УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МОГИЛЁВСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

УТВЕРЖДАЮ Директор колледжа _____ С.Н.Козлов _____12.06.2025_

ОСНОВЫ ПРОЕКТИРОВАНИЯ И РАСЧЕТА АВТОМАТИЗИРОВАННЫХ ЭЛЕКТРОПРИВОДОВ ПРОМЫШЛЕННЫХ И ТРАНСПОРТНЫХ УСТАНОВОК

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ИЗУЧЕНИЮ УЧЕБНОГО ПРЕДМЕТА,
ЗАДАНИЯ НА ДОМАШНЮЮ КОНТРОЛЬНУЮ РАБОТУ
ДЛЯ УЧАЩИХСЯ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ
ПО СПЕЦИАЛЬНОСТИ 2-53 01 05
«АВТОМАТИЗИРОВАННЫЕ ЭЛЕКТРОПРИВОДЫ»

Автор:	Шамбалова	А.Л.,	преподават	ель	учреждения
образования	«Могилевский	государственный		политехнический	
колледж»					

Рецензент: Комоза Т.Ф., преподаватель учреждения образования «Могилевский государственный политехнический колледж»

Разработано на основе учебной программы по учебному предмету «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок», утвержденной директором колледжа, 2022.

Обсуждено и одобрено на заседании цикловой комиссии электротехнических предметов
Протокол № _____ от ____ Председатель цикловой комиссии
Т.Ф.Комоза

Пояснительная записка

Для обеспечения работы в области электрообеспечения транспортных электроприводов промышленных И установок необходимо дополнительно изучить основы проектирования и расчета электроприводов в заданных установках. Основная цель при изучении учебного предмета «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок» состоит в подготовке специалистов, эффективную способных обеспечить работу электрообеспечения, электроприводов типовых производственных механизмов и их элементов, а также способных составлять и оформлять конструкторскую документацию.

В результате изучения учебного предмета «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок» учащиеся должны:

знать на уровне представления:

основные направления развития и пути совершенствования автоматизированных ЭП;

общие цели и задачи автоматизации производственных и технологических процессов;

знать на уровне понимания:

основные вопросы энерго- и ресурсосбережения;

устройство и классификацию промышленных и транспортных установок (грузоподъемных кранов, лифтов, конвейеров, вентиляторов, насосов, станков);

требования к ЭП промышленных и транспортных установок; системы ЭП промышленных и транспортных установок;

порядок расчета мощности электродвигателей (далее – ЭД) промышленных механизмов при различных режимах работы;

порядок расчета и выбора устройств управления и аппаратов защиты ЭП;

виды конструкторских документов; правила выполнения электрических схем ЭП; уметь:

рассчитывать статические нагрузки и выполнять построение нагрузочных диаграмм механизмов промышленных и транспортных установок;

выполнять расчет мощности, выбор и проверку ЭД промышленных и транспортных установок;

выполнять расчет и построение механических характеристик ЭД;

выполнять расчет и выбор пускорегулирующей аппаратуры для ЭП;

выполнять расчет и выбор аппаратов защиты, проводов и кабелей.

Программой учебного предмета «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок» предусматривается изучение учащимися современных основ, принципов построения типовых производственных механизмов, их режимов работы и элементов управления, а также ознакомление с основами разработки конструкторской документации и мероприятий по эффективному энергосбережению.

Изучение программного учебного материала базируется на знаниях и умениях, полученных учащимися в ходе изучения таких учебных предметов, как «Электрические машины», «Электрические аппараты», «Основы электропривода», «Силовая преобразовательная техника», «Системы автоматического управления электроприводами», «Информационные технологии».

При преподавании учебного предмета необходимо строго соблюдать единство терминологии и условных обозначений согласно стандартам. Размерности физических величин следует приводить в Международной системе единиц (СИ).

При изучении нового материала рекомендуется применять действующие установки, тренажеры, плакаты, схемы, образцы промышленных типов элементов, видеозаписи, программное обеспечение (MathCAD, Komnac, Visio), а также справочники, учебные и методические пособия.

Для закрепления теоретических знаний программой предусмотрено проведение практических работ. В целях проверки качества усвоения учебного материала предусматривается проведение одной домашней контрольной работы и обязательной контрольной работы.

Цель данных методических рекомендаций – помочь учащимся в изучении учебного предмета и выполнении домашней контрольной работы.

Общие методические рекомендации по выполнению домашней контрольной работы

Задания на домашнюю контрольную работу разработаны по 100 вариантной системе и представлены в таблице вариантов.

Вариант задания выбирается в соответствии с двумя последними цифрами шифра учащегося по таблице вариантов. Каждый вариант содержит три задания, одно представляет собой ответ на теоретический вопрос, одно — изображение заданной схемы с пояснениями, одно представляет собой решение задачи (общий объем работы — около шести страниц).

При оформлении домашней контрольной работы следует придерживаться следующих требований:

- на титульном листе указываются: учебный предмет, фамилия, имя, отчество учащегося, номер учебной группы, шифр;
- ответ на теоретический вопрос следует начинать с номера и полного названия вопроса;
- решение задачи следует начинать с номера, условия задания и предлагаемых данных согласно варианту;
- изображение схемы выполняется карандашом в тетради в соответствии с ГОСТ, условия работы схемы приводятся перед или после ее изображения.

Домашняя контрольная работа должна быть выполнена в срок (в соответствии с учебным графиком).

Критерии оценки домашней контрольной работы

Домашняя контрольная работа, признанная преподавателем удовлетворительной и содержащая 75% положенного объема, оценивается отметкой «зачтено».

Домашняя контрольная работа будет оцениваться отметкой «не зачтена», если:

- выполнена не в соответствии с вариантом задания;
- не раскрыто основное содержание теоретического вопроса и есть незначительные недочеты в других заданиях;
 - есть существенные недочеты в нескольких заданиях;
- не решена задача и есть незначительные недочеты в других заданиях;
 - схема вычерчена с нарушениями ЕСКД;
 - схема не обеспечивает заданные условия работы.

Программа учебного предмета и методические рекомендации по ее изучению

Введение

Цели, задачи и предмет учебного предмета «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок».

Общие сведения об электромеханических комплексах и системах. Примеры электромеханических систем.

Классификация автоматизированных электроприводов Литература: [1] с.9-17

Раздел 1 Электроприводы (ЭП) типовых производственных механизмов

Тема 1.1 ЭП подъемно-транспортных механизмов

Понятие подъемно-транспортных механизмов Виды и классификация подъемно-транспортных механизмов ЭП и схемы управления(СУ) конвейерами Общие требования к ЭП механизмов циклического действия Электропривод механизмов крана Требования, предъявляемые к ЭП механизмов крана Типовые ЭП крановых механизмов Литература: [7] с.401-466

Методические рекомендации

К подъёмно-транспортному оборудованию относятся: автогрейдеры, катки, автокары крановое оборудование (мостовые краны с поворотной стрелой, козловые, портальные, башенные, консольные, подвесные, специальные краны) грузовые траволаторы, эскалаторы и т.д. конвейеры, лифты, Подъемно-транспортное оборудование классифицируют по ряду признаков: функциональному назначению (грузоподъемное, погрузочно-разгрузочное оборудование); транспортирующее, направлению перемещения груза (горизонтальное, вертикальное, рабочему (периодического углом); ЦИКЛУ действия, ПОД действия); непрерывного (ручное, виду привода электромеханическое); конструкций (стационарные, типам

передвижные); а также по различным техническим параметрам. распределенной Механизмы нагрузкой ΜΟΓΥΤ иметь \mathbf{c} однодвигательный ИЛИ многодвигательный электропривод. Многодвигательные электроприводы применяются ДЛЯ конвейерных линий значительной протяженности, когда даже оптимальное расположение приводной станции на трассе не обеспечивает снижения максимального натяжения до допустимого технико-экономические когда показатели многодвигательном приводе лучше, чем при однодвигательном.

зависимости OTтребований К плавности пуска И регулированию скорости В механизмах cрассредоточенной нагрузкой применяются: электроприводы с короткозамкнутыми асинхронными двигателями с повышенным пусковым моментом; асинхронные электродвигатели с фазным ротором для конвейерных линий большой протяженности для обеспечения плавного пуска. Для приводов, где требуется регулирование скорости, наиболее перспективен электропривод по схеме ПЧ-АД, возможно также применение системы АВК и электроприводов постоянного тока по схеме ТП-Д. Для многодвигательных приводов с целью получения благоприятного распределения нагрузки между двигателями применяют асинхронные короткозамкнутые двигатели повышенным скольжением или асинхронные двигатели с фазным ротором. Управление электроприводами одиночных конвейеров, не связанных с другими механизмами, производится посредством магнитных пускателей. Защита осуществляется автоматами с максимальной и тепловой защитой.

Более сложны схемы управления совместно работающими конвейерами или поточно-транспортными системами ПТС. В основе проектирования схем управления такими транспортными системами лежат следующие требования:

- 1. Пуск двигателей конвейеров должен производиться в направлении, обратном технологическому потоку, чтобы на конвейерах не образовывалось завала транспортируемого груза.
- 2. При остановке одного из конвейеров двигатели других конвейеров, подающих материалы на останавливаемый, сразу отключаются, двигатели остальных конвейеров могут продолжать работать.

- 3. При общей остановке транспортной линии первым должен отключаться двигатель того конвейера, с которого поступает материал на другие конвейеры, а затем поочередно отключаются остальные двигатели.
- 4. Для предотвращения большого снижения напряжения в питающей сети двигатели конвейеров значительной мощности должны пускаться поочередно и т.д.

В настоящее время на механизмах подъема и передвижения башенных мостовых кранов применяется регулируемый электропривод с двигателями постоянного тока, питаемыми от мощных тиристорных преобразователей, — система ТП — Д. Хорошие регулировочные качества появляются и у асинхронного электропривода при включении тиристорного преобразователя в цепь статора асинхронного двигателя (АД). Изменение напряжения на статоре двигателя в замкнутой САУ позволяет ограничить пусковой момент, получить плавный разгон (торможение) привода и регулирования Ha необходимый диапазон скорости. изображена принципиальная схема тиристорного управления тока независимого возбуждения для двигателем постоянного механизма подъема мостового крана. Якорь двигателя питается от реверсивного тиристорного преобразователя, который состоит из трансформатора Tp, служащего силового ДЛЯ согласования напряжений преобразователя и нагрузки, двух групп тиристоров Т1— Т6 и Т7 — Т12, соединенных по трехфазной мостовой встречно-параллельной схеме, уравнительных реакторов 1УР и 2УР, сглаживающими одновременно реакторами, выполненными ненасыщающимися. Группа тиристоров Т1 — Т6 работает выпрямителем при подъеме и инвертором — при спуске тяжелых грузов, так как направление тока в якорной цепи двигателя для этих режимов одинаково. Вторая группа тиристоров Т7 — Т12, обеспечивающая противоположное направление тока работает выпрямителем при силовом спуске и в переходных режимах пуска двигателя на тормозной спуск, инвертором — при торможении в процессе подъема грузов или крюка. В отличие от механизмов передвижения кранов, в которых тиристорные группы быть одинаковыми, в механизмах подъема мощность тиристоров второй группы может быть взята меньшей, чем первой, так как ток двигателя при силовом спуске значительно меньше, чем при подъеме и спуске тяжелых грузов.

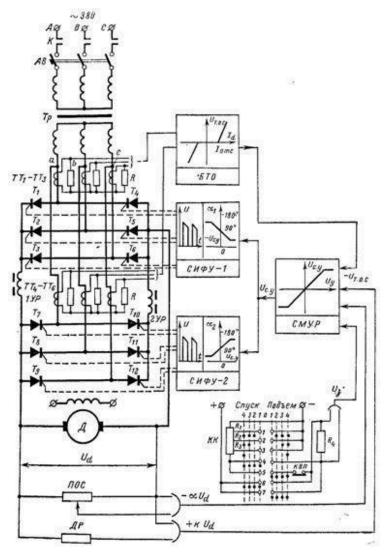


Рисунок 1 - Схема кранового электропривода по системе ТП—Д.

Регулирование выпрямленного напряжения тиристорного преобразователя (ТП) осуществляется с помощью полупроводниковой системы импульсно-фазового управления, состоящий из двух блоков СИФУ-1 и СИФУ-2 (рис. 1), каждый из которых подает на соответствующий тиристор по два отпирающих импульса, сдвинутых на 60° .

С целью упрощения системы управления и повышения электропривода данной надежности В схеме применяется реверсивным управление TΠ. Для согласованное ЭТОГО регулировочные характеристики и системы управления обеими группами должны быть жестко связаны. Если на тиристоры Т1 отпирающие импульсы, обеспечивающие подаются выпрямительный режим работы этой группы, то на тиристоры Т7

— Т12 отпирающие импульсы подаются так, чтобы эта группа была подготовлена к работе инвертором.

Углы регулирования α1 и α2 при любых режимах работы ТП должны изменяться таким образом, чтобы среднее напряжение выпрямительной группы не превышало напряжение инверторной группы, т. е. Если это условие не соблюдается, то между двумя группами тиристоров будет протекать выпрямленный уравнительный ток, который дополнительно загружает вентили и трансформатор и может также привести к срабатыванию защиты.

Однако и при правильном согласовании углов управления $\alpha 1$ и $\alpha 2$ тиристорами выпрямительной и инверторной групп возможно протекание переменного уравнительного тока вследствие неравенства мгновенных значений напряжений $U\alpha B$ и $U\alpha I$. Для ограничения этого уравнительного тока служат уравнительные реакторы 1УР и 2УР.

Вопросы для самоконтроля

- 1 Назовите, что относится к подъемно-транспортным механизмам и по каким признакам они классифицируются.
- 2 Назовите особенности проектирования схем управления и работы ЭП конвейеров.
- 3 Назовите требования к ЭП механизмов циклического действия.
 - 4 Опишите, из чего состоит ЭП крановых механизмов.
 - 5 Опишите принцип работы схемы ЭП крана.

Тема 1.2 ЭП турбомеханизмов

Понятие и виды турбомеханизмов.

Принцип работы центробежного механизма

Q-H характеристика центробежногомеханизма, определение режима работы насоса.

Требования, предъявляемые к ЭП турбомеханизмов

Способы регулирования производительности турбомеханизмов

Автоматизация турбомеханизмов

Литература: [7] с.415-430

Методические рекомендации

Наиболее характерными видами турбомеханизмов являются механизмы центробежного типа, предназначенные для транспортировки жидкости — насосы, газа — вентиляторы, сжатого воздуха - турбокомпрессоры. К механизмам этого же класса относятся осевые вентиляторы и насосы. Функциональная схема электропривода дутьевого вентилятора по системе ПЧ-АД представлена на рисунке 2.

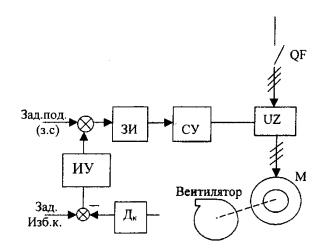


Рисунок 2 – Функциональная схема вентилятора

Привод состоит из преобразователя частоты UZ, асинхронного короткозамкнутого электродвигателя М, системы управления СУ, входит задатчик интенсивности, интегральный операционный усилитель ИУ и датчик содержания кислорода ДК в отходящих газах. Особенностью схемы является то, что она не замкнута по скорости, а имеет отрицательную обратную связь по избыточного кислорода. Так содержанию как требуемое количество воздуха для оптимального горения газа зависит от многих факторов (подача газа, химического состава газа, количества кислорода в воздухе), то управление скоростью осуществляется по двум каналам. Основное задание на скорость двигателя дутьевого вентилятора подается в зависимости от подачи газа, а корректировка скорости (т.е. подачи воздуха) с обратной отрицательной СВЯЗИ ПО избыточному помощью кислороду.

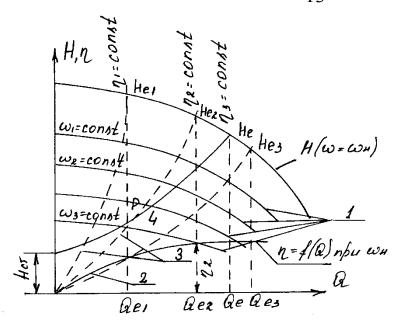


Рисунок 3 - Q-H-характеристики механизмов центробежного типа

Эксплуатационные свойства механизмов центробежного типа определяются *О-Н*-характеристикой И зависимостью механической мощности и кпд от подачи при ω =const. Расчет указанных характеристик представляет трудности, поэтому на практике пользуются ТИПОВЫМИ зависимостями H=f(Q)и $\eta=f(Q), P=f(Q),$ которые приводятся в каталогах для насосов при неизменной номинальной скорости $\omega_{\scriptscriptstyle H}$ (рис.3) О-Н-характеристики отличной скорости, OT ДЛЯ номинальной, получают уравнений c помощью пропорциональности.

Вопросы для самоконтроля

- 1 Назовите, что относится к турбомеханизмам и по каким признакам они классифицируются.
- 2 Опишите, как строится Q-H характеристика центробежного механизма.
 - 3 Назовите требования к ЭП турбомеханизмов.
 - 4 Опишите, из чего состоит ЭП вентилятора.
- 5 Опишите способы автоматизации турбомеханизмов на примере работы схемы вентилятора.

Тема 1.3 ЭП металлорежущих станков

Классификация металлорежущих станков

Режимы работы ЭП в металлорежущих станках

ЭП токарных станков, требования к ним.

ЭП продольно-строгальных станков, требования к ним.

Системы электропривода металлорежущих станков. ЭП постоянного и переменного тока.

Литература: [7], с.482-493; [6] с.94-102

Методические рекомендации

В зависимости от типа станка (токарные, строгальные и т.п.) и его типоразмера (нормальный, крупный и т.д.), а также от его конструкции — электропривод может иметь следующие режимы работы:

- продолжительный режим с постоянной нагрузкой (S1) в таком режиме работают главные приводы крупных и тяжелых токарных, карусельных, зубофрезерных и других станков;
- перемежающий режим (S6) для станков, оборудованных нерегулируемым приводом и механической коробкой передач;
- повторно-кратковременный режим (S3, S4 или S5) имеют электроприводы многих металлорежущих станков, имеющих регулируемый электропривод (например, токарные нормального исполнения, сверлильные, заточные и т.д.);
- перемежающийся режим работы с частыми реверсами (S7) для главного привода продольно-строгальных станков.

ребования, предъявляемые к электроприводу главного движения и подачи токарных и подобных им станков:

- 1. В зависимости от типа и конструкции станка электропривод должен обеспечивать необходимый режим работы.
- 2. Диапазон регулирования скорости вращения для приводов главного движения 50...1000; для привода подачи до 10000 (30000).
- 3. Для электропривода главного движения регулирование скорости должны быть двухзонным с постоянным моментом до номинальной (основной скорости) и постоянной мощностью для

скорости выше номинальной. Для привода подачи регулирование скорости производится при постоянном моменте.

4. Высокая жесткость механических характеристик — во всем диапазоне регулирования скорости, например, для ω =0,01 ω _{$_{H}$} погрешность изменения скорости вращения, при изменении нагрузки (от 0,25 до 1,25) M_{$_{H}$}, должна быть не более 15% относительно установленной.

Электропривод главного движения строгального станка должен обеспечивать скорость прямого хода в пределах от 1...2 до 30...60м/мин, скорость обратного хода $V_{oбp}$ =40...100м/мин;

- диапазон регулирования скорости до 50:1;
- повторяемость отработки перемещения при реверсах и изменении V_{np} и $V_{oбp}$ в пределах 1,0..60м/мин с точностью 5...10мм;
- поддержание заданной угловой скорости двигателя во всем диапазоне регулирования с точностью до $\pm (5...10\%)$ при изменении нагрузки от 0,1 до 1,2 номинального момента;
- динамический перепад скорости, вызванный резким приложением нагрузки (при входе резца в металл), не более 10...20%, а возникший при этом переходный процесс должен заканчиваться в течение 0,1...0,23с;
- скорость при врезании и выходе резца не больше некоторого заданного по условиям технологии значения.

Выбор типа электропривода, В OCHOBHOM, определяется необходимым диапазоном регулирования скорости, требованиями к жесткости механических характеристик во всем диапазоне регулирования скорости. В электроприводах металлорежущих станков групп применяются нерегулируемые различных регулируемые электропривода. Для токарных, сверлильных и подобного рода станков с синхронизацией главного движения и подачи при помощи механических коробок передач, а также для главного движения и подачи продольно-строгальных и других подобных станков при небольшой длине стола ($L \le 3$ м) применяют короткозамкнутым привода cасинхронным двигателем сочетании с коробкой скоростей и электромагнитными муфтами.

Во всех других станках применяются различные типы регулируемых электроприводов постоянного и переменного тока для каждого механизма станка. Для привода главного движения,

как правило, применяют электропривода с двухзонным регулированием скорости, а для привода подач – с однозонным.

Вопросы для самоконтроля

- 1 Назовите, что относится к металлорежущим станкам и по каким признакам они классифицируются.
- 2 Перечислите и охарактеризуйте режимы работы ЭП в металлорежущих станках.
- 3 Назовите требования к ЭП токарных и продольно-строгальных станков.
- 4 Опишите особенности электропривода металлорежущих станков.

Раздел 2 Расчет элементов электроприводов Тема 2.1 Расчет, выбор и проверка электродвигателей

Общие вопросы выбора электродвигателей, классификация электродвигателей

Расчет электродвигателя(ЭД) на нагрев. Метод эквивалентного тока. Метод эквивалентной мощности.

Нагрузочные диаграммы и тахограммы

Классификация номинальных режимов работы электродвигателей

Порядок выбора ЭД по мощности при различных режимах работы. Продолжительный режим S1. Кратковременный режим S2. Повторно-кратковременный режим.

Литература: [7] с.390-401

Методические рекомендации

Выбор типа двигателя по роду тока и принципу действия для электроприводов регулируемых определяется диапазоном быстродействием, регулирования скорости, статической динамической погрешностью регулирования и т.д. Основой для выбора электродвигателя расчета мощности И нагрузочная диаграмма скорости (тахограмма). диаграмма И

Нагрузочные диаграммы могут быть заданы в виде графика момента или мощности.

подразделяются Нагрузочные диаграммы на диаграммы производственного механизма И электропривода. Нагрузочной диаграммой производственного механизма называется зависимость приведенного к валу двигателя статического момента (мощности) нагрузки от времени. Нагрузочной диаграммой электропривода называется зависимость момента электродвигателя от времени. Нагрузочная диаграмма электропривода может быть рассчитана и выбора построена только после двигателя ДЛЯ данного Диаграммой производственного механизма. скорости, ИЛИ тахограммой, зависимость скорости называется исполнительного органа от времени. В соответствии с ГОСТ 183-74 установлено восемь номинальных режимов работы электрических машин, имеющих условные обозначения S1 - S8.

S1. Режим продолжительный нагрузки — работа электродвигателя при постоянной нагрузке (рис. 4, *a*) такой продолжительности, при которой превышение температуры электродвигателя достигает установившегося значения.

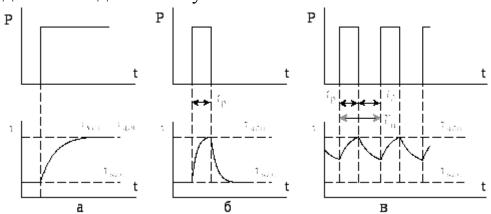


Рисунок 4 -. Диаграммы момента нагрузки, соответствующие номинальным режимам работы электродвигателя: $a-S1; \, \delta-S2; \, B-S3$

S2.Режим кратковременной нагрузки работа электродвигателя при постоянной нагрузке в течение заданного времени с последующим отключением (рис. 4, б). При этом за время работы двигателя превышение температуры не достигает установившегося значения, a периоды отключения продолжительность достаточную ДЛЯ достижения двигателем температуры окружающей среды.

- S3. Режим повторно-кратковременной нагрузки последовательность идентичных рабочих циклов, каждый из которых состоит из периода работы при постоянной нагрузке и периода отключенного неподвижного состояния двигателя (рис. 4,в). За время работы превышение температуры двигателя не достигает установившегося значения, а при отключении двигатель не успевает остыть до температуры окружающей среды.
- S4. Режим повторно-кратковременной нагрузки, включая пуск аналогичен режиму S3, но дополнительно учитывает период пуска двигателя.
- Режим повторно-кратковременной нагрузки, включая S3.электрическое торможение аналогичен режиму дополнительно учитывает электрического период пуска И торможения двигателя. Режимы S4 и S5 характеризуются: ПВ = 15, 25, 40 и 60%; числом включений в час z = 30, 60, 90, 120, 180, 240 и 360 вкл./ч.
- S6. Режим продолжительной работы при переменной нагрузке последовательность идентичных рабочих циклов, каждый из которых состоит из периодов работы при постоянной нагрузке и на холостом ходу. Длительность цикла недостаточна для достижения теплового равновесия.
- S7. Режим продолжительной нагрузки, включая электрическое торможение последовательность идентичных рабочих циклов, каждый из которых состоит из периодов пуска, работы при постоянной нагрузке и электрического торможения. Длительность цикла недостаточна для достижения теплового равновесия.
- S8. Режим работы при периодическом изменении частоты вращения и нагрузки последовательность идентичных рабочих циклов, каждый из которых состоит из периодов ускорения (замедления), работы при постоянной нагрузке и заданной частоте вращения, затем одного или нескольких периодов работы при других постоянных нагрузках и частотах вращения. Длительность цикла недостаточна для достижения теплового равновесия.

Вопросы для самоконтроля

1 Опишите, какие принципы и методики расчета двигателей положены в основу их выбора.

- 2 Раскройте понятие «нагрузочная диаграмма», «тахограмма», приведите примеры.
 - 3 Назовите известные вам режимы работы ЭД.
 - 4 Опишите особенности работы ЭД в каждом режиме.

Тема 2.2 Расчет и построение механических характеристик электродвигателей

Понятие механической характеристики (МХ) двигателя постоянного тока. Уравнение естественной механической характеристики. Понятие жесткости.

Понятие МХ асинхронного двигателя (АД). Уравнение МХ АД. Критическое скольжение, его связь с максимальным моментом. Упрощенное уравнение МХ АД и его решение

Литература: [5] с.227-277

Методические рекомендации

Двигатели постоянного тока подразделяют на двигатели с независимым, последовательным и смешанным возбуждением. Жёсткость механические характеристик электропривода β — это отношение разности электромагнитных моментов двигателя при разных скоростях к соответствующей разности угловых скоростей электропривода.

Естественная механическая характеристика — это зависимость, снятая при нормальных условиях работы двигателя, т.е. при номинальных параметрах питающей сети и отсутствии добавочных резисторов в цепях обмоток двигателей.

При рассмотрении механических характеристик двигателя считают, что источник питания или сеть бесконечной мощности, ее внутреннее сопротивление близко к нулю, напряжение сети неизменно U_c =const. Поэтому цепи возбуждения и якоря не зависят друг от друга. Не зависят эти цепи друг от друга и потому, что во многих системах привода для обмотки возбуждения используется отдельный источник питания.

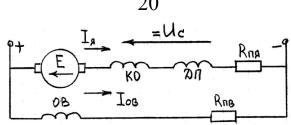


Рисунок 5 - Схема двигателя постоянного тока с независимым возбуждением

КО – компенсационная обмотка;

ДП – обмотка дополнительных полюсов;

 r_{ns} – дополнительное сопротивление, включенное последовательно с якорем;

 $r_{\text{пв}}$ – дополнительное сопротивление, включенное последовательно с обмоткой возбуждения.

Уравнение характеристики представляет из себя прямую линию,

которой отсекают от оси ординат отрезок идеального холостого хода (рисунок 6).

Из выражения механических электромеханических И характеристик видно, что при Ф=const электромеханические и механические характеристики представляют собой прямую линию пересекающую ось координат.

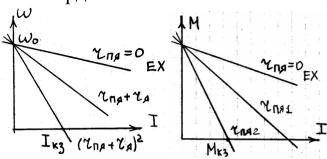


Рисунок 6 – Механическая и электромеханическая характеристики ДПТ

Зависимость частоты вращения ротора OT нагрузки валу) называется механической (вращающегося момента на характеристикой асинхронного двигателя (рис. 7, При номинальной нагрузке частота вращения для различных двигателей

обычно составляет 98—92,5 % частоты вращения n_1 (скольжение $s_{\text{ном}} = 2 - 7,5$ %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора.

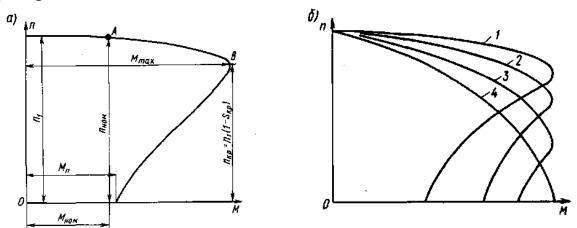


Рисунок 7 - Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

Как показывает кривая на рис. 7, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент M_{max} двигатель развивает при некоторое скольжении s_{kp} , составляющем 10—20%. Отношение $M_{\text{max}}/M_{\text{ном}}$ определяет перегрузочную способность двигателя, а отношение $M_{\text{п}}/M_{\text{ном}}$ — его пусковые свойства.

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки $M_{\rm BH}$ и моментом $M_{\rm BH}$ и карактеристики до достижения $M_{\rm max}$ (до точки $M_{\rm BH}$). Если нагрузочный момент $M_{\rm BH}$ превысит момент $M_{\rm max}$, то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5—7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 7,б). Характеристика 1 при работе двигателя без пускового реостата

называется естественной. Характеристики 2, 3 и 4, получаемые при ротора обмотке подключении К двигателя реостата сопротивлениями $R_{1\pi}$ (кривая 2), $R_{2\pi}$ (кривая 3) и $R_{3\pi}$ (кривая 4), называют реостатными механическими характеристиками. При реостата механическая характеристика включении пускового более мягкой (более крутопадающей), становится увеличивается активное сопротивление цепи ротора R_2 и возрастает $s_{\kappa n}$. При этом уменьшается пусковой ток. Пусковой момент M_{π} также зависит от R_2 . Можно так подобрать сопротивление реостата, чтобы пусковой момент M_{Π} был равен наибольшему M_{max} .

Разность скоростей вращения магнитного поля статора и ротора асинхронного двигателя характеризуется величиной скольжения s = (n1 - n2) / n2, где n1- синхронная скорость вращения поля, об/мин, n2 - скорость вращения ротора асинхронного двигателя, об/мин.

Вопросы для самоконтроля

- 1 Опишите принцип работы ДПТ с независимым возбуждением.
- 2 Раскройте понятие «естественная характеристика», «механическая характеристика», «скольжение», «жесткость».
 - 3 Опишите принципы построения характеристик ДПТ.
 - 4 Опишите принципы построения характеристик АД.

Тема 2.3 Расчет и выбор пускорегулирующей аппаратуры

Расчет тока в силовой цепи Расчет и выбор магнитных пускателей Выбор реле времени Выбор электромагнитов Выбор аппаратов ручного управления Выбор трансформатора Литература: [4] с.151-170

Методические рекомендации

Выбор электрических аппаратов необходимо производить после определения тока, протекающего в отдельных цепях схемы

установки. Ток, протекающий в силовой цепи, определяется электродвигателями, нагревательными элементами, исполнительными устройствами, электромагнитами, лампами освещения и сигнализации и т. д. Электромагнитные пускатели выбирают по следующим условиям:

- 1) Серия электромагнитного пускателя. Наибольшее применение в настоящее время находят пускатели серии ПМЛ и ПМ12.
- 2) Величина электромагнитного пускателя (ток нагрузки, который способен включать и выключать пускатель своими главными контактами). Электромагнитные пускатели бывают 1-й величины (ток главных контактов 10 и 16A), 2-й величины (25A), 3-й величины (40A), 4-й величины (63A).
- 3) Рабочее напряжение катушки. Должно соответствовать напряжению цепей управления стандартные значения напряжения \sim 24 B, \sim 110 B, \sim 220 B, \sim 380 B, DC 24 B
- 4) Количество дополнительных контактов электромагнитного пускателя. Должно соответствовать необходимому числу контактов в схеме управления. Отдельно необходимо считать контакты замыкающие и размыкающие.
 - 5) Степень защиты, ІР
- 6) Наличие теплового реле. Если электромагнитный пускатель включает и выключает электродвигатели, которые по своим технологическим режимам могут испытывать перегрузки, то необходимо выбирать аппарат с тепловыми реле.
 - 7) Наличие реверса
- 8) Дополнительные элементы управления (кнопки на корпусе, лампочка)
 - 9) Класс износостойкости (количество срабатываний)

Реле времени предназначены для передачи команд из одной электрической цепи в другую с определенными, предварительно установленными выдержками времени. Выбор реле производится по:

- числу контактов;
- времени выдержки срабатывания контактов;
- напряжению катушки;
- степени защиты ІР.

При выборе управляющих и тормозных электромагнитов необходимо прежде всего учитывать усилие Н, которое способен создать электромагнит. Это усилие должно быть известно по технологическим данным станка. Кроме этого необходимо учесть следующие факторы:

- 1) Назначение электромагнита должно совпадать с его функцией в схеме станка.
- 2) Род напряжения. Постоянный или переменный. Большинство электромагнитов питаются постоянным током.
- 3) Рабочее напряжение электромагнита. Должно соответствовать напряжению цепей в которых установлен электромагнит.
- 4) Степень защиты, IP. Так как электромагнитный механизм, в большинстве случаев, устанавливается непосредственно на станке и работает в тяжелых условиях (попадание эмульсии, смазки) то степень защиты должна быть не менее IP44.
 - 5) Класс износостойкости (количество срабатываний).

К аппаратам управления относятся кнопки управления, выключатели, переключатели, конечные и путевые выключатели.

Выбор этих аппаратов производится:

1) по номинальному напряжению сети

$$U_{\text{HOM}} \geq U_{\text{HOM.c}}$$
,

где $U_{\text{ном}}$ – номинальное напряжение аппарата, В;

U_{ном.с}.- номинальное напряжение сети, В;

2) по длительному расчетному току цепи

$$I_{\text{HOM}} \ge I_{\text{ДЛИТ}}; \quad I_{\text{ОТКЛ}} \ge I_{\text{ДЛИТ}},$$

где $I_{\text{ном}}$ – номинальный ток аппарата, A;

 $I_{\text{откл}}$ – наибольший отключаемый аппаратом ток, A;

 $I_{\text{плит}}$ – длительный расчетный ток цепи, A.

Длительный расчетный ток цепи:

$$I_{\text{илит}} = S/U_{\text{ном.c.}}, A,$$

где S - наибольшую суммарную мощность, потребляемую аппаратами при одновременной работе, BA.

$$S = \sum S_{pi}$$
, BA,

где S_{pi} — мощность потребляемая каждым отдельным аппаратом во включенном состоянии (берется из каталога и

паспортных данных аппарата). Необходимо учитывать, что суммируются мощности только тех аппаратов, которые работают одновременно.

Для питания цепей управления и сигнализации сложных схем с целью повышения надежности работы электрических аппаратов и обеспечения более безопасного обслуживания электрооборудования применяют понижающий трансформаторы.

При выборе номинальной мощности трансформатора управления следует исходить из следующих условия, что номинальная мощность $P_{\text{ном}}$ трансформатора должна быть равна или больше максимальной мощности, потребляемой включенными аппаратами одновременно. Мощность трансформатора для цепей управления определяется по следующей формуле:

$$P_{\text{\tiny HOM}} \ge 0.35 \cdot m \cdot P_{y} + 0.4 \cdot n \cdot P_{e}$$
 , BT

где m – наибольшее число одновременно включенных аппаратов;

 P_{y} — мощность, потребляемая каждым отдельным аппаратом во включенном состоянии (берется из каталога);

n — число одновременно включаемых аппаратов при наибольшем числе включенных;

 $P_{\scriptscriptstyle B}$ — мощность, потребляемая каждым аппаратом при включении —пусковая мощность (берется из каталога — не учитываются лампочки и аппараты постоянного тока, так как они не имеют пускового тока).

Вопросы для самоконтроля

- 1 Опишите, как производится расчет тока в силовой цепи
- 2 Опишите, как производится расчет и выбор магнитных пускателей
 - 3 Опишите, как производится выбор реле времени
 - 4 Опишите, как производится выбор электромагнитов
- 5 Опишите, как производится выбор аппаратов ручного управления
 - 6 Опишите, как производится выбор трансформатора

Тема 2.4 Расчет и выбор аппаратов защиты и токоведущих частей

Общие требования к защите Выбор предохранителей Выбор автоматических выключателей Выбор тепловых реле магнитных пускателей Расчет и выбор проводов и кабелей Литература: [4] с.185-190; [8] с.200-215

Методические рекомендации

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите: быстродействие, селективность. электродинамическая стойкость, уровень перенапряжений, надежность, помехоустойчивость, чувствительность.

Предохранители выбираются по следующим условиям:

- по номинальному напряжению сети:

 $U_{\text{ном.пред.}} >= U_{\text{ном.с.}}$

где $U_{\text{ном. пред.}}$ – номинальное напряжение предохранителя;

 $U_{\mbox{\tiny HOM.c}}$.- номинальное напряжение сети;

Рекомендуется номинальное напряжение предохранителей выбирать по возможности равным номинальному напряжению сети (в этих случаях плавкие вставки имеют лучшие защитные характеристики);

-по длительному расчетному току линии.

Тепловые реле выбираются по номинальному току двигателя (или длительному расчетному току):

$$I_{\text{HOM.T.p}} \ge I_{\text{HOM. } \text{дB}}$$

При выборе теплового реле необходимо стремиться к тому, чтобы ток уставки находился в центре диапазона регулирования. При выборе предпочтительнее тепловых реле выбирать трехполюсное реле серии РТЛ, при больших токах однополюсных реле серии РТТ.

При выборе вида электропроводки и способа прокладки проводов и кабелей должны учитываться требования

электробезопасности и пожарной безопасности. Сечение проводов и кабелей цепей питания, управления, сигнализации, измерения и т.п. должны выбираться из условия допустимого их нагрева электрическим током.

Условия нагрева проводов длительным расчетным током имеет вид:

$$I_{\text{длит. доп}} \ge I_{\text{расч}}$$
 ,

а условие соответствия выбранному аппарату защиты:

$$I_{\text{длит. доп.}} \ge K_3 \cdot I_3$$

где $I_{\text{длит.доп}}$ — допустимый длительный ток для провода или кабеля при нормальных условиях прокладки, определяемый по таблицам допустимых токовых нагрузок на провода и кабели;

 $I_{\text{расч}}$ — длительный расчетный ток линии (суммируются все номинальные токи электроприемников, которые получают питание по данному проводу или кабелю);

 ${\rm I_3}$ — номинальный ток или ток срабатывания защитного аппарата;

 K_3 – кратность допустимого длительного тока для провода или кабеля по отношению к номинальному току или току срабатывания защитного аппарата (согласно ПУЭ для провода, который защищен автоматическим выключателем K_3 =1, а предохранителем K_3 = 0,33).

Вопросы для самоконтроля

- 1 Опишите, как производится выбор предохранителей
- 2 Опишите, как производится выбор автоматических выключателей
- 3 Опишите, как производится выбор тепловых реле магнитных пускателей
 - 4 Опишите, как производится выбор электромагнитов
- 5 Опишите, как производится расчет и выбор проводов и кабелей

Раздел 3 Составление и оформление конструкторской документации

Тема 3.1 Проектирование конструктивных чертежей электрооборудования промышленных и транспортных установок

Назначение конструкторской документации (КД)

Общее понятие о стандартах ЕСКД

Определение основных видов изделий: детали, сборочной единицы, комплекса, комплекта

Виды базовых документов: чертеж общего вида, чертеж детали, спецификация, сборочный чертеж, схема, пояснительная записка

Литература: [1] с.68-74

Методические рекомендации

конструкторским документам относят графические текстовые документы, которые в отдельности или в совокупности определяют состав и устройство изделия и содержат необходимые данные для его разработки или изготовления, контроля, приемки, система ремонта. Единая конструкторской эксплуатации документации (ЕСКД) — комплекс государственных стандартов, устанавливающих взаимосвязанные правила, требования и нормы обращению разработке, оформлению И конструкторской документации, разрабатываемой и применяемой на всех стадиях жизненного цикла изделия.

Деталь – изделие, изготовленное из одного куска материала одной марки. К деталям относятся также изделия, подвергнутые покрытием, независимо от вида, толщины и назначения покрытий, и изделия, изготовленные с применением местных сборочных операций (пайки, склеивания, т.п.), сварки, сшивания И указываемых условными обозначениями проводимых И ДЛЯ придания куску материала необходимой формы.

Сборочная единица — изделие, составные части которого подлежат соединению между собой сборочными операциями на предприятии-изготовителе: телевизор, прибор, станок и т.п.

Комплекс — это два и более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных

эксплуатационных функций. Каждое из этих специфицированных изделий, входящих в комплекс, служит для выполнения одной или нескольких функций, установленных для всего комплекса.

Комплект — это два и более изделия, несоединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера.

Чертеж детали — документ, содержащий изображение детали и другие данные, необходимые для ее изготовления и контроля (ГОСТ 2.102-68).

Сборочный чертёж — документ, содержащий изображение сборочной единицы и другие данные, необходимые для ее сборки (изготовления) и контроля. К сборочным чертежам также относят чертежи, по которым выполняют гидромонтаж и пневмомонтаж (ГОСТ 2.102-68).

Спецификация — документ, определяющий состав сборочной единицы, комплекса или комплекта (ГОСТ 2.102-68).

Чертеж общего вида— документ, определяющий конструкцию всего изделия, взаимодействие его основных составных частей и поясняющий принцип работы изделия.

Пояснительная записка — документ, содержащий описание устройства и принципа действия разрабатываемого изделия, а также обоснование принятых при его разработке технических и технико-экономических решений.

Схема – документ, на котором показаны в виде условных изображений или обозначений составные части изделия и связи между ними.

Вопросы для самоконтроля

- 1 Поясните, что из себя представляет конструкторская документация и каково ее назначение
 - 2 Расшифруйте «ЕСКД» и раскройте это понятие
- 3 Дайте определения следующим понятиям: деталь, сборочная единица, комплекс, комплект
- 4 Проанализируйте особенности составления базовых документов

Тема 3.2 Проектирование схем электрических принципиальных

Понятие схемы электрической принципиальной

Способы выполнения схем электрических принципиальных: разнесенный и совмещенный

Особенности маркировки цепей и элементов.

Литература: [6] с.205-216

Методические рекомендации

Схема электрическая принципиальная — графическое изображение, служащее для передачи с помощью условных графических и буквенно-цифровых обозначений связей между элементами электрического устройства.

Совмещенный способ изображения элементов на схемах.

прибора, каждого электрического части аппарата располагают в непосредственной близости и заключают обычно в прямоугольный, квадратный или круглый контур, выполненный сплошной тонкой линией. Совмещенный способ изображения в основном встречается в схемах электропитания приборов систем автоматики и других простых случаях. Разнесенный способ применяют в основном в принципиальных электрических схемах, способе совершенно так как при ЭТОМ отчетливо электрические цепи, что значительно облегчает чтение схем. Схемы изделий, выполняют ДЛЯ находящихся В отключенном положении.

Элементы изделий на схеме вычерчивают в виде условных графических обозначений согласно стандартам ЕСКД. Условные графические обозначения элементов схемы должны распределяться на поле чертежа оптимально, чтобы линии связи между элементами были кратчайшими с минимальным количеством пересечений.

Размеры условных графических обозначений выполняют в соответствии с ГОСТ 2.747-68, 2.721-74, 2.728-74, 2.730-73, 2.755-74 и др.

Вопросы для самоконтроля

1 Дайте понятие схемы электрической принципиальной

- 2 Опишите, какими способами выполняется данная схема
- 3 Проанализируйте основные правила составления таких схем

Тема 3.3 Проектирование схем электрических соединений

Особенности изображения и расположения элементов на схеме электрической соединений

Указание позиционных обозначений устройств и обозначений их выводов

Изображение разъемов

Изображение проводов, жгутов, кабелей

Литература: [6] с.225-230

Методические рекомендации

На схеме соединений должны быть изображены все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т. п.), а также соединения между этими устройствами и элементами.

Устройства и элементы на схеме изображают:

устройства — в виде прямоугольников или упрощенных внешних очертаний;

элементы — в виде условных графических обозначений, прямоугольников или упрощенных внешних очертаний.

При изображении элементов в виде прямоугольников или упрощенных внешних очертаний допускается внутри их помещать условные графические обозначения элементов.

Входные и выходные элементы изображают в виде условных графических обозначений.

Допускается входные и выходные элементы изображать по правилам, установленным в пп. 3.41, 3.42 и 3.48.

Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.

Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.

Элементы, используемые в изделии частично, допускается изображать на схеме неполностью, ограничиваясь изображением только используемых частей.

На схеме около графических обозначений устройств и элементов указывают позиционные обозначения, присвоенные им на принципиальной схеме.

Около или внутри графического обозначения устройства допускается указывать его наименование и тип и (или) обозначение документа, на основании которого устройство применено.

На схеме следует указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.

в конструкции устройства или Если элемента обозначения входных документации выходных И элементов (выводов) не указаны, то допускается условно присваивать им дальнейшем обозначения схеме, повторяя на ИХ В соответствующих конструкторских документах.

Устройства и элементы с одинаковыми внешними подключениями допускается изображать на схеме с указанием подключения только для одного устройства или элемента.

Устройства, имеющие самостоятельные схемы подключения, допускается изображать на схеме изделия без показа присоединения проводов и жил кабелей (многожильных проводов, электрических шнуров) к входным и выходным элементам.

При изображении на схеме соединителей допускается применять условные графические обозначения, не показывающие отдельные контакты (ГОСТ 2.755). Прочие правила оформления приведены в соответствующих ГОСТах.

Вопросы для самоконтроля

- 1 Поясните, что в себя включает схема электрическая соединений
 - 2 Проанализируйте основные правила составления таких схем

Понятие схемы электрической подключения

Изображение изделий на схеме электрической подключения Особенности маркировки элементов Литература: [6] с.231-240; [3] с.143-160

Методические рекомендации

Сведения о соединениях между собой отдельных устройств (шкафов, пультов, панелей управления, клемм элементов электроустановки) и особенностях выполнения таких соединений содержат схемы подключения (рис.8).

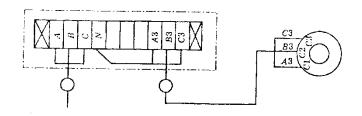


Рисунок 8 - Схема подключения

Коммутирующие аппараты на схемах изображают в отключенном состоянии (т.е. при отсутствии тока в обмотках реле, контакторов, электромагнитных пускателей и т.п. и внешних принудительных сил, воздействующих на отдельные аппараты).

Для опознавания участков цепи и составления схем соединений, цепи в принципиальных схемах маркируют. Силовые цепи переменного тока маркируются буквами, обозначающими фазы, и последовательными числами. Так, цепи трехфазного переменного тока маркируют буквами A, B, C, N, цепи двухфазного тока - A, B; B, C; C, A - и однофазного тока - A,N; B,N; C,N.

В схемах постоянного тока участкам цепей с положительной полярностью присваивают нечетные числа, а с отрицательной - четные. Входные и выходные участки цепи маркируют с указанием полярности: плюс (+) и минус (-), а средний проводник - буквой N или М. Цепи постоянного тока могут маркироваться последовательными числами.

Цепи управления, защиты, сигнализации, автоматики, измерения маркируются последовательными числами в пределах изделия.

На схемах маркировку проставляют у концов или в середине участка цепи, слева от изображения вертикальной цепи и над изображением горизонтальной цепи.

Схемы соединения могут иметь либо графический метод начертания, когда провода, жгуты и кабели, соединяющие зажимы аппаратов показывают на схеме отдельными линиями (аналогично тому, как выполняется принципиальная схема совмещенным способом, линии одного направления допускается изображать одной утолщенной, которая у мест присоединения ответвляется на отдельные линии, либо, в случае затруднения их чтения, адресный метод, при котором линии, изображающие провода, жгуты и кабели, обрывают вблизи мест присоединения.

Вопросы для самоконтроля

- 1 Поясните, что в себя включает схема электрическая подключения
 - 2 Проанализируйте основные правила составления таких схем

Раздел 4 Энергосбережение и ресурсосбережение Тема 4.1 Основные вопросы энерго- и ресурсосбережения

Понятия: энергосбережение, ТЭР, ВЭР, эффективное использование ТЭР, показатели энергоэффективности, нетрадиционные и возобновляемые источники энергии, пользователи и производители ТЭР

Решение глобальных проблем в РБ на пути к устойчивому развитию

Литература: [4] с.33-35

Методические рекомендации

Энергосбережение – это организационная, научная, практическая, информационная деятельность государственных органов, юридических и физических лиц, направленная на снижение расхода (потерь) топливно-энергетических ресурсов в

процессе их добычи, переработки, транспортировки, хранения, производства, использования и утилизации.

Эффективное использование топливно-энергетических ресурсов — это использование всех видов энергии экономически оправданными, прогрессивными способами при существующем уровне развития техники и технологий и соблюдении законодательства.

Топливно-энергетические ресурсы (ТЭР)— это совокупность всех природных и преобразованных видов топлива и энергии, используемых в республике.

Вторичные энергетические ресурсы (ВЭР)— это энергия, полученная, в ходе любого технологического процесса в результате недоиспользования первичной энергии или в виде побочного продукта основного производства и не применяемая в этом технологическом процессе.

Нетрадиционные и возобновляемые источники энергии — это источники электрической и тепловой энергии, использующие энергетические ресурсы рек, водохранилищ и промышленных водостоков, энергию ветра, солнца, редуцируемого природного газа, биомассы (включая древесные отходы), сточных вод и твёрдых бытовых отходов.

Пользователи топливно-энергетических ресурсов — это субьекты хозяйствования независимо от форм собственности, зарегистрированные на территории РБ в качестве юридических лиц или предпринимателей без образования юридического лица, а также другие лица, которые в соответствии с законодательством РБ имеют право заключать хозяйственные договоры, и граждане, использующие ТЭР.

Производители топливно-энергетических ресурсов — это субъекты хозяйствования независимо от форм собственности, зарегистрированные на территории Республики Беларусь в качестве юридических лиц, для которых любой из видов топливно-энергетических ресурсов, используемых в республике, является товарной продукцией.

Вопросы для самоконтроля

1 Раскройте основные понятия: энергосбережение, ТЭР, ВЭР, эффективное использование ТЭР, показатели энергоэффективности,

нетрадиционные и возобновляемые источники энергии, пользователи и производители ТЭР

2 Проанализируйте основные задачи РБ при достижении высоких показателей энерго- и ресурсобережливости

Тема 4.2 Мероприятия по энергосбережению и ресурсосбережению на предприятиях

Оперативный учет ТЭР на предприятии Мероприятия по энергосбережению на предприятии Литература: [4] с.35-38

Методические рекомендации

Оперативный учёт использования ТЭР на предприятии - один из главных факторов эффективности их работы. Наиболее точным и прогрессивным является учет с помощью КИП и А, которые обеспечивают регистрацию первичных показателей количества и качества всех видов энергии. Мероприятия по энергосбережению:

- использование отходов производства;
- организация суточного и сезонного регулирования потребления теплоты;
 - внедрение автоматической системы правления освещением;
 - оптимальная загрузка производственных площадей;
- -использование вторичных тепловых энергоресурсов в системах теплоснабжения:
- уменьшение оконных проёмов в производственных помещениях;
 - использование тепловой изоляции для трубопроводов;
- замена насосного оборудования на потребляющее меньше мощности;
 - установка биметаллических калориферов;
 - замена ламп накаливания на энергосберегающие;
 - совершенствование технологии сушки;
 - внедрение автоматизированных систем;
 - децентрализация систем теплоснабжения;
 - улучшение использования оборудования.

Вопросы для самоконтроля

- 1 Опишите способы учета ТЭР на предприятии
- 2 Проанализируйте основные мероприятия по энерго- и ресурсосбережению

Список используемых источников

- 1 Александров, К.К. Электротехнические чертежи и схемы / К.К. Александров, Е.Г. Кузьмина. Москва : МЭИ, 2004. 208 с.
- 2 Белов, М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов / М.П. Белов. Москва : Академия, 2007. 329 с.
- 3 Борисов, Ю.М. Электротехника / Ю.М. Борисов, Д.Н. Липатов. Москва : Энергоатомиздат, 1985. 360 с.
- 4 Зимин, Е.Н. Электрооборудование промышленных предприятий и установок / Е.Н. Зимин, И.И. Чувашов. Москва : Энергоиздат, 1981. 440 с.
- 5 Ключев, В.И. Электропривод и автоматизация общепромышленных механизмов / В.И. Ключев, В.М. Терехов. Москва : Энергия, 1980.-350 с.
- 6 Кувшинов, Н.С. Чертежи электротехнических изделий в приборостроении и энергетике / Н.С. Кувшинов. Челябинск : ЮурГУ, $2004.-340~\rm c.$
- 7 Онищенко, Г.Б. Автоматизированный электропривод промышленных установок / Г.Б. Онищенко. Москва : РАСХН, 2001.-568 с.
- 8 Чунихин, А.А. Электрические аппараты. Общий курс / А.А. Чунихин. Москва : Энергия, 1975. 236 с.

Задания на домашнюю контрольную работу по учебному предмету «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок»

Задание №1

Согласно своему шифру выберите из таблицы 1 номер своей задачи и решите ее. Решение должно быть подробным, с пояснениями хода расчетов. Условия задач для первого задания представлены ниже.

№1.1

Время разгона электропривода конвейера (t=0,5сек), M_{C} =100Hм, ω_{H} =100c⁻¹, j=0,2кгм². Найдите пусковой момент двигателя. Начертите зависимость ω =f(t) и M=f(t) при пуске, учитывая, что пусковой момент ограничивается САР.

No1.2

Начертить нагрузочную диаграмму и тахограмму электропривода механизма передвижения. Пуск и торможение осуществляются под контролем задатчика интенсивности по следующим данным:

 $M_{\it CT1}$ =100Нм; $M_{\it CT2}$ =30Нм — сопротивление движению с грузом и без груза;

V=90м/мин — скорость передвижения (вперед и назад)

S=19,5м — расстояние между начальной и конечной точкой движения;

a=0,3 – ускорение, замедление;

 $I_{\Pi P1}$ =7кгм², $I_{\Pi P2}$ =3кгм² – приведенный момент инерции с грузом и без груза;

$$ho = rac{V}{\omega} = 0.01667$$
 м - радиус приведения;

$$\eta = 0.85$$
 - кпд; $t_{\Pi AV3} = 50$ с.

№1.3

Написать алгоритм расчета мощности электродвигателя движения токарного главного станка при режиме работы. Номинальная повторно-кратковременном мощность определяется при черновой обработке детали $\omega_{\scriptscriptstyle \Pi} \! = \! \omega_{\scriptscriptstyle H}.$ Выбор произвести из трех двигателей Д1, Д2 и Д3. Пуск и торможение осуществляются при холостом ходе.

Исходные данные

 F_Z – сила резания, H;

D – максимальный диаметр обрабатываемой детали, м;

l — длина обрабатываемой детали, м;

S – подача, мм;

 η – кпд передачи;

i – передаточное число передачи;

 $t_{\Pi A Y 3}$ – время паузы, с;

V – скорость резания, м/мин;

 ΠB_{CT} – стандартное ПВ двигателя, %;

P1, P2, P2 – номинальная мощность двигателей Д1, Д2, Д3, кВт;

 t_{Π} = t_{T} — время пуска и торможения, с; разгон и торможение происходит на холостом ходу;

 M_{XX} – момент холостого хода, Нм;

 $K_{3.0.}$ – коэффициент запаса на динамику.

№1.4

конвейера: Технические данные производительность $Q = 72 \cdot 10^3$ кг/ч; скорость V=0.8м/с; масса одного метра ленты m_{01} =10кг/м; угол обхвата приводного и натяжного барабана α =180°; длина конвейера (между центрами приводного и натяжного барабана); l=80м; угол наклона к горизонту конвейера 15° ; допустимое ускорение 0,4м/с2; расстояние между роликами на рабочем участке 2,5м; допустимый провис ленты Y=0.025м. масса роликов, барабанов Приведенная электродвигателя И составляет 30% от массы груза и ленты. Коэффициенты трения и сопротивления движению принять: f=0,15; $c_n=0,025$; $\kappa_u=1+c_n=1,05$.

Определите силу сопротивления движению конвейера, набегающее и сбегающее натяжения и необходимое значение $T_{c\delta}$ по условию сцепления.

№1.5

Технические данные конвейера: производительность $O=72\cdot10^3$ кг/ч; скорость V=0.8м/с; масса одного метра ленты $m_{01}=10$ кг/м; угол обхвата приводного и натяжного барабана $\alpha=180^{\circ}$; длина конвейера (между центрами приводного и натяжного барабана); l=80м; угол наклона к горизонту конвейера допустимое ускорение 0,4м/с2; расстояние между роликами на рабочем участке 2,5м; допустимый провис ленты Y=0,025м. масса роликов, барабанов Приведенная И электродвигателя составляет 30% от массы груза и ленты. Коэффициенты трения и сопротивления движению принять: f=0,15; $c_n=0,025$; $\kappa_u=1+c_n=1,05$. Для данного конвейера рассчитать мощность двигателя и выбрать его при η_n =0,85 и K_{3an} =1,1, ω_0 =78,5 c^{-1} . Определить высоту, на которую поднимают груз.

№1.6

Начертите структурную схему механической части электродвигателя конвейера. Приведите формулу определения жесткости гибкой связи ленточного конвейера.

№1.7

Вода из реки забирается насосом по трубе диаметром 250мм, затем нагнетается в бак по трубе диаметром 200мм. Высота бака над поверхностью реки 3,4м. Длина всасывающей трубы 20м, нагнетающей 50м. Производительность насоса $0.1 \text{ m}^3/\text{c}$. Скорость вращения насоса ω_{H} =980об/мин. Кпд насоса η =0,816. Определить мощность на валу насоса и выбрать двигатель.

№1.8

Рассчитать производительность и мощность электродвигателя поршневого компрессора. Исходные данные: $P_{aбc}$ =3·10⁵Па; радиус

кривошипа R=0,1м; скорость вращения n=950об/мин; диаметр цилиндра d_{u} =150мм, кпд компрессора 0,7, κ_{3} =1,1.

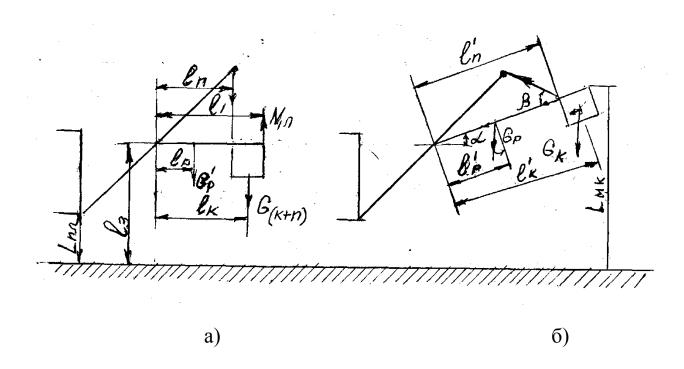
№1.9

Рассчитать производительность и мощность электродвигателя поршневого компрессора. Исходные данные: $P_{a\delta c}$ =3·10⁵Па; радиус кривошипа R=0,1м; скорость вращения n=950об/мин; диаметр цилиндра d_u =150мм, клд компрессора 0,7, κ_3 =1,1.

№1.10

Для компрессора со следующими параметрами: производительность 0,112 м³/с; $P_{a\delta c}$ =3·10⁵Па; радиус кривошипа R=0,1м; скорость вращения n=950об/мин; диаметр цилиндра d_u =150мм, кпд компрессора 0,7, κ_3 =1,1. - построить индикаторную диаграмму при P_1 = P_{amn} =1,01·10⁵Па; P_2 =3·10⁵Па; мертвое пространство (по ходу s_{mn} =0,06м; по объему V=1,06·10⁻⁴м³). Полный объем цилиндра с учетом мертвого пространства (s_{non} = s_x + s_{mn} =0,206м); V_n =3,64·10⁻³; $P_1V_1^n$ = $P_2V_2^n$ n=1,2 — при всасывании, n=1,3 — при сжатии.

 $V=(s_x+s_{_{MN}})\frac{\pi D^2}{4}$; D — диаметр цилиндра, s_x , $s_{_{MN}}$ — длина хода и мертвого пространства. При всасывании $(s+s_{_{MN}})^{1,2}P_1=P_2s_{_{MN}}^{1,2}$, При сжатии $(s_x+s_{_{MN}})^{1,2}P_1=P_2(s_x+s_{_{MN}}-s)^{1,2}$, $s_x=0$ текущее значение хода.


№1.11

Построить нагрузочную и скоростную диаграммы и определить предварительную мощность двигателя механизма подъема экскаватора с оборудованием прямой лопатой. Емкость ковша $V=8\mathrm{M}^3$; скорость передвижения механизма подъема $v_{n\delta}=0.9\mathrm{M/c}$; ускорение (замедление) $a=1.8\mathrm{M/c}^2$; угол наклона стрелы 45^0 ; вес ковша $G_\kappa=37\mathrm{kH}$; вес рукояти $G_p=123.6\mathrm{kH}$; длина рукояти $l_p=8.5\mathrm{m}$; скорость вращения поворотной платформы $2.5\mathrm{of/muh}$; высота забоя $l_3=7.8\mathrm{m}$; максимальная высота копания $L_{\mathrm{MK}}=18.5\mathrm{m}$; удельное сопротивление породы IV категории, для которой

предназначен экскаватор K_y =250кH/м²; коэффициент разрыхления породы e=1,35.

Данные подъемного механизма

Диаметр барабана лебедки D_n =1,3м; передаточное число редуктора i_p =28; передаточное число полиспаста i_n =2, кпд передачи η =0,85; продолжительность цикла t_{η} =29,5с; время разгрузки ковша $t_{p\kappa}$ =2,5с; время поддержания ковша на высоте при повороте $t_{n\delta}$ =8,4с. Расчетные схемы рабочих положений представлены на рис. (а – при копании, б – при повороте с наполненным ковшом и при порожнем ковше). Значение плеч, полученных из расчетных схем, составляет: l_1 = 4,7m; l_n = 4,8m; l_p = 2,4m; l_{κ} = 5,75m; l_n' = 8,5m; l_p' = 4,25m; l_{κ}' = 9,7m; l_{κ} = 12,5m

№1.12

Рассчитать мощность электродвигателя постоянного тока механизма передвижения грузовой тележки мостового крана, питающегося от управляемого выпрямителя. Торможение электрическое. Цикл работы не определен. Режим работы крана 4М.

Исходные данные:

Грузоподъемность m_e =10т, масса тележки и грузозахватного устройства m_m =3,6т; диаметр колеса D_{κ} =200мм; диаметр цапфы

 d_u =60мм; скорость передвижения V=0,75м/с; ускорение (замедление) a=0,25м/с²; продолжительность включения ПВ=40%; число включения в час 120; кпд передачи η =0,85; уклон путей κ_y =0,003%; коэффициент трения о рельсы κ_{mp} =2,0; коэффициенты трения подшипников осей и качения колес μ =0,02; ρ =0,4·10⁻³м.

№1.13

Выбрать асинхронный короткозамкнутый двигатель, включенный по схеме ПЧ-АД для привода подъема крана. Режим работы повторно-кратковременный S5 (электрическое торможение). Разгон и торможение производится под контролем задатчика интенсивности.

Исходные данные:

Вес груза G_c =100кH; вес крюка G_0 =7кH; скорость подъема и опускания груза a=0,2м/ c^2 ; скорость двигателя ω_0 =78,5 c^{-1} ; высота подъема H=6м; кпд передачи при работе с грузом $\eta_{_{H,C}}$ =0,88, при работе без груза $\eta_{_{H,C}}$ =0,3; общее время пауз t_n =160с.

No1.14

На токарно-винторезном станке IGK20 необходимо обработать деталь D=70мм, L=2м из стали с пределом прочности σ_B =650МПа (65кгс/см²) резцом с пластинкой из твердого сплава Т5К10. Глубина резания t=4мм, подача S=0,6мм/об, скорость главного движения V=110м/мин. Геометрические элементы резца: форма передней поверхности — радиусная; угол в плане, φ =60°; угол наклона режущей кромки λ =5°. Данные станка: мощность двигателя, 10кВт; скорость вращения двигателя, 1600об/мин.; кпд передачи, η =0,75. Определить: достаточна ли мощность двигателя для обработки данной детали и время одного прохода?

№1.15

На продольно-строгальном станке 7A256 обрабатываются две плиты шириной B=520мм, толщиной H=250мм, длиной L=4000мм, материал — серный чугун СЧ15. Черновая обработка по корке. Одновременно обрабатываются две детали поверхности горизонтальные и две боковые. Пуск и торможение осуществляется

под контролем задатчика интенсивности. Требуется определить время одного прохода и полное время обработки плит.

Исходные данные:

Скорость резания 20м/мин, ускорение при пуске (торможении) a(s)=1,0м/с², скорость обратного хода 75м/мин. Перебег резца составляет 15мм в каждую сторону. За счет припуска на обработку -10мм и врезания резца -3мм, ширина обработки увеличивается в общей сложности на 23мм. Подача -3=3мм, глубина резания -t=10мм.

Задание №2

Согласно своему шифру выберите из таблицы 1 номер своего вопроса и ответьте на него. Ответ должен быть подробным, развернутым. Список вопросов для второго задания представлен ниже.

- 2.1 Классифицируйте подъемно-транспортные механизмы. Приведите условия выбора трансформаторов.
- 2.2 Опишите типовые ЭП крановых механизмов и требования к ним. Приведите условия выбора автоматических выключателей.
- 2.3 Опишите типовые ЭП и схемы управления конвейерами. крановых механизмов и требования к ним. Приведите условия выбора магнитных пускателей.
- 2.4 Классифицируйте турбомеханизмы. Приведите условия выбора кнопочных выключателей.
- 2.5 Опишите принцип работы центробежного механизма. Приведите условия выбора предохранителей.
- 2.6 Раскройте понятие и принцип построения Q-H характеристика центробежнго механизма. Приведите условия выбора проводов.
- 2.7 Назовите требования, предъявляемые к ЭП турбомеханизмов. Приведите способы регулирования производительности турбомеханизмов
- 2.8 Классифицируйте металлорежущие станки. Приведите условия выбора кабелей.
- 2.9 Опишите режимы работы ЭП в металлорежущих станках. Приведите условия выбора реле времени.

- 2.10 Опишите особенности ЭП токарных станков, требования к ним. Приведите условия выбора электромагнитов.
- 2.11 Опишите особенности ЭП продольно-строгальных станков, требования к ним. Приведите условия выбора аппаратов ручного управления.
- 2.12 Дайте общую классификацию электродвигателей. Приведите условия выбора тепловых реле.
- 2.13 Опишите номинальные режимы работы электродвигателей. Приведите условия преобразователей частоты.
- 2.14 Поясните метод эквивалентного тока при расчете электродвигателя. Приведите основные требования к защите.
- 2.15 Поясните метод эквивалентной мощности при расчете электродвигателя. Приведите пример нагрузочной диаграммы и тахограммы.

Задание №3

В соответствии со своим шифром выберите из таблицы 1 номер своего условия задания и изобразите схему согласно нему. Схема должна обеспечивать все заданные условия работы, вычерчена по ГОСТ. Выполняется в тетради карандашом. Список условий для третьего задания представлен ниже.

- 3.1 Составить и начертить схему электрическую принципиальную прямого пуска АД кнопкой с фиксацией (тумблером). Описать принцип работы схемы
- 3.2 Составить и начертить схему электрическую принципиальную прямого пуска АД кнопкой без фиксации (с постановкой на самопитание). Описать принцип работы схемы
- 3.3 Составить и начертить схему электрическую принципиальную прямого пуска АД с возможностью реверса (предусмотреть блокировки). Описать принцип работы схемы
- 3.4 Составить и начертить схему электрическую принципиальную реверсивного управления АД с остановкой по концевым выключателям. Описать принцип работы схемы
- 3.5 Составить и начертить схему электрическую принципиальную управления АД, с прямым пуском и постановкой на электромагнитный тормоз при останове. Описать принцип работы схемы

- 3.6 Составить и начертить схему электрическую принципиальную управления ДПТ, с прямым пуском в прямом и обратном направлении (реверс). Описать принцип работы схемы
- 3.7 Составить и начертить схему электрическую принципиальную управления ДПТ, с прямым пуском в прямом и обратном направлении (реверс) с остановкой по концевым выключателям. Описать принцип работы схемы.
- 3.8 Составить и начертить схему электрическую принципиальную управления ДПТ, с двумя ступенями скорости (одна через резистор, одна прямая). Обеспечить переключение по реле времени. Описать принцип работы схемы
- 3.9 Составить и начертить схему электрическую принципиальную управления двухобмоточным АД, обеспечить выбор скорости вращения кнопкой. Описать принцип работы схемы
- 3.10 Составить и начертить схему электрическую принципиальную управления АД, предусмотреть сигнализацию срабатывания тепловой защиты. Описать принцип работы схемы
- 3.11 Составить и начертить схему электрическую принципиальную управления АД, прямой пуск, предусмотреть возможность пуска и останова из двух мест (например, шкаф и пульт). Описать принцип работы схемы
- 3.12 Составить и начертить схему электрическую принципиальную прямого пуска ад, разрешающую пуск только при одновременном нажатии двух кнопок. Описать принцип работы схемы
- 3.13 Составить и начертить схему электрическую принципиальную управления двумя АД, включение одного двигателя разрешено только при включенном другом. Описать принцип работы схемы
- 3.14 Составить и начертить схему электрическую принципиальную управления АД, прямой пуск, предусмотреть сигнализацию при срабатывании кнопки аварийного останова. Описать принцип работы схемы
- 3.15 Составить и начертить схему электрическую принципиальную пуска трехфазного двигателя от однофазной сети. Описать принцип работы схемы

Таблица 1 — Варианты заданий на домашнюю контрольную работу по учебному предмету «Основы проектирования и расчета автоматизированных электроприводов промышленных и транспортных установок»

Предпоследн	Последняя цифра шифра									
яя цифра шифра	0	1	2	3	4	5	6	7	8	9
0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10
	2.15	2.14	2.13	2.12	2.11	2.10	2.9	2.9	2.7	2.6
	3.10	3.9	3.8	3.7	3.1	3.2	3.3	3.4	3.5	3.6
1	1.6	1.5	1.4	1.3	1.2	1.1	1.15	1.13	1.12	1.11
	2.5	2.4	2.3	2.2	2.1	2.15	2.14	2.13	2.12	2.11
	3.15	3.14	3.13	3.12	3.11	3.10	3.9	3.8	3.7	3.6
2	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.1
	2.10	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1
	3.1	3.2	3.13	3.4	3.5	3.6	3.7	3.8	3.9	3.10
3	1.11	1.10	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2
	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2. 8	2.9	2.10
	3.6	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.14	3.15
4	1.12	1.13	1.14	1.15	1.1	1.2	1.3	1.4	1.5	1.6
	2.10	2.11	2.12	2.13	2.14	2.15	2.14	2.13	2.12	2.11
	3.3	3.2	3.1	3.4	3.5	3.6	3.7	3.8	3.9	3.10
5	1.1	1.15	1.14	1.13	1.12	1.11	1.10	1.9	1.8	1.7
	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.15
	3.15	3.14	3.13	3.12	3.11	3.10	3.9	3.8	3.7	3.6
6	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11
	2.10	2.9	2.8	2.7	2.6	2.5	2. 4	2.3	2.2	2.1
	3.6	3.5	3.4	3.3	3.2	3.1	3.2	3.3	3.4	3.5
7	1.6	1.5	1.4	1.3	1.2	1.1	1.15	1.14	1.13	1.12
	2.11	2.12	2.13	2.14	2.15	2.14	2.13	2.12	2.11	2.10
	3.7	3.8	3.9	3.10	3.11	3.12	3.13	3.14	3.15	3.1

Продолжение таблицы 1

Предпоследн	Последняя цифра шифра									
яя цифра шифра	0	1	2	3	4	5	6	7	8	9
	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.1
8	2.15	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
	3.11	3.10	3.8	3.8	3.7	3.6	3.5	3.4	3.3	3.2
	1.11	1.10	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2
9	2.14	2.13	2.12	2.11	2.10	2.9	2.8	2.7	2.6	2.5
	3.12	3.13	3.14	3.15	3.1	3.2	3.3	3.4	3.5	3.6