the names of the
airlines. Do not return any duplicates (i.e., airlines with the exact same name).​
 Name the output column name.​
 [Output relation cardinality: 12 rows]​

5.​ (10 points) Find all airlines that had more than 0.5 percent of their flights out of Seattle
be canceled. Return the name of the airline and the percentage of canceled flight out of
Seattle. Order the results by the percentage of canceled flights in ascending order.​
 Name the output columns name and percent, in that order.​
 [Output relation cardinality: 6 rows]​

6.​ (10 points) Find the maximum price of tickets between Seattle and New York, NY (i.e.
Seattle to NY or NY to Seattle). Show the maximum price for each airline separately.​
 Name the output columns carrier and max_price, in that order.​
 [Output relation cardinality: 3 rows]​

7.​ (10 points) Find the total capacity of all direct flights that fly between Seattle and San
Francisco, CA on July 10th (i.e. Seattle to SF or SF to Seattle).​
 Name the output column capacity.​

 [Output relation cardinality: 1 row]​

8.​ (10 points) Compute the total departure delay of each airline across all flights. Some
departure delays may be negative (indicating an early departure); they should reduce
the total, so you don't need to handle them specially. Name the output columns name
and delay, in that order. [Output relation cardinality: 22 rows]

Submission Instructions

Commit and push all your submission files in your repository.

Your files should have the same structure as below:

\-- csed514-xxxx-hw2-[your uw username]
​ \-- README
​ \-- create-tables.sql​ # your tables
 \-- hw2-q1.sql​ ​ # your solution to question 1
 \-- hw2-q2.sql​ ​ # your solution to question 2
 \-- hw2-q3.sql​ ​ # your solution to question 3
 … (and so on)

	Homework 2 | Basic SQL Queries
	Assignment Details
	IMPORTING THE FLIGHTS DATABASE (20 points)
	Writing SQL QUERIES (80 points, 10 points each)

	Submission Instructions

