
THIS DOCUMENT HAS MOVED TO iceberg.apache.org

Iceberg Table Spec
This is a specification for the Iceberg table format that is designed to manage a large,
slow-changing collection of files in a distributed file system or key-value store as a table.

Goals
● Snapshot isolation – Reads will be isolated from concurrent writes and always use a

committed snapshot of a table’s data. Writes will support removing and adding files in a
single operation and are never partially visible. Readers will not acquire locks.

● Speed – Operations will use O(1) remote calls to plan the files for a scan and not O(n)
where n grows with the size of the table, like the number of partitions or files.

● Scale – Job planning will be handled primarily by clients and not bottleneck on a central
metadata store. Metadata will include information needed for cost-based optimization.

● Evolution – Tables will support full schema evolution, including add, drop, reorder and
rename columns safely, including those in nested structures.

● Dependable types – Tables will provide well-defined and dependable support for a core
set of types.

● Storage separation – Partitioning will be table configuration. Reads will be planned
using predicates on data values, not partition values. Tables will support evolving
partition schemes.

● Formats – Underlying data file formats will support identical schema evolution rules and
types. Both read- and write-optimized formats will be available.

Overview
This table format tracks individual data files in a table instead of directories. This allows writers
to create data files in-place and only adds files to the table in an explicit commit.

Table state is maintained in metadata files. All changes to table state create a new metadata file
and replace the old metadata with an atomic operation. The table metadata file tracks the table
schema, partitioning config, other properties, and snapshots of the table contents. Each
snapshot is a complete set of data files in the table at some point in time. Snapshots are listed
in the metadata file, but the files in a snapshot are stored in separate manifest files.

https://iceberg.apache.org/spec/

The atomic transitions from one table metadata file to the next provide snapshot isolation.
Readers use the snapshot that was current when they load the table metadata and are not
affected by changes until they refresh and pick up a new metadata location.

Data files in snapshots are tracked in one or more manifest files that contain a row for each data
file in the table, its partition data, and its metrics. A snapshot is the union of all files in its
manifests. Manifest files can be shared between snapshots to avoid rewriting metadata that is
slow-changing. Manifests can track data files with any subset of a table and are not associated
with partitions.

MVCC and Optimistic Concurrency

Writers create table metadata files optimistically, assuming that the current version will not be
changed before the writer's commit. Once a writer has created an update, it commits by
swapping the table’s metadata file pointer from the base version to the new version.

If the version on which an update is based is no longer current, the writer must retry the update
based on the new current version. Some operations support retry by re-applying metadata
changes and committing, under well-defined conditions. For example, a change that rewrites
files can be applied to a new table snapshot if all of the rewritten files are still in the table.

File System Operations

Iceberg only requires that file systems support the following operations:

● Write-once: files are not moved or altered once they are written
● Seekable reads: data file formats require seek support
● Deletes: tables delete files that are no longer used

Tables do not require rename, except for tables that use an atomic rename to implement the
commit operation for new metadata files (see the file system table scheme in Table Metadata).

Specification

Terms

● Schema – names and types of fields in a table
● Partition spec – a definition of how partition values are derived from record fields
● Snapshot – a set of data files that store all data records in a table at some point in time
● Manifest – a file that lists data files; a subset of a snapshot

Schemas and Data Types

A table’s schema is a list of named columns. All data types are either primitives or nested types,
which are maps, lists, or structs . A table schema is also a struct type.1

For the representations of these types in Avro, ORC, and Parquet file formats, see Appendix A.

Nested Types

A struct is a tuple of typed values. Each field in the tuple is named and has an integer id that
is unique in the table schema. Each field can be either optional or required, meaning that values
can (or cannot) be null. Fields may be any type. Fields may have an optional comment or doc
string.

A list is a collection of values with some element type. The element field has an integer id that
is unique in the table schema. Elements can be either optional or required. Element types may
be any type.

A map is a collection of key-value pairs with a key type and a value type. Both the key field and
value field each have an integer id that is unique in the table schema. Map keys are required
and map values can be either optional or required. Both map keys and map values may be any
type, including nested types.

Primitive Types

Primitive type Description Requirements

boolean True or false

int 32-bit signed integers Can promote to long

long 64-bit signed integers

float 32-bit IEEE 754 floating point2 Can promote to double

double 64-bit IEEE 754 floating point

decimal(P,S) Fixed-point decimal; precision P, scale S Scale is fixed [1],
Precision must be 38 or less

date Calendar date without timezone or time

time Time of day without date, timezone Microsecond precision [2]

2 https://en.wikipedia.org/wiki/IEEE_754
1 Enum and union types are not supported.

timestamp Timestamp without timezone Microsecond precision [2]

timestamptz Timestamp with timezone Stored as UTC [2]

string Arbitrary-length character sequences Encoded with UTF-8 [3]

uuid Universally unique identifiers Should use 16-byte fixed

fixed(L) Fixed-length byte array of length L

binary Arbitrary-length byte array

1. Decimal scale is fixed and cannot be changed by schema evolution. Precision can only
be widened.

2. All time and timestamp values are stored with microsecond precision.
Timestamps with time zone represent a point in time: values are stored as UTC and do
not retain a source time zone (2017-11-16 17:10:34 PST is stored/retrieved as
2017-11-17 01:10:34 UTC and these values are considered identical).
Timestamps without time zone represent a date and time of day regardless of zone: the
time value is independent of zone adjustments (2017-11-16 17:10:34 is always
retrieved as 2017-11-16 17:10:34). Timestamp values are stored as a long that
encodes microseconds from the unix epoch.

3. Character strings must be stored as UTF-8 encoded byte arrays.

For details on how to serialize a schema to JSON, see Appendix C.

Schema Evolution

Schema evolution is limited to type promotion and adding, deleting, and renaming fields in
structs (both nested structs and the top-level schema’s struct).

Valid type promotions are from int to long, float to double, and to widen the precision of decimal
types.

Any struct, including a top-level schema, can evolve through deleting fields, adding new fields,
renaming existing fields, or promoting a primitive using the valid type promotions. Adding a new
field assigns a new ID for that field and for any nested fields. Renaming an existing field must
change the name, but not the field ID. Deleting a field removes it from the current schema. Field
deletion cannot be rolled back unless the field was nullable or if the current snapshot has not
changed.

Grouping a subset of a struct’s fields into a nested struct is not allowed, nor is moving fields
from a nested struct into its immediate parent struct (struct<a, b, c> ↔ struct<a, struct<b, c>>).

Evolving primitive types to structs is not allowed, nor is evolving a single-field struct to a
primitive (map<string, int> ↔ map<string, struct<int>>).

Partitioning

Data files are stored in manifests with a tuple of partition values that are used in scans to filter
out files that cannot contain records that match the scan’s filter predicate. Partition values for a
data file must be the same for all records stored in the data file. (Manifests store data files from
any partition, as long as the partition spec is the same for the data files.)

Tables are configured with a partition spec that defines how to produce a tuple of partition
values from a record. A partition spec has a list of fields that consist of:

● A source column id from the table’s schema
● A transform that is applied to the source column to produce a partition value
● A partition name

The source column, selected by id, must be a primitive type and cannot be contained in a map
or list, but may be nested in a struct. For details on how to serialize a partition spec to JSON,
see Appendix C.

Partition specs capture the transform from table data to partition values. This is used to
transform predicates to partition predicates, in addition to transforming data values. Deriving
partition predicates from column predicates on the table data is used to separate the logical
queries from physical storage: the partitioning can change and the correct partition filters are
always derived from column predicates. This simplifies queries because users don’t have to
supply both logical predicates and partition predicates. For more information, see Scan Planning
below.

Partition Transforms

Transform Description Source types Result type

identity Source value, unmodified Any Source type

bucket[N] Hash of value, mod N (see below) int, long, decimal,
date, time,
timestamp,
timestamptz,
string, uuid, fixed,
binary

int

truncate[W] Value truncated to width W
(see below)

int, long, decimal,
string

Source type

year Extract a date or timestamp year, date, timestamp(tz) int

as years from 1970

month Extract a date or timestamp month,
as months from 1970-01-01

date, timestamp(tz) int

day Extract a date or timestamp day,
as days from 1970-01-01

date, timestamp(tz) int

hour Extract a timestamp hour, as hours from
1970-01-01 00:00:00

timestamp(tz) int

All transforms return null for a null input value.

Bucket Transform Details

Bucket partition transforms use a 32-bit hash of the source value. The 32-bit hash
implementation is the 32-bit Murmur3 hash, x86 variant, seeded with 0.

Transforms are parameterized by a number of buckets , N. The hash mod N must produce a3

positive value by first discarding the sign bit of the hash value. In pseudo-code, the function is:

def bucket_N(x) = (murmur3_x86_32_hash(x) & Integer.MAX_VALUE) % N

For hash function details by type, see Appendix B.

Truncate Transform Details

Type Config Truncate specification Examples

int W, width v - (v % W) remainders must be positive [1] W=10:
1 ￫ 0, -1 ￫ -10

long W, width v - (v % W) remainders must be positive [1] W=10:
1 ￫ 0, -1 ￫ -10

decimal W, width
(no scale)

scaled_W = decimal(W, scale(v))
v - (v % scaled_W) [1, 2]

W=50, s=2:
10.65 ￫ 10.50

string L, length Substring of length L: v.substring(0, L) L=3:
iceberg ￫ ice

1. The remainder, v % W, must be positive. For languages where % can produce negative
values, the correct truncate function is: v - (((v % W) + W) % W)

3 Changing the number of buckets as a table grows is possible by evolving the partition spec.

2. The width, W, used to truncate decimal values is applied using the scale of the decimal
column to avoid additional (and potentially conflicting) parameters.

Manifests

A manifest is an immutable Avro file that lists a set of data files, along with each file’s partition
data tuple, metrics, and tracking information. One or more manifest files are used to store a
snapshot, which tracks all of the files in a table at some point in time.

A manifest is a valid Iceberg data file. Files must use Iceberg schemas and column projection.

A manifest stores files for a single partition spec. When a table’s partition spec changes, old files
remain in the older manifest and newer files are written to a new manifest. This is required
because a manifest file’s schema is based on its partition spec (see below). This restriction also
simplifies selecting files from a manifest because the same boolean expression can be used to
select or filter all rows.

The partition spec for a manifest and the current table schema must be stored in the key-value
properties of the manifest file. The partition spec is stored as a JSON string under the key
partition-spec. The table schema is stored as a JSON string under the key schema.

The schema of a manifest file is a struct called manifest_entry with the following fields:

Field id, name Type Description

0 status int with meaning:
0: EXISTING
1: ADDED
2: DELETED

Used to track additions and deletions

1 snapshot_id long Snapshot id where the file was
added, or deleted if status is 2

2 data_file data_file struct (see below) File path, partition tuple, metrics, ...

data_file is a struct with the following fields:

Field id, name Type Description

100 file_path string Full URI for the file with FS
scheme

101 file_format string String file format name, avro, orc
or parquet

102 partition struct<...> Partition data tuple, schema
based on the partition spec

103 record_count long Number of records in this file

104 file_size_in_bytes long Total file size in bytes

105 block_size_in_bytes long Deprecated. Always write a
default value and do not read.

106 file_ordinal optional int Ordinal of the file w.r.t files with
the same partition tuple and
snapshot id

107 sort_columns optional list<int> Columns the file is sorted by

108 column_sizes optional map<int, long> Map from column id to the total
size on disk of all regions that
store the column. Does not
include bytes necessary to read
other columns, like footers.
Leave null for row-oriented
formats (Avro).

109 value_counts optional map<int, long> Map from column id to number of
values in the column (including
null values)

110 null_value_counts optional map<int, long> Map from column id to number of
null values in the column

111 distinct_counts optional map<int, long> Deprecated. Do not use.

125 lower_bounds optional map<
126: int,
127: binary>

Map from column id to lower
bound in the column serialized
as binary [1]. Each value must
be less than or equal to all
values in the column for the file.

128 upper_bounds optional map<
129: int,
130: binary>

Map from column id to upper
bound in the column serialized
as binary [1]. Each value must
be greater than or equal to all
values in the column for the file.

131 key_metadata optional binary Implementation-specific key
metadata for encryption

132 split_offsets optional list<long> Split offsets for the data file. For
example, all row group offsets in
a Parquet file. Must be sorted
ascending.

1. Single-value serialization for lower and upper bounds is detailed in Appendix D.

The partition struct stores the tuple of partition values for each file. Its type is derived from
the partition fields of the partition spec for the manifest file.

Each manifest file must store its partition spec and the current table schema in the Avro file’s
key-value metadata. The partition spec is used to transform predicates on the table’s data rows
into predicates on the manifest’s partition values during job planning.

Manifest Entry Fields

The manifest entry fields are used to keep track of the snapshot in which files were added or
logically deleted. The data_file struct is nested inside of the manifest entry so that it can be
easily passed to job planning without the manifest entry fields.

When a data file is added to the dataset, it’s manifest entry should store the snapshot ID in
which the file was added and set status to 1 (added).

When a data file is replaced or deleted from the dataset, it’s manifest entry fields store the
snapshot ID in which the file was deleted and status 2 (deleted). The file may be deleted from
the file system when the snapshot in which it was deleted is garbage collected, assuming that
older snapshots have also been garbage collected .4

Snapshots

A snapshot consists of the following fields:

● snapshot-id: a unique long ID.
● parent-snapshot-id: (optional) the snapshot ID of the snapshot’s parent. This field is

not present for snapshots that have no parent snapshot, such as snapshots created
before this field was added or the first snapshot of a table.

● timestamp-ms: a timestamp when the snapshot was created. This is used when
garbage collecting snapshots.

● manifests: a list of manifest file locations. The data files in a snapshot are the union of
all data files listed in these manifests. (Deprecated in favor of manifest-list)

● manifest-list: (optional) the location of a manifest list file for this snapshot, which
contains a list of manifest files with additional metadata. If present, the manifests field
must be omitted.

● summary: (optional) a summary that encodes the operation that produced the
snapshot and other relevant information specific to that operation. This allows some

4 Technically, data files can be deleted when the last snapshot that contains the file as “live” data is
garbage collected. But this is harder to detect and requires finding the diff of multiple snapshots. It is
easier to track what files are deleted in a snapshot and delete them when that snapshot expires.

operations like snapshot expiration to skip processing some snapshots. Possible values
of operation are:

○ append: data files were added and no files were removed.
○ replace: data files were rewritten with the same data; i.e., compaction,

changing the data file format, or relocating data files.
○ overwrite: data files were deleted and added in a logical overwrite operation.
○ delete: data files were removed and their contents logically deleted.

Snapshots can be split across more than one manifest. This enables:

● Appends can add a new manifest to minimize the amount of data written, instead of
adding new records by rewriting and appending to an existing manifest. (This is called a
“fast append”.)

● Tables can use multiple partition specs. A table’s partition configuration can evolve if, for
example, its data volume changes. Each manifest uses a single partition spec, and
queries do not need to change because partition filters are derived from data predicates.

● Large tables can be split across multiple manifests so that implementations can
parallelize job planning or reduce the cost of rewriting a manifest.

Valid snapshots are stored as a list in table metadata. For serialization, see Appendix C.

Scan Planning

Scans are planned by reading the manifest files for the current snapshot listed in the table
metadata. Deleted entries in a manifest are not included in the scan.

For each manifest, scan predicates, that filter data rows, are converted to partition predicates,
that filter data files, and used to select the data files in the manifest. This conversion uses the
partition spec used to write the manifest file.

Scan predicates are converted to partition predicates using an inclusive projection: if a scan
predicate matches a row, then the partition predicate must match that row’s partition. This is an
inclusive projection because rows that do not match the scan predicate may be included in the5

scan by the partition predicate.

For example, an events table with a timestamp column named ts that is partitioned by
ts_day=day(ts) is queried by users with ranges over the timestamp column: ts > X. The
inclusive projection is ts_day >= day(X), which is used to select files that may have
matching rows. Note that, in most cases, timestamps just before X will be included in the scan
because the file contains rows that match the predicate and rows that do not match the
predicate.

5 An alternative, strict projection, creates a partition predicate that will match a file if all of the rows in the
file must match the scan predicate. These projections are used to calculate the residual predicates for
each file in a scan.

Manifest Lists

Snapshots are embedded in table metadata, but the list of manifests for a snapshot can be
stored in a separate manifest list file.

A manifest list encodes extra fields that can be used to avoid scanning all of the manifests in a
snapshot when planning a table scan.

Manifest list files store manifest_file, a struct with the following fields:

Field id, name Type Description

500 manifest_path string Location of the manifest file

501 manifest_length long Length of the manifest file

502 partition_spec_id int ID of a partition spec for the
table; must be listed in table
metadata partition-specs

503 added_snapshot_id long ID of the snapshot where the
manifest file was added

504 added_files_count int Number of entries in the
manifest that have status
ADDED (1)

505 existing_files_count int Number of entries in the
manifest that have status
EXISTING (0)

506 deleted_files_count int Number of entries in the
manifest that have status
DELETED (2)

507 partitions list<
508: field_summary>

(see below)

A list of field summaries for
each partition field in the spec.
Each field in the list
corresponds to a field in the
manifest file’s partition spec.

field_summary is a struct with the following fields

Field id, name Type Description

509 contains_null boolean Whether the manifest contains at least one
partition with a null value for the field

510 lower_bound optional bytes [1] Lower bound for the non-null values in the
partition field, or null if all values are null.

511 upper_bound optional bytes [1] Upper bound for the non-null values in the
partition field, or null if all values are null.

1. Lower and upper bounds are serialized to bytes using the single-object serialization in
Appendix D. The type of used to encode the value is the type of the partition field data.

Table Metadata

Table metadata is stored as JSON. Each table metadata change creates a new table metadata
file that is committed by an atomic operation. This operation is used to ensure that a new
version of table metadata replaces the version on which it was based. This produces a linear
history of table versions and ensures that concurrent writes are not lost.

The atomic operation used to commit metadata depends on how tables are tracked and is not
standardized by this spec. See the sections below for examples.

Commit Conflict Resolution and Retry

When two commits happen at the same time and are based on the same version, only one
commit will succeed. In most cases, the failed commit can be applied to the new current version
of table metadata and retried. Updates verify the conditions under which they can be applied to
a new version and retry if those conditions are met.

● Append operations have no requirements and can always be applied.
● Replace operations must verify that the files that will be deleted are still in the table.

Examples of replace operations include format changes (replace an Avro file with a
Parquet file) and compactions (several files are replaced with a single file that contains
the same rows).

● Delete operations must verify that specific files to delete are still in the table. Delete
operations based on expressions can always be applied (e.g., where timestamp < X).

● Table schema updates and partition spec changes must validate that the schema has
not changed between the base version and the current version.

Table Metadata Fields

Table metadata consists of the following fields:

● format-version: an integer version number for the format. Currently, this is always 1.
● location: the table’s base location. This is used by writers to determine where to store

data files, manifest files, and table metadata files.

● last-updated-ms: timestamp in milliseconds from the unix epoch when the table was
last updated. Each table metadata file should update this field just before writing.

● last-column-id: an integer; the highest assigned column ID for the table. This is
used to ensure columns are always assigned an unused ID when evolving schemas.

● schema: the table’s current schema.
● partition-spec: the table’s current partition spec, stored as only fields. Note that this

is used by writers to partition data, but is not used when reading because reads use the
specs stored in manifest files. (Deprecated in favor of partition-specs and
default-spec-id)

● partition-specs: a list of partition specs, stored as full partition spec objects.
● default-spec-id: ID of the “current” spec that writers should use by default.
● properties: a string to string map of table properties. This is used to control settings

that affect reading and writing and is not intended to be used for arbitrary metadata. For
example, commit.retry.num-retries is used to control the number of commit retries.

● current-snapshot-id: long ID of the current table snapshot.
● snapshots: a list of valid snapshots. Valid snapshots are snapshots for which all data

files exist in the file system. A data file must not be deleted from the file system until the
last snapshot in which it was listed is garbage collected.

● snapshot-log: (optional) a list of timestamp and snapshot ID pairs that encodes
changes to the current snapshot for the table. Each time the current-snapshot-id is
changed, a new entry should be added with the last-updated-ms and the new
current-snapshot-id. When snapshots are expired from the list of valid snapshots, all
entries before a snapshot that has expired should be removed.

For serialization details, see Appendix C.

File System Tables

An atomic swap can be implemented using atomic rename in file systems that support it, like
HDFS or most local file systems .6

Each version of table metadata is stored in a metadata folder under the table’s base location
using a file naming scheme that includes a version number, V: v<V>.metadata.json. To
commit a new metadata version, V+1, the writer performs the following steps:

1. Read the current table metadata version V.
2. Create new table metadata based on version V.
3. Write the new table metadata to a unique file: <random-uuid>.metadata.json.
4. Rename the unique file to the well-known file for version V: v<V+1>.metadata.json.

a. If the rename succeeds, the commit succeeded and V+1 is the table’s current
version

b. If the rename fails, go back to step 1.

6 The file system table scheme is implemented in HadoopTableOperations

https://github.com/Netflix/iceberg/blob/master/core/src/main/java/com/netflix/iceberg/hadoop/HadoopTableOperations.java#L91

Metastore Tables

The atomic swap needed to commit new versions of table metadata can be implemented by
storing a pointer in a metastore or database that is updated with a check-and-put operation .7

The check-and-put validates that the version of the table that a write is based on is still current
and then makes the new metadata from the write the current version.

Each version of table metadata is stored in a metadata folder under the table’s base location
using a naming scheme that includes a version and UUID: <V>-<uuid>.metadata.json. To
commit a new metadata version, V+1, the writer performs the following steps:

1. Fetch the table metadata location from the metastore.
2. Create a new table metadata file based on the current metadata.
3. Write the new table metadata to a unique file: <V+1>-<uuid>.metadata.json.
4. Request that the metastore swap the table’s metadata pointer from the location of V to

the location of V+1.
a. If the swap succeeds, the commit succeeded. V was still the latest metadata

version and the metadata file for V+1 is now the current metadata.
b. If the swap fails, another writer has already created V+1. The current writer goes

back to step 1.

Appendix A: Format-specific Requirements

Avro

Data Type Mappings

Values should be stored in Avro using the Avro types and logical type annotations in the table
below.

Optional fields, array elements, and map values must be wrapped in an Avro union with null.
This is the only union type allowed in Iceberg data files.

Optional fields must always set the Avro field default value to null.

Maps with non-string keys must use an array representation with the map logical type. The array
representation or Avro’s map type may be used for maps with string keys.

7 The metastore table scheme is partly implemented in BaseMetastoreTableOperations.

https://github.com/Netflix/iceberg/blob/master/core/src/main/java/com/netflix/iceberg/BaseMetastoreTableOperations.java

Type Avro type Notes

boolean boolean

int int

long long

float float

double double

decimal(P,S) { "type": "fixed",
"size": minBytesRequired(P),
"logicalType": "decimal",
"precision": P, "scale": S }

Stored as fixed using the
minimum number of bytes for the
given precision.

date { "type": "int",
"logicalType": "date" }

Stores days from the 1970-01-01

time { "type": "long",
"logicalType": "time-micros" }

Stores microseconds from
midnight

timestamp { "type": "long",
"logicalType": "timestamp-micros",
"adjust-to-utc": false }

Stores microseconds from
1970-01-01 00:00:00.000000

timestamptz { "type": "long",
"logicalType": "timestamp-micros",
"adjust-to-utc": true }

Stores microseconds from
1970-01-01 00:00:00.000000
UTC

string string

uuid { "type": "fixed", "size": 16,
"logicalType": "uuid" }

fixed(L) { "type": "fixed", "size": L }

binary bytes

struct record

list array

map array of key-value records, or
map when keys are strings (optional)

Array storage must use logical
type name map and must store
elements that are 2-field records.
The first field is a non-null key
and the second field is the value.

Field IDs

Iceberg struct, list, and map types identify nested types by ID. When writing data to Avro files,
these IDs must be stored in the Avro schema to support ID-based column pruning.

IDs are stored as JSON integers in the following locations:

ID Avro schema
location

Property Example

Struct field Record field object field-id { "type": "record", ...
"fields": [
{ "name": "l",
"type": ["null", "long"],
"default": null,
"field-id": 8 }

] }

List element Array schema object element-id { "type": "array",
"items": "int",
"element-id": 9 }

String map key Map schema object key-id { "type": "map",
"values": "int",
"key-id": 10,
"value-id": 11 }

String map value Map schema object value-id

Map key, value Key, value fields in
the element record.

field-id { "type": "array",
"logicalType": "map",
"items": {
"type": "record",
"name": "k12_v13",
"fields": [
{ "name": "key",
"type": "int",
"field-id": 12 },

{ "name": "value",
"type": "string",
"field-id": 13 }

] } }

Note that the string map case is for maps where the key type is a string. Using Avro’s map type
in this case is optional. Maps with string keys may be stored as arrays.

Parquet

Data Type Mappings

Values should be stored in Parquet using the types and logical type annotations in the table
below. Column IDs are required.

Lists must use the 3-level representation.

Type Parquet physical type Logical type Notes

boolean boolean

int int

long long

float float

double double

decimal(P,S) P <= 9: int32,
P <= 18: int64,
fixed otherwise

DECIMAL(P,S) Fixed must use the
minimum number of
bytes that can store P.

date int32 DATE Stores days from the
1970-01-01

time int64 TIME_MICROS,
adjustToUtc=false

Stores microseconds
from midnight

timestamp int64 TIMESTAMP_MICROS,
adjustToUtc=false

Stores microseconds
from 1970-01-01
00:00:00.000000

timestamptz int64 TIMESTAMP_MICROS,
adjustToUtc=true

Stores microseconds
from 1970-01-01
00:00:00.000000 UTC

string binary UTF8 Encoding must be
UTF-8

uuid fixed_len_byte_array[16] UUID

fixed(L) fixed_len_byte_array[L]

binary binary

struct group

https://github.com/apache/parquet-format/blob/master/LogicalTypes.md#lists

list 3-level list LIST See Parquet docs for
3-level representation

map 3-level map MAP See Parquet docs for
3-level representation

ORC

Type ORC type Notes

boolean boolean

int int ORC tinyint and smallint would
map to int also.

long long

float float

double double

decimal(P,S) decimal<P,S>

date date

time int Stores microseconds from
midnight

timestamp timestamp

timestamptz struct<ts:timestamp,offset:int> We should add this to ORC’s
type model. (ORC-294)

string string ORC varchar and char would
map to Iceberg string too.

uuid binary

fixed(L) binary The length would not be
checked by the ORC reader and
should be checked by the
adaptor.

binary binary

struct struct ORC uniontype would map to
struct also.

list array

map map

One of the interesting challenges with this is how to map Iceberg’s schema evolution (id based)
on to ORC’s (name based). In theory we could use Iceberg’s column ids as the column and field
names, but that would suck from a user’s point of view.

The column ids would be stored in ORC’s user metadata as “iceberg.column.id” with a comma
separated list of the ids.

Iceberg would build the desired reader schema with their schema evolution rules and pass that
down to the ORC reader, which would then use its schema evolution to map that to the writer’s
schema. Basically, Iceberg would need to change the names of columns and fields to get the
desired mapping.

Iceberg writer ORC writer Iceberg reader ORC reader

struct<a (1): int,
b (2): string>

struct<a: int,
b: string>

struct<a (2): string,
c (3): date>

struct<b: string,
c: date>

struct<a (1):
struct<b (2): string,

c (3): date>>

struct<a:
struct<b:string,

c:date>>

struct<aa (1):
struct<cc (3): date,

bb (2): string>>

struct<a:
struct<c:date,

b:string>>

Appendix B: 32-bit Hash Requirements by Type
The 32-bit hash implementation is 32-bit Murmur3 hash, x86 variant, seeded with 0.

Primitive type Hash specification Test value

boolean false: hashInt(0), true: hashInt(1) true ￫ 1392991556

int hashLong(long(v)) [1] 34 ￫ 2017239379

long hashBytes(littleEndianBytes(v)) 34L ￫ 2017239379

float hashDouble(double(v)) [2] 1.0F ￫ -142385009

double hashLong(doubleToRawLongBits(v)) 1.0D ￫ -142385009

decimal(P,S) hashBytes(minBigEndian(unscaled(v)))[3] 14.20 ￫ -500754589

date hashInt(daysFromUnixEpoch(v)) 2017-11-16

￫ -653330422

time hashLong(microsecsFromMidnight(v)) 22:31:08
￫ -662762989

timestamp hashLong(microsecsFromUnixEpoch(v)) 2017-11-16T22:31:08
￫ -2047944441

timestamptz hashLong(microsecsFromUnixEpoch(v)) 2017-11-16T14:31:08
-08:00
￫ -2047944441

string hashBytes(utf8Bytes(v)) iceberg ￫ 1210000089

uuid hashBytes(uuidBytes(v)) [4] (see below)
￫ 1488055340

fixed(L) hashBytes(v) 00 01 02 03
￫ 188683207

binary hashBytes(v) 00 01 02 03
￫ 188683207

1. Integer and long hash results must be identical for all integer values. This ensures that
schema evolution does not change bucket partition values if integer types are promoted.

2. Float hash values are the result of hashing the float cast to double to ensure that
schema evolution does not change hash values if float types are promoted. Note that
floating point types are not valid source values for partitioning.

3. Decimal values are hashed using the minimum number of bytes required to hold the
unscaled value as a two’s complement big-endian; this representation does not include
padding bytes required for storage in a fixed-length array.
Hash results are not dependent on decimal scale, which is part of the type, not the data
value.

4. UUIDs are encoded using big endian. The test UUID for the example above is:
f79c3e09-677c-4bbd-a479-3f349cb785e7. This UUID encoded as a byte array is:
F7 9C 3E 09 67 7C 4B BD A4 79 3F 34 9C B7 85 E7

Appendix C: JSON serialization

Schemas

Schemas are serialized to JSON as a struct. Types are serialized according to this table:

Type JSON representation Example

boolean JSON string: "boolean" "boolean"

int JSON string: "int" "int"

long JSON string: "long" "long"

float JSON string: "float" "float"

double JSON string: "double" "double"

date JSON string: "date" "date"

time JSON string: "time" "time"

timestamp without
zone

JSON string: "timestamp" "timestamp"

timestamp with
zone

JSON string: "timestamptz" "timestamptz"

string JSON string: "string" "string"

uuid JSON string: "uuid" "uuid"

fixed(L) JSON string: "fixed[<L>]" "fixed[16]"

binary JSON string: "binary" "binary"

decimal(P, S) JSON string:
"decimal(<P>,<S>)"

"decimal(9,2)",
"decimal(9, 2)"

struct JSON object: {
"type": "struct",
"fields": [{
"id": <field id int>,
"name": <name string>,
"required": <boolean>,
"type": <type JSON>,
"doc": <comment string>
}, ...

]
}

{
"type": "struct",
"fields": [{
"id": 1,
"name": "id",
"required": true,
"type": "uuid"

}, {
"id": 2,
"name": "data",
"required": false,
"type": {
"type": "list",
...

}
}]

}

list JSON object: { {

"type": "list",
"element-id": <id int>,
"element-required": <bool>
"element": <type JSON>

}

"type": "list",
"element-id": 3,
"element-required": true,
"element": "string"

}

map JSON object: {
"type": "map",
"key-id": <key id int>,
"key": <type JSON>,
"value-id": <val id int>,
"value-required": <bool>
"value": <type JSON>

}

{
"type": "map",
"key-id": 4,
"key": "string",
"value-id": 5,
"value-required": false,
"value": "double"

}

Partition Specs

Partition specs are serialized as a JSON object with the following fields:

Field JSON representation Example

spec-id JSON int 0

fields JSON list: [
<partition field JSON>,
...

]

[{
"source-id": 4,
"name": "ts_day",
"transform": "day"

}, {
"source-id": 1,
"name": "id_bucket",
"transform": "bucket[16]"

}]

Each partition field in the fields list is stored as an object. See the table for more detail:

Transform or Field JSON representation Example

identity JSON string: "identity" "identity"

bucket[N] JSON string: "bucket[<N>]" "bucket[16]"

truncate[W] JSON string: "truncate[<W>]" "truncate[20]"

year JSON string: "year" "year"

month JSON string: "month" "month"

day JSON string: "day" "day"

hour JSON string: "hour" "hour"

Partition Field JSON object: {
"source-id": <id int>,
"name": <name string>,
"transform": <tr. JSON>

}

{
"source-id": 1,
"name": "id_bucket",
"transform": "bucket[16]"

}

In some cases partition specs are stored using only the field list instead of the object format that
includes the spec ID, like the deprecated partition-spec field in table metadata. The object
format should be used unless otherwise noted in this spec.

Table Metadata and Snapshots

Table metadata is serialized as a JSON object according to the following table. Snapshots are
not serialized separately. Instead, they are stored in the table metadata JSON.

Metadata field JSON representation Example

format-version JSON int 1

location JSON string "s3://b/wh/data.db/table"

last-updated-ms JSON long 1515100955770

last-column-id JSON int 22

schema JSON schema (object) See above

partition-spec JSON partition fields
(list)

See above, read
partition-specs instead

partition-specs JSON partition specs
(list of objects)

See above

default-spec-id JSON int 0

properties JSON object: {
"<key>": "<val>",
...

}

{
"write.format.default":
"avro",

"commit.retry.num-retries":
"4"

}

current-snapshot-id JSON long 3051729675574597004

snapshots JSON list of objects: [
{
"snapshot-id": <id>,
"timestamp-ms": <ms>,

[{
"snapshot-id": 30517296...,
"timestamp-ms": 1515100...,
"summary": {

"summary": {
"operation": <op>,
...

},
"manifest-list":
"<location>"

},
...
]

"operation": "append"
},
"manifest-list":
"s3://b/wh/.../s1.avro"

}]

snapshot-log JSON list of objects: [
{
"snapshot-id": <id>,
"timestamp-ms": <ms>
},
...
]

[{
"snapshot-id": 30517296...,
"timestamp-ms": 1515100...

}]

Appendix D: Single-value serialization
This serialization scheme is for storing single values as individual binary values in the lower and
upper bounds maps of manifest files.

Type Binary serialization

boolean 0x00 for false, non-zero byte for true

int Stored as 4-byte little-endian

long Stored as 8-byte little-endian

float Stored as 4-byte little-endian

double Stored as 8-byte little-endian

date Stores days from the 1970-01-01 in an 4-byte little-endian int

time Stores microseconds from midnight in an 8-byte little-endian long

timestamp without zone Stores microseconds from 1970-01-01 00:00:00.000000 in an 8-byte
little-endian long

timestamp with zone Stores microseconds from 1970-01-01 00:00:00.000000 UTC in an
8-byte little-endian long

string UTF-8 bytes (without length)

uuid 16-byte big-endian value, see example in Appendix B

fixed(L) Binary value

binary Binary value (without length)

decimal(P, S) Stores unscaled value as two’s-complement big-endian binary, using
the minimum number of bytes for the value

struct Not supported

list Not supported

map Not supported

