Комплексная лабораторно – практическая работа по теме: «Создание документов с помощью текстового процессора Microsoft Word». Вариант № 2

Определение задуманного числа по трем таблицам

Разместив в каждой из трех таблиц подряд числа от 1 до 60 так, чтобы в первой таблице они стояли в трех столбцах по двадцати чисел в каждом, во второй — в четырех столбцах по 15 чисел в каждом и в третьей — в пяти столбцах по 12 чисел в каждом (см. рис. 1), легко быстро определить задуманное кем-нибудь число N (N \leq 60), если будут указаны номера α , β , γ столбцов, содержащих задуманное число в 1-й, во 2-й и в 3-й таблицах: N будет равно остатку от деления числа $40\alpha+45\beta+36\gamma$ на 60 или, другими словами, N будет равно меньшему положительному числу, сравнимому с суммой $(40\alpha+45\beta+36\gamma)$ по модулю 60. Например, при $\alpha=3$, $\beta=2$, $\gamma=1$:

 $40\alpha+45\beta+36\gamma\equiv0+30+36\equiv6 \pmod{60}$, r.e. N=6.

I	П	Ш
1	2	3
4	5	6
7	8	9
•	•	
•	•	•
•	•	
55	56	57
58	59	60

\mathbf{I}	П	Ш	\mathbf{IV}
1	2	3	4
5	6	7	8
•	•		•
•	•		
53	54	55	56
57	58	59	60

\mathbf{I}	П	Ш	IV	V
1	2	3	4	5
6	7	8	9	10
		•	•	
	•	•		
		•		
51	52	53	54	55
56	57	58	59	60

Рис. 1

Аналогичный вопрос может быть решен для чисел в пределах до 420, размещенных в четырех таблицах с тремя, четырьмя, пятью и семью столбцами: если α , β , γ , δ – номера столбцов, в которых стоит задуманное число, то оно равно остатку от деления числа $280\alpha+105\beta+336\gamma+120\delta$ на 420.

1. Постройте структурную схему по следующему образцу. Элементы рисунка сгруппируйте в один объект.

2. Создать ниже приведенное объявление

3. Создать карточку с заданием по математике по теме: «Системы неравенств с одной переменной».

Решить систему неравенств
$$\begin{cases} 3(x+1) - \frac{x-2}{4} < 5x - 7 \cdot \frac{x+3}{2} \\ 2x - \frac{x}{3} + 6 < 4x - 3 \end{cases}$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$
$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$
$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta}$$

4. Используя многоуровневый список, создайте расписание своих занятий. *ПРИМЕР*:

- Понедельник
 - 1 Математика
 - 2 Информатика
 - **3** Русский
 - **4** Литература
- Вторник
 - 1 Физика
 - 2 Технология
 - **3** Ин. Яз.
 - **4** Биология
 - 5 Математика

Комплексная лабораторно – практическая работа по теме: «Создание документов с помощью текстового процессора Microsoft Word».

Вариант № 3

1. Создать текст со всеми компонентами согласно образца

Сложение и вычитание вместо умножения

До изобретения таблиц логарифмов для облегчения умножения многозначных чисел применялись так называемые *простаферетические* таблицы (от греческих слов «простезис» – прибавление и «афайрезис» – отнятие), представляющие собой

таблицы значений функции $\left[\frac{z^2}{4}\right]$ при натуральных значениях z. Так как при a и b

целых
$$ab \equiv \frac{(a+b)^2}{4} - \frac{(a-b)^2}{4} = \left[\frac{(a+b)^2}{4}\right] - \left[\frac{(a-b)^2}{4}\right]$$
 (числа $a+b$ и $a-b$ либо оба

четные, либо оба нечетные; в последнем случае дробные части у $\frac{(a+b)^2}{4}$ и

$$\frac{(a-b)^2}{4}$$
 одинаковы), то умножение a на b сводится к определению $a+b$ и $a-b$ и, на-

конец, разности чисел
$$\left[\frac{\left(a+b\right)^2}{4}\right]$$
и $\left[\frac{\left(a-b\right)^2}{4}\right]$, взятых из таблицы.

Для перемножения трех чисел можно воспользоваться тождеством:

$$abc = \frac{1}{24} \cdot \left((a+b+c)^2 - (a+b-c)^2 - (a+c-b)^2 - (b+c-a)^2 \right) \quad (*)$$

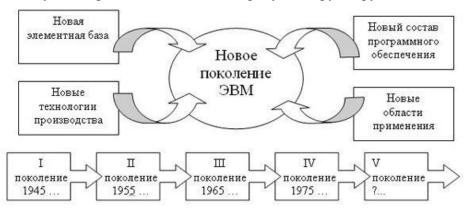
из которого следует, что при наличии таблицы значений функции $\frac{z^3}{24}$ вычисле-

ние произведения abc можно свести к определению чисел: a+b+c, a+b-c, a+c-b, b+c-a и по ним – при помощи таблицы – правой части равенства (*).

Приведем в качестве примера такую таблицу для $1 \le z < 30$. В таблице даны:

крупными цифрами — значения $\left[\frac{z^3}{24}\right]$ а мелкими — значения k, где при $0 \le k \le 23$

$$\frac{z^3}{24} = \left[\frac{z^3}{24}\right] + \frac{k}{24} \ .$$


		Единицы									
		0	0 1 2 3 4 5 6 7 8 9								
	0		0_1	08	13	2 ₁₆	5 ₅	9 ₀	14 ₇	218	309
Десят-	1	41 16	55 ₁₁	72 ₀	91 ₁₃	1148	140 ₁₅	170 ₁₆	204 ₁₇	243 ₀	285 19
ки	2	333 ₈	385_{21}	443 ₁₆	506 ₂₃	576 ₀	651 ₁	732 ₈	8203	914 ₁₆	1016 ₅

Нетрудно, пользуясь формулой (*) и таблицей, получить:

$$9.9.9 = 820_3 - 30_9 - 30_9 - 30_9 = 729$$

$$17.8.4 = 1016_5 - 385_{21} - 91_{13} + 5_5 = 544$$
 (проверьте!).

2. Постройте схему «История поколений ЭВМ» рисунка сгруппируйте элементы.

3. Создайте визитную карточку (по образцу на рисунке ниже)

4. На первом листе документа создать гиперссылки для следующих текстов.

Пряноароматические овощи

Такие овощи выращиваются в огороде и используются для приготовления блюд, чтобы придать им аромат. Биологическая ценность таких овощей не столь важна, однако многие из них обладают лечебными свойствами. К наиболее распространенным видам пряноароматических овощей, которые можно вырастить в огороде, относятся укроп, анис, мелисса, мята, фенхель и т.д.

Укроп

Укроп выращивают для получения молодой зелени, которую используют как в свежем, так и в консервированном виде. В укропе содержится витамин С и эфирные масла. Он возбуждает аппетит, обладает мочегонными свойствами и устраняет пучение живота.

Анис

Анис используется в медицине многие тысячелетия. Семена или эфирные масла аниса - составной компонент лекарств против кашля и простуды. В значительной степени он употребляется при изготовлении кондитерских изделий, печения, при консервировании овощей и производстве ликеров. Аналогичными свойствами обладает и фенхель, который легче выращивать, а по своим качествам он не уступает анису.

Мелисса

Лимонный привкус и аромат мелиссы лекарственной определят сферу использования этого растения: там, где требуется лимонная цедра или лимонный сок. В листьях мелиссы содержатся эфирные масла и дубильные вещества. С помощью мелиссы ароматизируют уксус, майонез, мясные блюда, салаты, супы и соусы. Лечебные свойства у мелиссы аналогичны мяте: мелисса предотвращает вздутие кишечника, снижает давление и снимает мигрень. Из свежих и сушеных листочков готовят превосходный освежающий чай.

Мята

Сушеные листья мяты перечной используют при приготовлении самых различных блюд. Она вызывает аппетит, устраняет пучение живота, оказывая тем самым благотворное воздействие на весь пищеварительный тракт, а также устраняет желудочные боли. Мята используется в виде лечебного чая (отваров) прежде всего при заболеваниях печени и желчного пузыря.

Фенхель

Фенхель (укроп аптечный) - распространенная приправа. Помимо использования в домашнем хозяйстве, он применяется в пищевой промышленности при выпечке печения и кондитерских изделий. Эфирные масла, содержащие в фенхеле, благотворно действуют на пищеварительный тракт.

Комплексная лабораторно – практическая работа по теме: «Создание документов с помощью текстового процессора Microsoft Word». Вариант № 4

1. Создайте текст и рисунки согласно предложенного образца:

Фигуры из кусочков квадрата

К числу полезных и увлекательных развлечений относится составление фигур из семи кусочков квадрата, разрезанного в соответствии с рис. 3, (а), причем при составлении заданных фигур должны быть использованы все семь кусочков, и они не должны налегать, даже частично, друг на друга.

На рис. 4 приведены симметричные фигуры¹. Попробуйте сложить эти фигуры из частей квадрата, изображенного на рис. 3, (а).

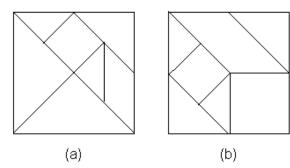
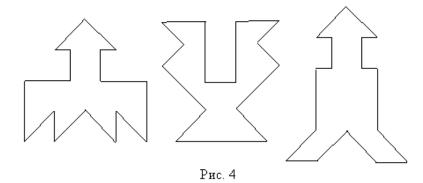
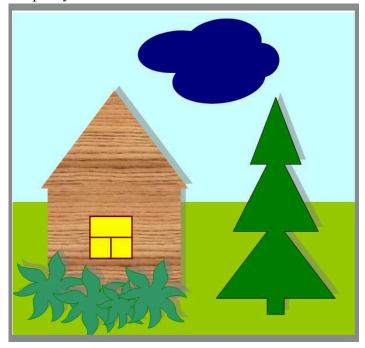



Рис. 3

Из этих же чертежей можно складывать и многие другие фигуры (например, изображения различных предметов, животных ит.п.).


Менее распространенным вариантом игры является составление фигур из кусочков квадрата, изображенного на рис. 3, (b).

2. Создайте таблицу:

2. Cosganie radinty.								
Суточная потребность в белках, жирах и углеводах (в граммах)								
		Белки		Жиры				
Возраст	Всего	го В том числе Всего растите		В том числе растительны е	Углеводы			
От 6 мес. до 1 года	25	-	25	-	114			
От 1 года до 1,5 лет	48	36	48	-	160			
1,5 – 3	53	40	53	5	193			
3 – 4	63	44	63	8	233			
5 – 6	72	47	72	11	252			
6 – 10	80	48	80	15	300			
10 – 13	96	58	96	18	382			
Девушки	93	56	93	20	366			

Юноши	106	64	106	20	423

3. Создайте рисунок по образцу

4. Оформите основной текст в соответствии с требованиями к оформлению документов; создайте собственный стиль для выделения названий.

Базы данных, системы управления базами данных. Информационно-поисковые системы для туристских организаций

База данных – организованная структура, предназначенная для хранения информации. Кроме самих данных база данных содержит также методы и средства, позволяющие каждому пользователю оперировать только с теми данными, которые входят в его компетенцию.

Существует три модели организации данных в базе:

Сетевая.

Применяется для отражения систем со сложной структурой, в которой связи между элементами имеют произвольный характер. Например, сетевая структура интернет.

Иерархическая.

Строится в процессе классификации. Элементы иерархической системы распределяются по уровням от первого (верхнего) до нижнего (последнего) в соответствии с правилами: на верхнем уровне находится один элемент;

элемент более низкого (младшего уровня) входит в состав только одного старшего.

Реляционная.

Применяется для описания ряда объектов, обладающих одинаковым набором свойств.

Например, база данных курьеров фирмы.

Реляционная база данных

Элементы реляционной базы данных:

Поле – столбец таблицы, содержащий все возможные значения одного из свойств. Совокупность полей задает структуру базы данных.

Запись – строка таблицы, содержащая информацию об одном из описываемых объектов.

Поля базы данных характеризуются следующими свойствами:

имя поля определяет, как следует обращаться к данным этого поля при автоматических операциях с базой;

тип поля определяет тип данных, которые могут содержаться в данном поле;

размер поля определяет предельную длину (в символах) данных, которые могут размещаться в данном поле;

формат поля определяет способ форматирования данных в ячейках поля;

маска ввода определяет форму, в которой вводятся данные в поле (средство автоматизации ввода);

подпись определяет заголовок поля, при отсутствии подписи в качестве заголовка используется имя поля;

значение по умолчанию (средство автоматизации ввода);

условие на значение – ограничение, используемое для проверки правильности ввода;

сообщение об ошибке – текстовое сообщение, которое выдается при попытке неправильного ввода; обязательное поле определяет обязательность заполнения данного поля;

пустые строки – свойство, разрешающее ввод пустых строковых данных;

индексированное поле – для ускорения операции поиска и сортировки в данном поле.

В полях базы данных могут содержаться данные следующих типов:

текстовый – тип данных, используемый для хранения обычного неформатированного текста ограниченного размера (до 255 символов);

поле МЕМО – тип данных, используемый для хранения больших объемов текста (до 65535 символов);

числовой – тип данных, используемый для хранения действительных чисел;

дата/время – тип данных, используемый для хранения календарных дат и текущего времени; денежный;

счетчик – специальный тип для уникальных чисел с автоматическим наращиванием (для нумерации записей):

логический – специальный тип для данных, принимающих только два значения (да – нет);

поле объекта OLE – специальный тип, предназначенный для хранения объектов, вставляемых внедрением или связыванием;

гиперссылка – специальное поле для хранения адресов web-объектов;

мастер подстановок – объект, настройкой которого можно автоматизировать ввод данных, чтобы не вводить их вручную, а выбирать из раскрывающегося списка.

Один из основополагающих принципов проектирования баз данных — нормализация. Нормализация позволяет сократить объем хранимой информации и устранить аномалии в организации хранения данных. Степень нормализации данных может быть различной. Например, модель данных соответствует первой нормальной форме, если в таблицах отсутствуют группы повторяющихся значений.

Первым шагом для нормализации базы данных может служить определение главного ключа базы данных – поля (совокупности полей), позволяющего однозначно определить запись.

Проектирование базы данных

Этапы проектирования базы данных:

Постановка задачи. На этом этапе следует решить, какая информация будет храниться в планируемой базе данных.

Создание таблиц. После того, как содержимое базы данных будет определено, его следует разбить на разделы, например, "Сотрудники" или "Заказы". Каждый такой раздел станет отдельной таблицей в планируемой базе данных.

Определение полей. На этом этапе следует решить, какую информацию должна содержать каждая таблица. Каждый элемент информации в таблице называется полем и изображается в отдельном столбце. Например, таблица "Сотрудники" может содержать поле "Фамилия"; другим полем в этой таблице может быть "Дата найма".

Установка связей между таблицами. Изучите каждую таблицу и решите, каким образом данные в ней должны быть связаны с данными из других таблиц. При необходимости добавьте новые поля в существующие таблицы или создайте новые таблицы, предназначенные специально для связи.

Тестирование и улучшение. Проанализируйте спроектированную схему базы данных на наличие ошибок. Создайте таблицы и введите несколько тестовых записей. Проверьте, можно ли извлечь нужную информацию из ваших таблиц. При необходимости внесите изменения.

Системы управления базами данных

Для работы с базами данных используют специальные программные средства — системы управления базами данных (СУБД). СУБД — комплекс программных средств, предназначенных для создания структуры новой базы, наполнения ее содержимым, редактирования содержимого и визуализации информации (визуализация — отбор отображаемых данных в соответствии с заданными критериями, их упорядочение, оформление и последующая выдача на устройство ввода или передача по каналам связи).

Назначение СУБД – управление базой данных; разработка, отладка и выполнение вспомогательных программ; выполнение вспомогательных операций; сервис.

Функции СУБД:

организация хранения данных;

определение и инициализация базы данных;

предоставление пользователю доступа к базе;

защита целостности базы данных;

управление доступом к базе данных;

периодичность изменения хранимых данных.

СУБД классифицируются в соответствии с логической моделью организации базы данных.

Характеристики СУБД:

производительность;

объем запросов клиента;

затраты на обслуживание.

Технология «клиент-сервер»

Для обеспечения простого и относительно дешевого решения проблемы коллективного доступа к базе данных в локальной сети применяется архитектура «клиент – сервер».

Высокая пропускная способность локальных сетей обеспечивает эффективный доступ из одного узла локальной сети к ресурсам, находящимся в других узлах. Рабочая станция (клиент локальной сети) предназначена для непосредственной работы пользователя или категории пользователей и обладает ресурсами, соответствующими локальным потребностям данного пользователя. При необходимости можно использовать ресурсы и/или услуги, предоставляемые сервером. Сервер локальной сети должен обладать ресурсами, соответствующими его функциональному назначению и потребностям сети. Сервер баз данных - фактически обычная СУБД, принимающая запросы по локальной сети и возвращающая результаты.

Информационная безопасность

При коллективном доступе к информации возникает проблема информационной безопасности.

Для обеспечения информационной безопасности пользователей базы данных разделяют на три группы:

прикладные программисты (отвечают за создание программ, использующих базу данных); конечные пользователи (имеют строго ограниченный набор манипулирования данными, определяемый администратором);

администраторы (создают базу данных, осуществляют контроль функционирования СУБД, обеспечивают пользователям доступ к необходимым им данным)

Политика безопасности определяется администратором базы данных. Администратор определяет привилегии для конкретного пользователя (группы пользователей), открывая ему доступ к различным объектам базы данных.

Угроза безопасности – целенаправленное действие, которое повышает уязвимость накапливаемой, хранимой и обрабатываемой системы информации и приводит к ее случайному или предумышленному изменению или уничтожению.

Угрозы можно разделить на:

случайные (ошибки персонала, форс-мажор, ошибки программ),

преднамеренные (хакерские атаки, вирусы).

Группы угроз:

прерывание (прекращение нормальной обработки информации);

перехват (незаконное чтение, копирование данных системы);

модификация (доступ и изменение информации);

разрушение (необратимая потеря данных).

Безопасность базы данных – ее защищенность от случайного или преднамеренного вмешательства в нормальный процесс ее функционирования, а также от попыток хищения, модификации или разрушения ее компонентов.

Цели защиты информации:

предотвращение хищений, искажений информации;

предотвращение несанкционированных действий по уничтожению, модификации, блокированию, копированию информации;

сохранение конфиденциальности;

обеспечение прав разработчиков базы данных.

Система защиты – совокупность специальных мер правового и административного характера, организационных мероприятий, физических и технических средств защиты, а также специального персонала, предназначенного для обеспечения безопасности базы данных.

Правовые меры — действующие в стране законы, указы и другие нормативные акты, регламентирующие правила обращения с информацией и ответственность за их нарушение. Морально-этические меры — традиционно сложившиеся в стране нормы поведения и правила обращения с информацией (их несоблюдение ведет к падению престижа, авторитета человека или организации). Организационные (административные) — меры, регламентирующие процесс функционирования, использование ресурсов базы данных, деятельности персонала, а также порядок взаимодействия пользователей таким образом, чтобы максимально затруднить или исключить возможность реализации угроз безопасности информации. Физические меры защиты — различные механические, электро- или электронно-механические устройства, предназначенные для создания физических препятствий на путях проникновения потенциальных нарушителей к абонентам базы данных и защищаемой информации. А также технические средства визуального наблюдения, связи и охранной сигнализации. Технические (аппаратно-программные) средства защиты — различные электронные устройства и специальные программы, выполняющие функции защиты информации. Универсальные способы защиты:

Идентификация (присвоение кода) и аутентификация (установление подлинности).

Контроль доступа к ресурсам базы данных (регламентируются порядок работы пользователей и персонала, права доступа к отдельным файлам в базе данных).

Регистрация и анализ событий, происходящих в базе данных.

Контроль целостности объектов базы данных.

Шифровка данных.

Резервирование ресурсов и компонентов базы данных.