
EXERCICES- LA TENSION ALTERNATIVE

Exercice 1:

La vitesse de balayage de l'oscilloscope est **B = 1 ms/div.** La sensibilité verticale de l'oscilloscope est **Sv = 2 V/div.**

- a) Combien de périodes compte-t-on sur cet oscillogramme?
- b) Calculer la période T de cette tension.
- c) Calculer la fréquence f de cette tension.
- d) Calculer la tension Umax de cette tension.

Exercice 2:

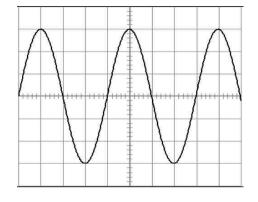
La fréquence de cette tension sinusoïdale est **f = 100 Hz**. La tension maximale Umax de cette tension est **Umax = 1 V**.

- a) Calculer la période T de cette tension.
- b) Calculer la vitesse de balayage B de l'oscilloscope.
- c) Calculer la sensibilité verticale Sv de l'oscilloscope.

Exercice 3:

La fréquence de la tension est **f = 1000 Hz**.

La sensibilité verticale Sv de l'oscilloscope vaut 5 V/div.


- a) Calculer la période T de cette tension.
- b) Calculer la base de temps B de l'oscilloscope.
- c) Calculer la tension maximale Umax de cette tension.

Exercice 4:

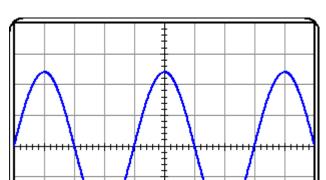
La fréquence de la tension est **f = 50 Hz**.

La sensibilité verticale Sv de l'oscilloscope vaut 5 V/div.

- a) Calculer la période T de cette tension.
- b) Calculer la base de temps B de l'oscilloscope.
- c) Calculer la tension maximale Umax de cette tension.

Exercice 5 : Observation de la tension délivrée par un GTBF.

1- Que signifie les lettres G.T.B.F ?.....


2- On a relevé dans le tableau ci-dessous les valeurs de la tension toutes les 5 secondes :

2º On a releve dans le tableau el dessous les valeurs de la tension toutes les o secondes.																					
t (s)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
U (V)	0	2,6	5,8	7,4	8,5	7,4	5,8	2,6	0	- 2,6	- 5,8	- 7,4	- 8,5	- 7,4	- 5,8	- 2,6	0	2,6	5,8	7,4	8,5

Sans tracer la courbe, détermine la période T, la fréquence f, la valeur maximale U_{max} et la valeur efficace U_{eff} de cette tension.

 $T = \dots ; f = \dots ; U_{max} = \dots ; U_{eff} = \dots ; U_{eff} = \dots$

Exercice 6 : Mesure avec un oscilloscope.

L'oscilloscope nous donne l'allure d'une tension alternative : On lit sur les calibres : Sv : 2 V/div ; B : 20 ms/div

a) Repasse en rouge un motif élémentaire de cette tension.

- b) Quelle est la période de cette tension ? c) Que vaut la fréquence de cette tension ?
- d) Que vaut la tension maximale?