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1. introduction 

 
Synth is intended to be a web based programming language. It is still at conceptual, but 

mature stage and although it is planned to be full blown universal programming language, its 
other side will be enabling easy programming of artificial intelligence (AI) applications. An use of 
AI in the present moment can vary from solving math, physics and chemistry problems to 
theorem proving and finding paths of solutions to problems explained in universal manner. Other 
more general uses like mimicking human interaction and interpreting natural language texts to 
learn new knowledge are more or less still in infancy state and it is yet to be seen what future 
brings. What we know by now is the knowledge about fragments of intelligent conclusions that 
build up complete cognitive process of human behavior. Besides support for these fragments, 
Synth will try to provide enough freedom to build up more autonomous cognitive processes in 
the future. 

 
In this paper I will try to show which of fragments that build up intelligent conclusions 

could be handled by Synth. Full specification of Synth will also include all kinds of extensions 
needed for exposing mentioned AI fragments to end user (by regular formal programming), but 
those extensions will not be a matter of this paper which focuses just on AI methods. 
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2. Synth’s view of artificial intelligence 

 
Artificial intelligence in Synth is about having different knowledge systems (math, logic, 

etc.) which provide solutions to its area of problem embracement. These knowledge systems 
have different syntactic and semantic forms and Synth provides a model for describing these 
forms. 

 
Syntax and semantics are clearly distinguished in Synth. So, what is syntax and what is 

semantics from Synth’s point of view? Syntax defines which forms of expressions are valid 
inside specific knowledge system. Semantics say which conclusions follow from which 
expressions when specific expressions become valid in specific knowledge instance. We can 
say that semantics define reasoning about specific syntax elements in some knowledge system. 
Chapter 3. explains Synth’s model of syntactic definition for different knowledge systems while 
semantic reasoning will be covered in chapter 4. 

 
 

3. syntax: universal language defining model 

 
​ Part of Synth’s model for knowledge base syntax definition will be borrowed from parser 
technology. Parser technology is used for defining all kind of textual data and is enough general 
for us to use it as a base for our syntax definition of knowledge. If you are familiar with parsing 
technology, Synth’s parser will interpret  a variant of BNF language, which I’ll call IBNF (Inline 
Bacus Naur Form). 
 

Other than duplicating the same explanation of IBNF, I’ll invite you to take a look at my 
product Moony Parser for its syntax definition. The same language (Moony Grammar is an 
obsolete name for IBNF) will be used in Synth’s knowledge syntax definition, with addition of 
noting semantic relationships. You can freely disregard paragraphs about low-level javascript 
calls to parser, as they are not relevant to Synth. 
 
 

4. semantics: reasoning 

 
​ As we already said, semantics provides reasoning about syntactic elements in 
knowledge base. In a way, semantics is similar to math formulas, but in more generalized level. 
It pairs one expression with the other, stating that one expression can be transformed into the 
other, while preserving some rules about variables’ identities. If expressions are seen as 
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elements of a set then semantics is ought to say: if this element belongs to this set so does that 
element (in math example if ‘a’ equals 2 and a set contains ‘a’ then the set also contains 2). 
 
 

4.1. math solving system 

 
​ Let’s bring a definition of simple math expression knowledge system. If we want to define 
an equality notion, together with basic math formulas, then we can open square brackets right 
after our syntax definition: 
 
Math ( 
    Expression { 
        Sum { 
            Fact { 
                Pow { 
                    Expr ( 
                        {@WhiteSpace | @Null}, 
                        Sign {'-' | @Null}, 
                        Value { 
                            Num {@Number} | 
                            Var {@Variable} | 
                            Bra (Left {'('}, In {@Sum}, Right {')'}) 
                        }, 
                        {@WhiteSpace | @Null} 
                    ) | 
                    PowExpr (Left {@Pow}, In {"^"}, Right {@Expr}) 
                } | 
                MulDiv (Left {@Fact}, In {'*' | '/'}, Right {@Pow}) 
            } | 
            AddSub (Left {@Sum}, In {'+' | '-'}, Right {@Fact}) 
        } 
    }, 
    Formula (Left {@Sum}, "=", Right {@Sum}) 
    [ 
        </a:@Sum, b:@Sum/> a = b |= b = a; 
 
        </a:@Expr, b:@Expr, c:@Expr/> |= a * b + a * c = a * (b + c); 
        </a:@Expr, b:@Expr/> |= a^2 - b^2 = (a + b) * (a - b); 
        </a:@Expr, b:@Expr/> |= (a + b)^2 = a^2 + 2*a*b + b^2; 
        ... 
    ] 
) 
 

As we can see, semantics are attached to wanted variables. In previous example we defined 
some equalities needed for math calculations and stored them under “Equality” variable. The 
most important part of previous example is |= (read “follows”) sign which states that if 
expression on its left side is a part of some variable then the expression on the right side is also 
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a part of the same variable. Left side can be omitted, in which case the right side is always 
inferred. 
 
Subvariables involved in expressions have to be noted between </ and /> pair at the beginning 
of the line. Each subvariable has to have a type. Types prevent accepting i.e. chemical 
expression, as a valid variable content in i.e. math system. 
 
Previous example also shows an interesting property of Synth to describe semantics of 
knowledge base in very syntax of the knowledge base, meaning that we deal with a parser 
inside parser. Everything inside semantic brackets is parsed by rules from syntax braces, 
enriched by reasoning notation. 
 

Before we dive into solving math expressions we have to do one more thing: we have to 
attach equality definitions to each  of @Sum, @Fact, @Pow and @Expr variable. When we do 
this, each fragment of once instanced @Sum, @Fact, @Pow or @Expr expression would besides 
its granted value have automatically inferred values also. It is like an expression subtree, where 
each node have one or multiple, but equal expressions, inferred for each sub-node. Once we 
get this expression tree, we can walk through its partial multiple stages, finding the final result 
by some weighting function. Let’s see how this final touch looks like in our example: 
 
Math ( 
    Expression { 
        Sum { 
            Fact { 
                Pow { 
                    Expr ( 
                        {@WhiteSpace | @Null}, 
                        Sign {'-' | @Null}, 
                        Value { 
                            Num {@Number} | 
                            Var {@Variable} | 
                            Bra (Left {'('}, In {@Sum}, Right {')'}) 
                        }, 
                        {@WhiteSpace | @Null} 
                    ) 
                    [ 
                        </a:@Expr/> a |= (a); 
                        </a:@Expr/> (a) |= a 
                    ] | 
                    PowExpr (Left {@Pow}, In {"^"}, Right {@Expr}) 
                } 
                [ 
                    </a:@Pow/> a |= (a); 
                    </a:@Pow/> (a) |= a 
                ] | 
                MulDiv (Left {@Fact}, In {'*' | '/'}, Right {@Pow}) 
            } 
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            [ 
                </a:@Fact/> a |= (a); 
                </a:@Fact/> (a) |= a 
            ] | 
            AddSub (Left {@Sum}, In {'+' | '-'}, Right {@Fact}) 
        } 
        [ 
            </a:@Sum, b:@Sum/> @Formula {a = b} && a |= b; 
 
            </a:@Sum/>         a |= (a); 
            </a:@Sum/>         (a) |= a 
        ] 
    }, 
    Formula (Left {@Sum}, "=", Right {@Sum}) 
    [ 
        </a:@Sum, b:@Sum/> a = b |= b = a; 
 
        </a:@Expr, b:@Expr, c:@Expr/> |= a * b + a * c = a * (b + c); 
        </a:@Expr, b:@Expr/> |= a^2 - b^2 = (a + b) * (a - b); 
        </a:@Expr, b:@Expr/> |= (a + b)^2 = a^2 + 2*a*b + b^2; 
        ... 
    ] 
) 

 
Each of variables: @Sum, @Fact, @Pow and @Expr have their own semantic reasoners that tell 
Synth how to populate expression tree upon evaluation. @Formula variable serves to hold our 
math formulas. 
 
First new thing we can see in these semantic lines is an use of && operator @Sum semantic 
brackets: 
 
</a:@Sum, b:@Sum/> @Formula {a = b} && a |= b; 
 

&& simply concatenates multiple expressions for which we want all of them to be matched to 
infer the right side of “follows” operator. Second new thing is reaching inference formulas 
outside of current scope in noted line. This is done by stating outer variable (@Formula in our 
case), following by wanted expression inside curly braces. 
 
Let’s consider the first semantic expression at “Sum” variable: 
 
</a:@Sum, b:@Sum/> @Formula {a = b} && a |= b 

 
It says: conclude “b“ when variable “Formula” contains “a = b“ and “a“ is an element of “Sum” 
variable. This is our mechanism for formula application to each “Sum” subnode that appears 
inside any math expression. The other two semantic expressions from “Sum variable” are: 
 
</a:@Sum/>         a |= (a); 
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</a:@Sum/>         (a) |= a 

 
They serve as braces introduction and elimination. Variables “Fact”, “Pow” and “Expr” contain 
somewhat the same code, but without formulas application. I.e. variable Fact contains: 
 
</a:@Fact/> a |= (a); 
</a:@Fact/> (a) |= a 

 
The first line introduces braces to any “Fact” expression. Purpose of this line is to convert “a” 
from “Fact” to “Sum”. This conversion is done through parsing “(a)” after which “a” converts to 
“Sum” subchoice. After conversion, all semantics from @Sum applies to braced @Fact 
expression, including our formula application semantics. That conversion is a mechanism by 
which we can automatically populate any (not only “Sum”) sub-expression with equalities that 
follow from formulas. 
 
The second line from @Fact semantics serves as braces elimination when a type of “a” is equal 
or contained in @Fact. Variables @Pow and @Expr contain semantics analogous to @Fact 
variable. 
 
Getting all permutations inside one expression in Synth will be companioned by a history 
mechanism that shows which expressions followed from which others. Finding a solution would 
be done by weighting each permutation for its complexity, picking up the most simplest one, 
then backtracking it to original expression. Reversed path of backtracking would be a procedure 
of solution to original expression, all cleanly reachable from Synth programming language 
without need for outer low-level calls. 
 
​ With previous math definition we are ready to solve a subset of math expressions 
restricted by entered formulas. We can now i.e. instantiate variable @Math on imaginary place in 
imaginary code by asserting: 
 
@Math [ 
    @Expression [(x + 1)^2 - y^2] 
] 

 
Asserted place’s variable @Expression will automatically be also populated with element: 
 
((x + 1) + y) * ((x + 1) - y) 
 
​ Explained tree-based approach of permuting expressions allows us to avoid searching of 
subexpressions after which we would replace them one by one by new inferred subexpressions. 
Instead of that approach, permuting will be wired inside each node variable. It will be a feature 
that brings a new AI method to desktop. 
 

6 



4.2. logic reasoning 

 
Just to test the Synth theory, lets build a logic reasoner also. It would look like this:  
 
Logic { 
    abstract OptWS {@WhiteSpace | @Null} | 
    ImplExp { 
        AndOrExp { 
            NotExp { 
                Exp ( 
                    @OptWS, 
                    Value { 
                        @Variable | 
                        Bra (Left {'('}, In {@Logic}, Right {')'}) 
                    }, 
                    @OptWS 
                ) 
                [ 
                    </a:@Exp/> a |= (a); 
                    </a:@Exp/> (a) |= a 
                ] | 
                Not (@OptWS, '¬', Value {@Exp}) 
            } 
            [ 
                </a:@NotExp/> a |= (a); 
                </a:@NotExp/> (a) |= a 
            ] | 
            AndOr (Left {@AndOrExp}, In {'&' | '|'}, Right {@NotExp}) 
        } 
        [ 
            </a:@AndOrExp/> a |= (a); 
            </a:@AndOrExp/> (a) |= a 
        ] | 
        Impl (Left {@AndOrExp}, In {'->', '<->'}, Right {@ImplExp}) 
    } 
    [ 
        </a:@ImplExp/> a |= (a); 
        </a:@ImplExp/> (a) |= a; 
    ] 
} 
[ 
    </p:@Exp, q:@Exp/>         p -> q && p |= q; 
    </p:@Exp, q:@Exp/>         p -> q && p -> ¬ q |= ¬ p; 
    </p:@Exp, r:@Exp/>         ¬ p |= p -> r; 
    </p:@Exp/>                 ¬ (¬ p) |= p; 
    </p:@Exp, q:@Exp/>         p && q |= p & q; 
    </p:@Exp, q:@Exp/>         p & q |= p; 
    </p:@Exp, q:@Exp/>         p & q |= q; 
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    </p:@Exp, q:@Exp/>         p |= p | q; 
    </p:@Exp, q:@Exp/>         q |= p | q; 
    </p:@Exp, q:@Exp, r:@Exp/> p | q && p -> r && q -> r |= r; 
    </p:@Exp, q:@Exp/>         p -> q && q -> p |= p <-> q; 
    </p:@Exp, q:@Exp/>         p <-> q |= p -> q; 
    </p:@Exp, q:@Exp/>         p <-> q |= q -> p 
] 

 
We used the same “brace” mechanism like we did in our math example. Upon asserting a logic 
expression like: 
 
@Logic [ 
    a -> b; 
    b -> c; 
    a 
] 

 
the “Logic” variable should also automatically contain expression “c”. We can think of our “Logic” 
variable as a placeholder which after invoking with starting set of expressions contains all 
conclusions that follow from that expressions. This is what is called theorem proving. It is finding 
a path from assumptions (starting set) to final formula (inferred) that we want to prove it is true. 
 

4.3. induction and genetic algorithms 

 
Induction algorithm is easy to implement, but it is expensive in means of processing 

power because of its property of combinatorial explosion. Induction is all about imagining new 
rules then checking if they hold for every relevant data record in our database. This imagining of 
new rules is done by systematic combining formulas’ fragments, starting from the simplest one, 
striving to more complex ones. 

 
Construction of formulas is done by combining syntactic elements, gradually growing 

starting formula in each step. Each new step bases new formulas combinations on previous 
formulas, complicating previous formula by some amount of a magnitude. As the entire process 
suffer from combinatorial explosion, genetic algorithms are about speeding up the process by 
rejecting formula combinations that have low level of compliance with checked data. The more 
the level of compliance is, the more probability is that we are on the right path to reach 
compliance of 100%. When compliance of our combined formula reaches 100%, we have 
induced a new formula that holds on all of our data. 

 
To show the power of induction algorithm we will consider inductive finding of rules for 

propositional logic. Let the following be a definition of propositional logic without inference rules 
(which we will find out later): 
 
Logic { 
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    abstract OptWS {@WhiteSpace | @Null} | 
    ImplExp { 
        AndOrExp { 
            NotExp { 
                Exp ( 
                    @OptWS, 
                    Value { 
                        'T' | 
                        'F' | 
                        @Variable \ {'T' | 'F'} | 
                        Bra (Left {'('}, In {@Logic}, Right {')'}) 
                    }, 
                    @OptWS 
                ) | 
                Not (@OptWS, '¬', Value {@Exp}) 
            } | 
            AndOr (Left {@AndOrExp}, In {'&' | '|'}, Right {@NotExp}) 
        } | 
        Impl (Left {@AndOrExp}, In {'->', '<->'}, Right {@ImplExp}) 
    } 
} 
[ 
    </a:@Exp, b:@Exp/> a -> b && b -> a |= a <-> b; 
 
    ¬ T -> F; 
    ¬ F -> T; 
 
    T & T -> T; 
    T & F -> F; 
    F & T -> F; 
    F & F -> F; 
 
    T | T -> T; 
    T | F -> T; 
    F | T -> T; 
    F | F -> F 
] 
 

In this example we introduced a new type of semantic expressions, namely granted semantic 
elements. They are written without “follows” sign and can contain subvariables (remember “</” 
and “/>” ?), but subvariables aren’t used in our example. Granted semantic elements will be our 
data on which we’ll check newly composed formulas. 
 
Now we want to induce some formulas that hold for our elements. It is done in the following 
way: 

1.​ We start by combining syntactic elements, one by one, and asserting subvariables on all 
possible places in any combination of their presence or absence (many combinations). 
Each asserted place would have a differently named subvariable. 
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2.​ After constructing each expression we have to isolate only granted semantic elements 
that succeed to parse against constructed expression. 

3.​ For those elements which pass parsing we check equality of parsed content of different 
subvariables. If the content of two or more subvariables is the same, the subvariables 
are getting the same name and are considered to be the same notion. If we have the 
same variable at multiple places, we can celebrate because we just induced a new 
formula that holds on our data. 

 
This way new formulas will show up and with given enough time, among them will be all axioms 
that build up propositional logic. Some of formulas will be: 
 
¬ (¬ a) <-> a 
a & b <-> ¬ (¬ a | ¬ b) 
a | b <-> ¬ (¬ a & ¬ b) 
(a | b) & (¬ a | c) <-> b | c 
 

Let’s consider genetic aspect of induction. As we said, induction is a slow process 
because of combinatorial explosion. To speed it up, we can reject further developing of some 
combinations if they do not parse against any granted expression in certain amount of 
percentage. Instead of rejecting, we can also give smaller developing priority to formulas with 
small percentage and focus more on those with larger percentage, which will give us more 
complete algorithm because there might be a slight chance that less suited formula will succeed 
in some of future combinations. 
 

Induction can be applied to numerous fields. It is not hard to imagine finding physics 
formulas from a table of empirical numeric data. With explained method we can inductively find 
patterns in any field where we have enough data to reason about. Note that incomplete set of 
data is a subject to more erroneous inductive conclusions as results can not be enough tested 
on exemplars.   

 
As Synth is planned to be a complete programmed language, it will be possible to 

implement any specific genetic algorithm through mechanisms that are not described in this 
paper.  
 
  

 

5. conclusion 

 
​ We saw some of methods that can be used to achieve automated reasoning. What is not 
shown here, but will be included in Synth programming language, is dealing with state machine. 
It would answer questions like: if A is a state machine and its current state is Ax, what actions 
are required to get the machine in state Ay? 
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Methods of AI can have numerous uses, some of which are shown in this paper. 

Complete autonomous thinking and acting machine is still an open question and that is where 
can Synth hop in: to enable creation of such a machine. Until that achievement, we can cover 
some of AI fragments and try to pass our knowledge about AI to the next generations. 
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