ReproPhylo

reproducible
phylogenomics

ReproPhylo

User Manual

ReproPhylo v1 CCO. You can edit this document to improve it. Be bold.

Software: h ://github.com/HullUni-bioinformatics/ReproPhyl

This manual: http://goo.gl/aZeRXf

Webpage: http://hulluni-bioinformatics.github.io/ReproPhylo @ReproPhylo
Quick links: FAQ; Citation; Contact; Download; Installation

Table of contents

1. Introduction
1.1. What ReproPhylo is
1.2. About this Manual
1.3. Brief overview of reproducibility
1.4. Version control in ReproPhylo
2. Installation and Launch
2.1. ReproPhylo in Docker (Linux machines)
2.1.1. Starting up
2.1.2. Stopping a ReproPhylo Docker container
2.2. Linux installation without Docker
2.3. Windows and OSX (and also linux)
2.3.1 Vagrant
2.3.2. WinPython (deprecated)

3. Tutorial
3.1. Jupyter Notebook Intro

3.2. Starting a Project
3.2.1 Describing Loci
3.2.2 Loading loci to a new Project
3.2.3 Modifying the loci of an existing Project

3.2.4 Quick reference
3.3. Reading Data

http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/HullUni-bioinformatics/ReproPhylo
http://goo.gl/aZeRXf
http://hulluni-bioinformatics.github.io/ReproPhylo
https://twitter.com/reprophylo
https://github.com/HullUni-bioinformatics/ReproPhylo

3.3.1 Reading data from GenBank or EMBL files
3.3.2 Reading other sequence file formats
3.3.3 Reading sequence alignments
3.3.4 Reading a Nexus alignment with PAUP commands
3.3.5 Quick reference
3.4. Metadata handling
3.4.1 What is metadata in ReproPhylo?
3.4.2 Modifying the metadata
3.4.3 Quick reference
3.5. Pre alignment filtering
3.5.1 Filtering by sequence length or GC content
3.5.2 Excluding and including
3.5.3 Quick reference
3.6 Producing and accessing sequence alignment
3.6.1 Configuring a sequence alignment process
3.6.2 Executing sequence alignment processes
3.6.3 Accessing sequence alignments
3.6.4 Quick reference
3.7 Alignment trimming
3.7.1 Configuring an alignment trimming process
3.7.2 Executing the alignment trimming process
3.7.3 Accessing trimmed sequence alignments
3.7.4 Quick reference
3.8 Building a supermatrix
3.8.1 Sorting out the metadata
3.8.2 Designing the supermatrix
3.8.3 Building the supermatrix
3.8.4 Quick reference
3.9 Reconstructing trees
3.9.1 Using RAXML
3.9.2 Using Phylobayes
3.9.3 Executing the tree reconstructions and accessing trees
3.9.4 Quick reference
3.10 Tree annotation and report
3.10.1 Updating the metadata after the tree has been built
3.10.2 Configuring and writing a tree figure
3.10.3 Archive the analysis as a zip file
4 Git and Pickle integration in ReproPhylo
4.1 The long version
4.1.1 Start a Project, read data, do alignment, show Git log
4.1.2 Revert to older Project version
4.1.3 Recovering from unintentional changes
4.2 Possible error messages
4.2 The short version
5. Jupyter notebooks with use cases
6. Tools in ReproPhylo
7. ReproPhylo module index
7.1. The Locus object
7.1.1. Locus
7.1.2. Locus methods
7.2. The Concatenation object
7.2.1. Concatenation
7.2.2. Concatenation methods
7.2.3. The Project object
7.3. Project
7.3.1. Project methods
7.4. ReproPhylo functions meant to be used directly

7.5. The AInConf object
5.5.1. AInConf
5.5.2. AInConf methods
5.5.3. AInConf preliminaries
7.6. The TrimalConf object
5.6.1. TrimalConf
5.6.2. TrimalConf methods
5.6.3. TrimalConf preliminaries
5.7. The RaxmlConf object
5.7.1. RaxmIConf
5.7.2. RaxmIConf methods
5.7.3. RaxmIConf preliminaries
78. Undocumented functions
8. A Galaxy workflow - Iguaninae data
8.1. Getting ReproPhylo in Galaxy
8.2. Getting data from GenBank
8.3. Uploading your data to Galaxy
8.4. Explore and choose the loci to analyse
8.5. Start a Project with the selected loci and the relevant records from the genbank files
8.6. Explore the available metadata from the genbank file.
8.7. Add additional information of our own
8.8. Run a fixed phylogenetic pipeline
8.9. Annotate the resulting trees using the metadata
8.10. Archive the results
8.11. Tools not covered by this use case
8.12. Export your history
8.13. Save and edit a workflow
9. FAQ
9.1. Where can | get ReproPhylo?
9.2. How can | cite ReproPhylo?
9.3. | have found an error in the code or manual
9.4. | would like [my favourite feature] included
10. Program References
11. Contact

1. Introduction
1.1. What ReproPhylo is

ReproPhylo is a pipeline of modules to implement reproducible workflows for phylogenomic analysis.
It is open source software (CCO public domain) for you to use, modify and distribute as you see fit.
This is community software, we would welcome your contributions.

1.2. About this Manual

This document outlines how best to use the reproducible phylogenomics pipeline ReproPhylo. You
can edit this document like you would a wiki and also leave comments. Be bold. We would
welcome your additions, edits, and corrections to this document. You could also create a GitHub
issue. This manual has medium level information; its more than basic, but some details are linked to
rather than included as they break up the flow.

1.3. Brief overview of reproducibility

Our reproducible phylogenomics ideas are outlined in a series of blog posts part 1, part 2a, part 2b.
ReproPhylo allows you to carry out a phylogenomic analysis using pre-written or self-written
commands. This programmatic approach ensures that all stages of the analysis are explicitly
recorded, and can be exactly replicated, or reproduced with modification, as required. Sequence data,
and any generated intermediate data files (e.g. alignments, metadata), are tracked and held in version
control- meaning that there can be no doubt which version of which file was used for any analysis.
ReproPhylo will write a human-readable detailed graphical report for each experiment. ReproPhylo
will create a .zip archive of the entire experiment to upload to EigShare or equivalent repository.
ReproPhylo is best deployed as a Docker container, which includes not just the experimental
components but also the phylogenetics programs and any dependencies, ensuring that it can be run
exactly as it was on the previous phylogeneticist's machine.

1.4. Version control in ReproPhylo

The purpose of version control is to track all changes to your files and to enable you to return to any
previous file version if you require. This allows you to recover from mistakes and to change your mind
about some of your actions, without having to repeat previous analysis.

In ReproPhylo, the input data (sequences) and its metadata (eg sampling location), the output (eg
alignments, trees), its statistics (eg, informative alignment positions), methods information (eg
command lines, supermatrix content) and environment information (eg program versions) are all
automatically and continuously saved in a single file, termed pickle. This file is automatically and
continuously tracked by the version control program Git without you having to do anything
(ReproPhylo Glt demo). We are considering an automated push to GitHub, but at the moment, you
can push your Git repository manually using the git push command. Tailored instructions for doing so
are provided on GitHub every time you start a new repository there.

2. Installation and Launch

The recommended way to use ReproPhylo is in Jupyter Notebook (previously called IPython
notebooks), with commands and instructions in an interactive GUI environment for you to run or
modify. [about Jupyter notebooks aka ‘IPython’]. Instructions for installation without Docker can be
found here.

http://n.wikipedia.org/wiki/Pipeline_(computing)
http://www.davelunt.net/evophylo/2014/10/reproducible-phylogenetics-part-1-why/
http://github.com
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
http://www.davelunt.net/evophylo/2014/10/reproducible-phylogenetics-part-1-why/
http://www.davelunt.net/evophylo/2014/11/reproducible-phylogenetics-part-2a-what/
http://www.davelunt.net/evophylo/2014/11/reproducible-phylogenetics-part-2b-what/
http://figshare.com/
http://www.docker.com/
http://en.wikipedia.org/wiki/Pickle_%28Python%29
http://en.wikipedia.org/wiki/Git_(software)
http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Git/Git_Demo.ipynb#
https://github.com/
http://ipython.org/notebook.html
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile#installation-without-docker

As a proof of concept, ReproPhylo is also available in Galaxy; a web-based GUI, incorporating
interactive workflows, and providing its own set of reproducibility tools [about Galaxy]

The latest software can be downloaded from the GitHub ReproPhylo page, but it is not a single-click
install. We provide a ReproPhylo Docker environment available from dockerhub, which is a

ready-to-go self-contained virtual machine with all dependencies pre-installed and is the easiest way
to install ReproPhylo. A Galaxy instance containing ReproPhylo tools is also provided (see section 5).

2.1. ReproPhylo in Docker (Linux machines)

2.1.1. Starting up

The quickest way to deploy ReproPhylo in Jupyter Notebook is by using the Docker container on a
Linux machine. Instructions on how to install on Windows/ OSX can be found in the next section.

You will first need to jnstall_Docker on your system.

Then, download_startRP.
It is a script which will deploy Jupyter notebook with ReproPhylo, as well as tutorial notebooks.

The startRP script is downloaded as a zip file. Extract it and then copy the startRP shell script
anywhere on your machine.

startRP runs as follows:
$ cd /path/to/startRP/

$ sh ./startRP /absolute/path/to/your/project/directory
Done!

The project directory refers to wherever you are going to work, e.g. you could create an empty
“my_experiment” directory in your home folder with mkdir ~/my experiment and the absolute path
would be /home/your user name/my experiment. The directory will be created if it does not
already exist, so take care to avoid typos, as a misspelled path will be created and used instead of the
one you have intended to point at. The script will allow the Docker container to access your display,
and will start up your default browser with the Jupyter notebook login page. If this is your first start-up,
getting to this point will take a few minutes as the Docker image will be downloaded. The browser
may warn you that the address is untrusted, in which case you should follow the given instruction to
permit access. Jupyter notebook will ask for a password, which is password. You may change it by
editing the startRP shell script, if you intend to access the container remotely.

ReproPhylo should now be working and you can run it through the tutorial Jupyter notebooks (as
described in section 3 below) or modify them for your own analyses. The tutorial notebooks should be
visible in the Jupyter notebook file browser, once you have logged in, in the
Tutorial files/Basic directory.

The same script can be used to start a ReproPhylo container in subsequent runs, provided the
program was stopped appropriately (see next paragraph). It won't reinstall everything and will be
considerably quicker.

Ins and outs of startRP (Only read if startRP doesn’t work)

The startRP script was tested on Ubuntu 14.04 and thus uses apt-get frequently. Other commands
(such as pip, wget, mkdir, xhost, xdg-open) are universal for GNU/Linux machines. If you are trying to
use it on another Linux distribution, some modifications will be required, and we’ll be happy to try and
assist should you get stuck (see below for Windows and OSX).

https://usegalaxy.org/
https://github.com/HullUni-bioinformatics/ReproPhylo
http://www.docker.com/
https://registry.hub.docker.com/u/szitenberg/reprophylo/
http://www.docker.com/
https://docs.docker.com/installation/#installation
https://github.com/szitenberg/startRP/archive/master.zip
https://pip.pypa.io/en/latest/installing.html

startRP is designed for a local installation, and it therefore contains two classes of commands. The
first class perceives your local computer as a server. It will take care of “serving” the Docker container
with ReproPhylo in it. The second class perceives your computer as a client. It will take care of
running ReproPhylo in your browser. This means that the script as it is, cannot be used directly on a
true server, as some commands will make no sense, and there will be some additional security
considerations. For convenience, | am listing the two classes here:

Server side:

Creating the working directory on your local machine as a server

As the script is set up at the moment, the working directory is considered to be on the server side. It
makes no difference if your server and client are the same machine, but a different solution may be
needed if ReproPhylo is truly served remotely ($1 is the startRP command line argument stating the
path to the working directory).

echo "checking if path exists: $1"
if [-d $1]; then
echo "Already exists"

else
echo "Path was not found, creating."”
mkdir $1

fi

If you wish to make this operation manually, the appropriate command would be:

mkdir /path/to/workdir

Downloading tutorial files to your local machine as a server

The script checks if the tutorial files are in the working directory (which is “server side”) and if you
want to install them (i.e., if there is no —--xt flag in the startRP command line). It makes no difference
if you serve and use on the same machine, but a different solution may be needed if ReproPhylo is
truly served remotely ($1 is the startRP command line argument stating the path to the working
directory).

if [-d $1/Tutorial_files]; then
echo "Tutorial files exists in $1"

elif [$2 = "--xt"]; then
echo "Tutorial files opt out"
elif [$# -eq 2 1 && [$2 != "--xt" 1 || [$# -eq 1]; then
echo "Putting tutorial files in $1"
wget -c https: ithub.com/HullUni-bioinformatics/ReproPhylo/archive/master.zi

unzip -qq master.zip

cd ReproPhylo-master

cp -r Tutorial files $1

cd ..

rm -r ReproPhylo-master

rm master.zip

echo "Tutorial files are in $1"
fi

If you wish to get the tutorial files and extract them in the working directory manually, here are
the needed commands:

cd /path/to/workdir
wget -c https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip

https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip

unzip -ggq master.zip
cp -r ReproPhylo-master/Tutorial files
rm -r ReproPhylo-master master.zip

Serving the Docker container

sudo docker run --net=host --name rpnotebook -d -p 8888:8888 -e "PASSWORD=password" -v
/tmp/ . X11-unix:/tmp/.X11-unix:ro -v $1:/notebooks -e DISPLAY=$DISPLAY szitenberg/reprophylo
/notebook. sh

sudo docker run -The docker command to (download an image), create and run a container
--net=host -Use host to access the internet
--name rpnotebook -The container’s name

-d -Run as daemon (at the background)

-p 8888:8888 -Couple port 8888 in the container with port 8888 in the server. This is limiting because
it does not take advantage of Jupyter notebook’s ability to dynamically choose a vacant port. To
change the port you'll need to edit both startRP and notebook.sh in the container: Clone the
Dockerfile repository and edit the script there, by changing 8888 in the ipython notebook command
line to something else. In the Dockerfile itself, the line EXPOSE 8888 will have to be changed
accordingly. Then build the Docker image locally.

-e "PASSWORD=password" -sets up the password to access Jupyter notebook

-v /tmp/.X11-unix:/tmp/.X11-unix:ro -Couple the location of x-server in the container and server in
a read only mode (ro).

-v $1:/notebooks -Couples the work dir on the server with the one in the container (/notebooks)
-e DISPLAY=$DISPLAY -Couples the DISPLAY variable between the container and the server
szitenberg/reprophylo -The Docker image name

/notebook.sh -The container’s start up command. Runs the script notebook.sh

Running this step manually will be done the same, just remember to change $1 to the actual
/path/to/workdir

Also remember to install Docker beforehand. Note that Docker does have Windows and OSX
versions, but ReproPhylo will only work in the Docker terminal (called boot2docker and is a virtual
machine) in those OSs. This means you will be able to use all the programs and python modules,
ReproPhylo included, in IPython, in itself very useful, but you will not be able to run Jupyter notebook

(easily solvable) or produce figures (very difficult).

Client side:

Allowing the served program to access the local x server

xhost +local:root

Since the container is designed to work locally, the program is ran as root. We then need to allow the
“remote” container to access the “local” x-server, local and remote being the same physical machine.
A remote Docker container will have to be set up to run the program as a specific user, rather than

https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile/blob/master/notebook.sh
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile
https://docs.docker.com/reference/builder/
https://docs.docker.com/installation/
http://odewahn.github.io/docker-jumpstart/ipython-notebook.html

root as it is now, for security reasons, and then the local xhost command will have to change
accordingly.

in rowser
xdg-open https://localhost:8888

Start up the default browser at https:/localhost:8888. localhost should be changed to the server name
or IP if the container is served remotely. You could just open your browser as you normally would
and stick the address in instead.

2.1.2. Stopping a ReproPhylo Docker container

When you use startRP, your files are read from and written to a local directory. Therefore it is safe to
stop and remove a container between sessions. You can save the following shell script as stopRP
and use it to stop your Docker container once you're done:

#!/bin/bash
sudo docker rm -f rpnotebook

and run as follows:
$ cd /path/to/stopRP/
$ sh ./stopRP
or you could just run
sudo docker rm -f rpnotebook

in the terminal

2.2. Linux installation without Docker

Instructions for Linux installation without Docker can be found here.

2.3. Windows and OSX (and also linux)

2.3.1 Vagrant

This option was tested on OSX and Ubuntu 14.04, and should work just as well on Windows. At the
background, we'll set a virtual machine to serve Jupyter notebook without a display, and then use the
local web browser as GUI. A great thank you to Dr. Steve Moss for his work on this distribution. Here
are steps:

Install vagrant on your OS.
Make sure to get the latest version, which is not always what you get with your distro manager.

Install virtualbox for your OS

Download ReproPhyloVagrant, which is a zip file (or git clone)

Extract the zip file, a directory called ReproPhyloVagrant-master should appear.

http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile#installation-without-docker
https://github.com/gawbul
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/szitenberg/ReproPhyloVagrant/archive/master.zip
https://github.com/szitenberg/ReproPhyloVagrant

Start a terminal or a cmdva

Change location into the extracted folder:
cd /path/to/ReproPhyloVagrant-master

Run the command vagrant up
This command will set up the virtual machine and can take half an hour to run the first time.

Run the command: vagrant ssh
The prompt in the terminal should change and indicate that you are now inside the virtual machine

Run the command: startRP. sh

In your browser, goto https://localhost:8888

You may get a warning about security, follow the instructions to allow the page to load. There are no
security issues, it all happens locally.

Type in the password reprophylo
Done!
Further instructions are in section 3.

Your notebooks and output files will be saved in ReproPhyloVagrant-master/notebooks, Or any
subdirectory you create in there. Data you want to use also has to be placed within
ReproPhyloVagrant-master/notebooks or its subfolders.

To stop the virtual machine do the following:

cd /path/to/ReproPhyloVagrant-master
ctrl+C twice to stop ipython notebook
exit to leach the virtual machine
vagrant halt to stop it

Next time you run vagrant up it will be very quick.

2.3.2. WinPython (deprecated)

A WinPython 64bit version, which includes ReproPhylo and most of the dependencies is available to
download here. It is an older version of ReproPhylo and we do not expect to maintain this distribution
in the near future. Setting it up should work as follows:

1. Download Git installer for Windows

2. Run it to install. You may need to right-click and run as administrator. When asked, choose to
allow Git to work in the Windows command prompt and not only in bash. Otherwise, keep the
default settings.

3. Optional: Perl is required for codon alignment. If you may need to use this option and Perl is not
yet installed, download and run this installer.

4. Download the WinPython+ReproPhylo zip file. Note that this is not the official WinPython
distribution, but version 2.7.9.5, Release 2015-04 of May 12th, 2015.

5. Extract anywhere on your machine.

6. To start up Jupyter Notebook, find IPythoNotebook.exe and double-click it. Jupyter Notebook
will start up in your default browser.

All done!

Notebooks you create will be written within WinPython-64bit-2.7.9.5/notebooks. However, you
can use data from anywhere on your machine, as long as you specify the path in your scripts. This
directory already contains two subdirectories, one with the tutorials discussed in the next section, and

https://localhost:8888
https://git-scm.com/download/win
http://www.activestate.com/activeperl/downloads/thank-you?dl=http://downloads.activestate.com/ActivePerl/releases/5.20.2.2001/ActivePerl-5.20.2.2001-MSWin32-x64-298913.msi
https://www.dropbox.com/s/anr4yx1prk6n16d/WinPython-64bit-2.7.9.5_rp1.zip?dl=0
https://winpython.github.io/
https://winpython.github.io/
https://github.com/winpython/winpython/issues/73

another with WinPython documentation.

The programs already included within this WinPython distribution are raxmIHPC,
raxmlIHPC-PTHREAD-SS3, MAFFT, MUSCLE, TrimAl and PAL2NAL. They are accessed by default
by ReproPhylo and there is no need to set up paths. You can run any other command line tool that is
on your machine by specifying its full path. Since there are ReproPhylo functions that run
EXONERATE, you might want to install its Windows/cygwin version. Similarly, Bayestraits is also
available for Windows. Any function in ReproPhylo that execute external software will have a cmd
keyword where the full path to the executable can be specified. Programs that are not wrapped by
ReproPhylo can be executed using the included subprocess module or the ! notation in Jupyter
Notebook.

10

http://www.ebi.ac.uk/~guy/exonerate/
http://www.evolution.rdg.ac.uk/BayesTraits.html
https://docs.python.org/2/library/subprocess.html

3. Tutorial

This tutorial is currently being rewritten, as many options were added since it was first written.
Sections 3.1 - 3.4 are new, and the remaining, while informative, is not completely up to date. This
notebook illustrates most of the additional functionality.

3.1. Jupyter Notebook Intro

The use cases described in this manual are also provided as functional Jupyter Notebooks which can
be downloaded from ReproPhylo github. They are downloaded by default when you use a Docker
container with the startRP script. A Jupyter Notebook consists of formatted text (markdown) cells,
which contain comments and explanations, but do not affect the program. Actual script is written in
code cells, which have a shaded background. The code in the code cells can be executed (run) by
placing the cursor anywhere inside a code cell and clicking shift+enter.

— Jupyter calc GC content A
File Edit View Insert Cell Kernel Help # |Python2 O
+ x| A B 4 ¥ p B C | code :l Cell Toolbar: None j
. This is a Markdown Cell
Instructions

To calculate the GC content of a sequence, type the path to the fasta file containing it
next to the commet# Type the fasta filename below, then click the play botton.
Look for the result below the code cell.

In [4]: from Bio import Seql0

from Bio.SeqUtils import GC This is a Code Cell

Click it and then

Type the fasta filename below ctrl+shift to

path =\ execute
'data/Tetillidae denovo sequence.fasta'

r = SeqI0.read(path, 'fasta') \This specifies input file

print "The GC content of %s is %f percent"%(r.id, GC(r.seq))

The GC content of NIWA2850 is 37.380497 percent This is the output

1

http://nbviewer.ipython.org/github/szitenberg/Szitenberg_et_al_15-ReproPhylo/blob/master/IPython_Notebook_for_ReproPhylo_MS.ipynb
https://github.com/HullUni-bioinformatics/ReproPhylo
https://github.com/szitenberg/startRP/archive/master.zip
http://daringfireball.net/projects/markdown/syntax

3.2. Starting a Project

Section quick reference, Eull reference

This section in nbviewer

In the beginning of each analysis, the first step is to load ReproPhylo and its dependencies
with the command

from reprophylo import *

Once this is done we can start a Project. A Project contains all the data, metadata, methods
and environment information, and it is the unit that is saved as a pickle file, which is version
controlled with Git.

Although ReproPhylo is designed to record versions and update the pickle file automatically,
this will be opt-out of in this tutorial, and will be introduced after we have covered the basics.
Instead, we will manually save a pickle file at the end of each section, and will load it in the
next one. You should use the same pickle file name at the end of all the sections. The new
content will be added to the one already present in the file.

If you want to jump ahead, there are presaved pickle files

(Tutorial files/basic/outputs), numbered according to the section after which they
were saved. For example, outputs/3.6.alignments.pkpj was saved at the end of
section 3.6 and can be loaded at the top of section 3.7, instead of your own file.

To start a Project, we have to specify the loci to analyse (not actual sequence data, only
some information on the loci) and a pickle file name.

3.2.1 Describing Loci

A Locus can be described manually using a command or by providing a file. For each
Locus, we have to specify the character type (DNA or protein) the feature type (eg, rRNA,
CDS or gene), the name of the locus (eg, MT-CO1) and other possible aliases which may
come handy if we want to read a genbank file (eg, cox1, coi).

Describe loci using a command

coi = Locus(char_type='dna’',
feature_type='CDS',
name="MT-CO1",

aliases=['cox1', 'coi'])

This is a single Locus description (a Locus object). We can confirm its content by printing it
like this:

print coi

to get this output:

12

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.2%20Starting%20a%20Project.ipynb
http://en.wikipedia.org/wiki/Pickle_%28Python%29
http://en.wikipedia.org/wiki/Git_(software)

Locus (char type=dna, feature type=CDS, name=MT-COl, aliases=coxl;
coil)

Describing loci using a file

Another way of describing loci is to write them in a file. The file has one line for each Locus,
where each line has at least four items, separated by commas. The items, as above, are the
character type, the feature type, the name of the locus and other possible aliases. At least
one alias must be specified, but it can be identical to the name. For the MT-CO1 Locus, a file
would look like this:

dna, CDS,MT-CO1, coxl, coi

Deducing a loci file from a genbank file

A third way of describing loci is to run a command that guesses them from a genbank file and
writes them into a comma delimited file, as above. This file can be used as is, or it can be
edited. The following command will prepare such a loci file from a genbank file containing all
the GenBank records belonging to the sponge family Tetillidae. Text starting with a hash (#)
is a comment which do not affect the command:

list loci_in_genbank('data/Tetillidae.gb', # The input genbank
file

‘data/loci.csv’, # The loci file

'outputs/loci counts.txt') # Additional
output,
discussed
below.

The command generated the loci file and wrote it in data/loci.csv. Here are some
excerpts separated by three dots:

dna, rRNA, 18s,18S ribosomal RNA,18S rRNA
dna, rRNA, 28s,28S large subunit ribosomal RNA,28S ribosomal RNA

dna,CDS,MT-ATP8, atp8,ATPS
dna,CDS,MT-CO1, coi,COI,coxl,C0OX1l, coxI

dna, rRNA, rnl, rnl

dna, rRNA, rns, rns

dna, rRNA, rrnL, rrnL

Each line represents a locus that was found in the genbank file data/Tetillidae.gb. For
some genes, such as 18s, synonyms were recognized and placed as aliases in one line. In
other cases, such as for rnl and rrnL, they were not.

Editing the loci file

Possible edits to this file include:

13

Synonymization. This is done by adding a comma and a shared integer in all the lines that
are the same locus. For example the lines

dna, rRNA, rnl, rnl
dna, rRNA, rrnL, rrnL

will become

dna, rRNA,rnl,rnl, 9
dna, rRNA, rrnL, rrnL, 9

Which integer is written is unimportant, as long as it is shared between synonymous lines.

Change of character type. If our data includes translations to protein sequence, we can
change dna to prot, as such:

prot,CDS,MT-COl,coi,COI,coxl,COX1l,coxI.
This will tell the program to use protein sequences instead of DNA sequence. The sequence
alignment tutorial explains how to use both protein and DNA sequence of the same locus to

conduct codon alignment.

Deletion of loci. It is possible to delete loci we do not want to analyse. They will not be read,
even if they exit in our data.

The second file that the command above produced, the outputs/loci counts.txt,
contains a list of the loci found in the genbank file, with the number of their occurrences. This
can be used as a guide when deciding which loci to delete and which to keep.

3.2.2 Loading loci to a new Project

Loading Locus objects
First we'll make another Locus object to make a point that more than one can be read:
ssu = Locus('dna', 'rRNA"','18S"',['ssu', 'SSU-rRNA"'])

Regardless of whether we have one or more Locus objects, they are read as a list, which
means that they are wrapped with square brackets and separated by commas:

loci_list = [coi, ssu]

This command will start the Project and will write it to the pickle file
outputs/dummy.pkpj:

pj = Project(loci_list, pickle='outputs/dummy.pkpj")

This following alternative will start a Project and will load the loci from a file
data/edited loci.csv thatlooks like this:

dna, rRNA, 18s,18S ribosomal RNA,18S rRNA

14

dna, rRNA, 28s,28S large subunit ribosomal RNA
dna, CDS,MT-CO1, coi,COI,coxl,C0OX1l, coxI

pj = Project('data/edited loci.csv',
pickle="outputs/my_ project.pkpj', git=False)

This will provoke a bunch of Git related messages which will be discussed in the version
control section of this tutorial.

If we print the Project we'll get this message:

print pj

Project object with the loci 18s,28s,MT-CO1,

3.2.3 Modifying the loci of an existing Project

As you have seen, when you start a Project you pass a list of loci or a csv file name with
the loci attributes:

pj = Project(loci_list, pickle='filename")

Once the Project exists, it is possible to modify the Locus objects it contains. To add a
Locus, yYou need to create it, as you have done:

lsu = Locus('dna', 'rRNA', '28S', ['28s','LSU-rRNA'])

and then also add it to the Project. Loci are stored in a list called pj . 1oci. So the new
Locus can be appended to it:

pj.loci.append(ssu)

or if we have a list of new loci to add, for example:
new_loci_list = [nd5, lsu]

it can be added to the loci list like so:

pj.loci += new_loci list

Lastly, we can modify loci that are already in pj . 1oci. For example, change the name and
add an alias to the MT-CO1 Locus object:

for 1 in pj.loci: # Find the Locus named MT-CO1
if 1.name == "MT-CO1':
1l.name = "COI' # Rename it to COI

l.aliases.append('coi') # Add the alias coi

15

The last step in any of the sections is to update the pickle file.

pickle_pj(pj, 'outputs/my_project.pkpj')

'outputs/my project.pkpj'

3.2.4 Quick reference

A Locus object

coi = Locus(char_type='dna’', # or 'prot'
feature_type="'CDS', # any string
name="MT-CO1", # any string

aliases=['coi’, 'cox1l']) # list of strings

Guess loci.csv file from a genbank file

list_loci_in_genbank('genbank.gb"',
"loci.csv',
"loci_counts.txt")

Start a Project
With a Locus object list
pj = Project([coi, ssu], pickle='pickle filename')

With a loci.csv file
pj = Project('loci.csv', pickle='pickle filename")

Add a Locus to an existing Project
pj.loci.append(coi)

#0r

pj.loci += [coi]

Modify a Locus existing in a Project
for 1 in pj.loci:
if l.name == 'MT-CO1':
l.name = 'newName'
1.feature_type = 'newFeatureType'
l.char_type = 'prot'
l.aliases.append('newAlias"')
#0r
l.aliases += ['newAliasl,newAlias2']

16

3.3. Reading Data

Section quick reference, Eull reference

This section in nbviewer

This part will show methods by which to read data into the ReproPhylo Project
3.3.1 Reading data from GenBank or EMBL files

GenBank or EMBL files should be the prefered way to read data from online databases
because ReproPhylo can store all the associated metadata and make it available for steps
such as tree annotation or even Bayestraits analysis. When we pass a GenBank file, only loci
and feature types that match the loci we have passed upon creating the Project will be
retained, and the rest will be ignored. This is handy for multi-featured GenBank entries that
contain any number of genes on top of the ones we are interested in. In this example, only
cox1 CDSs will be read from entries of complete mitochondrial genomes. First we read the
pickle file from the section 3.2:

from reprophylo import *
pj = unpickle pj('outputs/my_project.pkpj', git=False)

Now we can add data to the Project, by reading a list of one or more GenBank files:

input_filnames = ['data/Tetillidael.gb', ‘'data/Tetillidae2.gb']
pj.read_embl_genbank(input_filnames)

/home/amir/Dropbox/python modules/reprophylo.py:1015:
UserWarning: Version control off
warnings.warn('Version control off'")

3.3.2 Reading other sequence file formats

When GenBank or EMBL files are read, the accession numbers are used as sequence IDs in
ReproPhylo. But when other file formats are used, it is difficult to predict whether a unique
sequence ID is available in the sequence header. Therefore, ReproPhylo regards data read
from other file formats as 'denovo' and creates denovo sequence IDs. For the same reason,
there is no mechanism to prevent you from reading the same file twice, at the moment. All
the information found in the original sequence header is retained and made available as
metadata. ReproPhylo can handle any format that is compatible with the SeqlO module of
Biopython. Reading prealigned sequences is done by a different dedicated method which will
be discussed below.

Reading files

In this example we read a fasta file with an unpublished sequence. We will specify the data
type ('dna') and the file format. This means that DNA and protein files need to be read in
two separate actions.

17

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.3%20Reading%20Data.ipynb
http://biopython.org/wiki/SeqIO#File_Formats

This list can include one or more file names
denovo_sequence filenames =
['data/Tetillidae_denovo_sequence.fasta']

pj.read_denovo(denovo_sequence_filenames,

1

This is how the 'denovo' record looks like if we ask to print it in GenBank format:

for r in pj.records:
if r.id == ‘'denovo@': print r.format('genbank")

LOCUS

DEFINITION
ACCESSION

VERSION
KEYWORDS
SOURCE

ORGANISM

FEATURES

denovo0
NIWA2850
denovo0
denovo0

source

ORIGIN

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961

1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801
1861
1921
1981
2041
//

atgataggaa
ttgggtgacg
ttcttagtta
ggggcaccgg
tcattaatac
ctttatccac
tttagtcttc
atctttaata
attttaataa
atgcttttaa
ccaatattat
ctcccecgggt
tttggctatc
tgagcttgta
ggaaagccta
atattaatgg
acacgtcatg
accttaaaga
aaggtccttt
ccccgttata
tattaatgga
ataaattgta
ataatgcttg
cacaccagtg
aatgatattt
tcggeggggt
aaggggaata
ggtctacaca
gatatagtcc
gcatcacatg
gatgataatc
gggctcattg
tgtaggagga
cacatattac
ctttggaggg

2092 bp

DNA

Craniella microsigma coxl

Location/Qualifiers

1..20092

/feature id="denovoO source"
/original id="NIWA2850"
/original desc="Craniella microsigma coxl"

ctggatttag
accatttata
tgccggttat
atatggcttt
tactgctagg
cattatcaag
atttggctgg
tgcgggcacc
caacttattt
cagatagaaa
ttcaacattt
ttggaattgt
tagggatggt
gatgggcgtg
aaaaaagaaa
agggtcaatc
cccttgagga
taagtaaggg
accgaataaa
gtgattgaaa
gactaatcac
aatattttcc
attaactggg
gcggcccgaa
ttcctgggtce
caataagaac
aaaatattca
aaaccgagaa
aatcccctta
tttacagttg
gccgtaccaa
agaatagata
ttaaccggaa
gttgttgctc
gtttattatt

cttgcttatt
caatgttatg
gataggtggg
tccaagatta
ttctgctttt
tatacaggct
gatctcttca
tgggattacc
gttattatta
tttcaataca
attttggttc
ttctcagatt
ctatgctatg
cgatagagtg
ttcattaatt
agcaggcaac
tgatttatat
tcggatctat
gggaatattt
gttagggagc
tagaaagaaa
taatttggtt
tttgttgagg
tttcgattac
catttgggct
tcgaagtgac
atatgtgcgt
ggggttaget
gtaatagggg
gaatggatgc
ccggaataaa
ctcctatgtt
ttgtggtagce
attttcatta
gatttggtaa

agattagaac
gtcacggccc
ttcggtaatt
aacaatatta
gttgaacaag
cattctgggg
attttagggg
atggatagat
gctttgccag
acgttcttcg
tttgggcatc
attccaacat
gtttctatag
atctatcgta
actcgtaatg
ggtatagttt
tgagctattg
attagtgcgt
tgtttagggg
gatttaaata
aatatacaat
gaatactttg
gagatggaaa
acaaaaagag
tcaggcaatc
tggataaaat
tggttgaaat
caaattaaat
ggtataacac
cgactctagg
aatctttagt
atgggctatg
aagtaattct
tgttctatcc
aattactggt

tatccgctcce
acggtcttat
gaatggttcc
gtttttgagt
gggttgggac
gctcagtcga
caatgaattt
tgcctctatt
tattggctgg
atcccgectgg
cggaagttta
tcgcggctaa
gaattttagg
gtataacatg
acaggttcga
atactggagc
gtttatttga
gtcaatcgac
gcgttaaaat
aaatagtaaa
tagtagagtt
gtttagagta
cttaaatatt
agagatgttt
catcagaaca
attttactag
gccataatat
caatttggac
gattgagtgt
gcatacttta
tggatcgcta
ggatttgttt
ttagatgtgt
atgggggcta
tattgttaca

‘dna', format='fasta')

UNK 01-JAN-1980

cggattaatg
aatggtcttt
cctttacatc
tttacccccce
aggatggacc
tgcggcaatt
tataactact
tgtttgatct
tgccataact
tggtggggac
tgtactagtt
aaaacaaata
ttttatagtt
actgtatgct
tacagtaaaa
ctcagagact
ggccgaagga
tagtaatata
aagaaaagac
attattagtt
gataaagttc
ttgaccccga
cagataagac
agatttaatc
ctttaaatat
gtatccattt
tgttattcaa
tcaaggtgaa
tgtaatttaa
gcgctgcaac
cagtagtagg
ttttatttac
tgctccacga
tctttgctat
ac

The record was assigned the ID 'denovo0', and a 'source’' feature was created,
including the fasta header as the 'original id'and 'original desc' qualifiers.

However, it has no feature to indicate what locus it is and it will be ignored down the line. It is
now up to us to add such a feature. Note that for large scale data, such as Exonerate results,
other methods apply and will be discussed later.

Adding features

Here we only have one new sequence and we know its ID - 'denovo0' so it is easy enough
to add a feature:

pj.add_feature_to_record('denovo@', 'CDS', qualifiers={'gene':
"cox1'})

'denovo0O fO0'

Feature 'denovo0O f0' was created.

Often we would want to assign gene names to a whole lot of sequences based on one name
we recognize in the fasta header. We can create a dictionary that will specify the gene and
feature type of each sequence:

feature_lookup = {'NIWA2850': ['CDS','cox1l'],
If we had more sequences
we would add them here:
'Seq2': ['18S', 'rRNA'],
...
}

Now we can use this dictionary to create the feature:
for r in pj.records:

source = r.features[9]
quals = source.qualifiers

if ('original id' in quals and
quals['original id'][@] in feature_lookup):

original id = quals['original id'][9]
feature_type = feature_lookup[original id][9]
gene = feature_lookup[original_id][1]
pj.add_feature_to_record(r.id,
feature_type,
qualifiers={'gene': gene})

The add_feature to record method allows to limit the feature to just a part of the
sequence and to add any number of qualifiers. Look it up in the module reference.
This is how the record looks now, with the new feature added:

19

for r in pj.records:
if r.id == 'denovo@': print r.format('genbank")

LOCUS
DEFINITION
ACCESSION
VERSION
KEYWORDS
SOURCE
ORGANISM

FEATURES
sourc

CDs

ORIGIN

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961

1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801
1861
1921
1981
2041
//

Through the qualifiers dictionary, we can also attempt to add a translation of the sequence.

denovo0

2092 bp

DNA

NIWA2850 Craniella microsigma coxl

denovo0
denovoO0

e

atgataggaa
ttgggtgacg
ttcttagtta
ggggcaccgg
tcattaatac
ctttatccac
tttagtcttc
atctttaata
attttaataa
atgcttttaa
ccaatattat
ctcccecgggt
tttggctatc
tgagcttgta
ggaaagccta
atattaatgg
acacgtcatg
accttaaaga
aaggtccttt
ccccgttata
tattaatgga
ataaattgta
ataatgcttg
cacaccagtg
aatgatattt
tcggeggggt
aaggggaata
ggtctacaca
gatatagtcc
gcatcacatg
gatgataatc
gggctcattg
tgtaggagga
cacatattac

ctttggaggg

Location/Qualifiers

1..2092

/feature id="denovoO_source"
/original id="NIWA2850"
/original desc="Craniella microsigma coxl"

1..2092

/feature id="denovoO fO"
/GC_content="37.3804971319"
/gene="cox1"
/nuc_degen_prop="0.0"

ctggatttag
accatttata
tgccggttat
atatggcttt
tactgctagg
cattatcaag
atttggctgg
tgcgggcacc
caacttattt
cagatagaaa
ttcaacattt
ttggaattgt
tagggatggt
gatgggcgtg
aaaaaagaaa
agggtcaatc
cccttgagga
taagtaaggg
accgaataaa
gtgattgaaa
gactaatcac
aatattttcc
attaactggg
gcggcccgaa
ttcctgggtce
caataagaac
aaaatattca
aaaccgagaa
aatcccctta
tttacagttg
gccgtaccaa
agaatagata
ttaaccggaa
gttgttgctc
gtttattatt

cttgcttatt
caatgttatg
gataggtggg
tccaagatta
ttctgctttt
tatacaggct
gatctcttca
tgggattacc
gttattatta
tttcaataca
attttggttc
ttctcagatt
ctatgctatg
cgatagagtg
ttcattaatt
agcaggcaac
tgatttatat
tcggatctat
gggaatattt
gttagggagc
tagaaagaaa
taatttggtt
tttgttgagg
tttcgattac
catttgggct
tcgaagtgac
atatgtgcgt
ggggttagcet
gtaatagggg
gaatggatgc
ccggaataaa
ctcctatgtt
ttgtggtagc
attttcatta
gatttggtaa

agattagaac
gtcacggccce
ttcggtaatt
aacaatatta
gttgaacaag
cattctgggg
attttagggg
atggatagat
gctttgccag
acgttcttcg
tttgggcatc
attccaacat
gtttctatag
atctatcgta
actcgtaatg
ggtatagttt
tgagctattg
attagtgcgt
tgtttagggg
gatttaaata
aatatacaat
gaatactttg
gagatggaaa
acaaaaagag
tcaggcaatc
tggataaaat
tggttgaaat
caaattaaat
ggtataacac
cgactctagg
aatctttagt
atgggctatg
aagtaattct
tgttctatcc
aattactggt

tatccgctcc
acggtcttat
gaatggttcc
gtttttgagt
gggttgggac
gctcagtcga
caatgaattt
tgcctctatt
tattggctgg
atcccgctgg
cggaagttta
tcgcggctaa
gaattttagg
gtataacatg
acaggttcga
atactggagc
gtttatttga
gtcaatcgac
gcgttaaaat
aaatagtaaa
tagtagagtt
gtttagagta
cttaaatatt
agagatgttt
catcagaaca
attttactag
gccataatat
caatttggac
gattgagtgt
gcatacttta
tggatcgcta
ggatttgttt
ttagatgtgt
atgggggcta
tattgttaca

UNK

cggattaatg
aatggtcttt
cctttacatc
tttaccccce
aggatggacc
tgcggcaatt
tataactact
tgtttgatct
tgccataact
tggtggggac
tgtactagtt
aaaacaaata
ttttatagtt
actgtatgct
tacagtaaaa
ctcagagact
ggccgaagga
tagtaatata
aagaaaagac
attattagtt
gataaagttc
ttgaccccga
cagataagac
agatttaatc
ctttaaatat
gtatccattt
tgttattcaa
tcaaggtgaa
tgtaatttaa
gcgctgcaac
cagtagtagg
ttttatttac
tgctccacga
tctttgctat
ac

We can also define a location for the feature, as a subset of the whole sequence :

01-JAN-1980

20

qualifiers={'gene': 'coxl1l',
"transl_table': 4,
'codon_start': 1,
‘organism': 'Craniella microsigma'}

for record in pj.records:
if 'denovo' in record.id: # New sequences are assigned
with IDs starting
with 'denovo'
pj.add_feature_to_record(record.id, 'CDS',
The location is specified as a list
of lists. Every sub-list is an exon
and has the start, the end and the strand.
The numbers are "real" positions and not
machine. ie, counting starts from 1.
location=[[1,786,1],[1742,2092,1]],
qualifiers=qualifiers)

o H OH H|

transl table is the genetic code to use in order to translate the coding sequence into a
protein. The number, 4 in this case, specify the table to use, out of the GenBank genetic code
tables.

3.3.3 Reading sequence alignments

ReproPhylo allows to read prealigned sequences in any of the Biopython AlignlO compatible
formats, as follows:

pj.read_alignment('Another locus.nex', ‘dna', 'CDS', 'ND5',
format="nexus")

This will place the alignment in the Project.alignments attribute (pj.alignments in
this case) and the unaligned sequences as records in Project.records. There must be a
Locus objectin pj.loci, thatis compatible with the character (dna) feature type (CDS)
and the locus name (ND5) specified in the read alignmnet command. The records will be
assigned ‘denovo’ IDs, and the nexus sequence names will be stored in the ‘original_id’
qualifiers. ‘original_desc’ qualifier remain empty in this case, because nexus files don’t have
them.

3.3.4 Reading a Nexus alignment with PAUP commands

Many published datasets are available in nexus format with charset commands that describe
the data partitions. ReproPhylo can read such a matrix, split the partitions into individual
alignments and place them in Project.alignments, and then put each sequence from
each partition in Project.records. This facilitates experimentation with the data
composition. It is even possible to turn such a nexus file directly into a new Project
instance with all the information set up. To do that use the following command:

21

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t
http://biopython.org/wiki/AlignIO#File_Formats

nexus_filename = ‘'data/some_supermatrix.nex’

pj = pj_from_nexus_w_charset(nexus_filename,

'data’,

path to write intermediate fasta file
'dna',

Character type ('dna' or 'prot')
'CDS',

Feature type (Any)

project = True,

Will return a Project instance

instead of a list

of fasta files per partition

if project will save it to this file:
pickle = 'new_pickle name',

git = True)

Will start and manage repository

To finish the section we’ll update the Project’s pickle file:
pickle pj(pj, 'outputs/my project.pkp3j')

'outputs/my project.pkpj'

3.3.5 Quick reference

Read GenBank or embl files
input_filnames = ['filel', 'file2']
pj.read_embl genbank(input_filnames)

Read other formats

denovo_sequence_filenames = ['filel.fasta', 'file2.fasta']
pj.read_denovo(denovo_sequence_filenames, 'dna', format='fasta')
#0r

pj.read_denovo(denovo_sequence_filenames, ‘'prot', format='fasta')

Add asequence feature to a record
pj.add_feature_to_record('someRecordID', 'CDS',
qualifiers={"'gene': 'coxl'})

Or
qualifiers={"'gene': 'coxl1l"',

"transl_table': 4,

'codon_start': 1,

‘organism': 'Craniella microsigma'}

pj.add_feature_to_record(someRecordID, 'CDS',
location=[[1,786,1],[1742,2092,1]],

22

qualifiers=qualifiers)
Read a sequence alignment
pj.read_alignment('Another_locus.nex', ‘'dna', 'CDS', 'ND5',

format="nexus")

Read a Nexus alignment with a super-matrix and charset commands

nexus_filename = ‘'data/some_supermatrix.nex’
pj = pj_from_nexus_w_charset(nexus_filename,
'data’,
‘dna’,
'CDS',
project = True,
pickle = 'new _pickle name"',
git = True)

wocms weoioise<—NAMBlisoss v A eteovier T 20-7v2-2009

la kuekenthali mi complate genome

el I 3.4. Metadata handling

DBLINK Project: 28271 BioProject: FRINAZ8221

E

KEYWORDS RefSeq.

m:h ,.. o .hc.:.-.,.) 2 Section quick reference

e (@)

REFERENGE 1 (bases 1 te 18089) —

:-]:::u Lavrov,D.V., Wang,X. and KellyM. . § S) .)))

" © This section reviews the various methods for reading and
- E modifying metadata within a ReproPhylo Project. Utilizing it
e <C will be discussed in later sections.

o 3.4.1 What is metadata in ReproPhylo?
’—_/Ix Jorgantsn="Cinachyrella kusxenthali® o g 8
o °2 |3 i -
= e T 2s 7 " Within a ReproPhylo Project, metadata is tied to sequences
e S o @ and sequence features, in the Biopython sense. Since
. =) u i rojec i i
sequence records in the P t are in fact Biopython
goa egRecor i , ui view i ,
Y 8 SeqgR d objects, a quick review of the GenBank file format
o s <= Quelifier] LL based on which the SeqRecord class is structured, will hel
y g
S understand basic concepts.
O] When a data fllg is r.ead, each sequence will be gtored asa
(o o S SeqRecord object in the Project.records list of
A SeqgRecord objects. A SeqRecord object has an annotations
e attribute (SeqRecord.annotations) which is a Python

dictionary containing information regarding the sequence as a
whole. Additional SeqRecord attribute is the features Python
list (SegqRecord. features). Features in the list are stored

as SegFeature Biopython objects, and they define the start

HTYNELPFVYKGSS™

e ey and end of each locus in the sequence
m«:m:-h:»;:m“ :i:" (SegFeature.location attribute. The SeqFeature also
'j;:;:jj:;:'%“::";jj':;;::‘;fﬁj‘;jj;;‘" & has the SeqFeature.qualifiers dictionary, which holds
T e any additional metadata about this sequence feature. For
o example, the gene name and product name. This information is
- =_sea_|] used by ReproPhylo to sort loci into their respective bins, (eg,

121 gtacta ...

re coi, 18S etc.). Note that the values in the

23

SegFeature.qualifiers dictionary are always stored as Python lists, even if they
consist of a single value. For example, a SeqFeature.qualifiers dictionary might look
like this:

{'gene': ['coxl'],

'translation': ['AATRNLLK']}

Another important SeqrRecord attribute is type (SegqRecord. type), which is a string stating
the feature type, whether itis "gene', 'CDS', 'rRNA"' or anything else.

A special SsegFeature is the source feature (SegqFeature.type == 'source'). ltisthe
first feature in each seqrRecord. features list, and is generated automatically by
ReproPhylo if you read a file that does not have such features (eg, fasta format). The
qualifiers dictionary of this automatically generated source feature will then contain the
original idandoriginal desc (description) from the fasta headers. Technically, there
is absolutely no difference between the source feature and all the other features. However,
conceptually, metadata stored in the source feature applies to all the other features.
ReproPhylo knows this and provides tools to access it accordingly (further down).

For a more detailed description of metadata in the SeqrRecord Biopython object, refer to this
section in the Biopython tutorial. Although ReproPhylo provides some Project methods for
modifying the metadata, and also a method to edit the metadata in a spreadsheet, the most
flexible way to do it is by utilizing Biopython code, and mastering it is helpful within
ReproPhylo and in life in general!

3.4.2 Modifying the metadata
A Biopython example

With Biopython we can iterate over the records and their features in the pj . records list
and make changes or additions to the qualifiers of each feature as follows. To get a working
example going, first we load our Project with its loci and data:

from reprophylo import *
pj = unpickle_pj('outputs/my_project.pkpj', git=False)

The first record looks like this:

print pj.records[@].format('genbank")

LOCUS KC902343 1728 bp DNA INV 05-SEP-2013

DEFINITION Cinachyrella cf. paterifera OM9H2022-P small subunit 18S ribosomal
RNA gene, partial sequence.

ACCESSION KC902343

VERSION KC902343.1 GI:511637204
KEYWORDS .
SOURCE Cinachyrella cf. paterifera OM9H2022-P

ORGANISM Cinachyrella cf. paterifera OM9H2022-P
Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha;
Spirophorida; Tetillidae; Cinachyrella.

REFERENCE 1 (bases 1 to 1728)

AUTHORS Redmond,N.E., Morrow,C.C., Thacker,R.W., Diaz,M.C.,
Boury-Esnault,N., Cardenas,P., Hajdu,E., Lobo-Hajdu,G., Picton,B.E.,
Pomponi,S.A., Kayal,E. and Collins,A.G.

TITLE Phylogeny and Systematics of Demospongiae in Light of New

24

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc31
http://biopython.org/DIST/docs/tutorial/Tutorial.html

JOURNAL
PUBMED
REFERENCE
AUTHORS
TITLE
JOURNAL

FEATURES

Small-Subunit Ribosomal DNA

Integr.
23793549

2 (bases 1 to 1728)
Redmond, N.

Direct S

Submitted (16-APR-2013)

Comp. Biol.

ubmission

53 (3),

and Collins,A.G.

(189)
388-415

(2013)

10th and Constitution NW, Washington, DC,
Location/Qualifiers

source

rRNA

ORIGIN

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961

1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
//

The next cell will get the organism name for each record, which is a qualifier in the source
feature. It will then get the genus out of this name, and place it in a new qualifier, in all the

gtctcaaaga
tggctcatta
aattctagag
ccaaaaccag
gctcgaatcg
ttcgatggta
ttccggagag
ttacccaatc
ctggcaattg
tggtgccagce
aaaagctcgt
cgggcgccct
gacgtttact
tggaataatg
taagagggac
ggaagacgaa
ttgggggttc
ggatcggcgg
ggttccgggg
ccaggagtgg
atggtaagga
gttcttagtt
gctaactagt
aagccggcgg
acgcgcgcta
tgtgaaactc
cctagtaagc
ccgtcgctac
gcgaccgccg

record's features:

1..1728

/note="PorToL ID: NCI376"
/mol type="genomic DNA"
/country="Australia"
/feature id="KC902343.1 source"
/db_xref="taxon:1342549"
/specimen voucher="0M9H2022-P"
/organism="Cinachyrella cf. paterifera OM9H2022-P"

<1..>1728

/feature id="KC902343.1 fO"
/product="small subunit 18S ribosomal RNA"
/nuc_degen prop="0.0"
/GC_content="52.0833333333"

ctaagccatg
aatcagttat
ctaatacatg
cgcgggtgte
cacggccctg
cggtagtggce
ggagcctgag
ccgactcggg
gaatgagtcc
agccgcggta
agttggattt
tcctctcgaa
ttgaaaaaat
gaagaggacc
agttgggggce
caagtgcgaa
gaagacgatc
atgttagcgt
ggagtatggt
agcctgcgge
ttgacagatc
ggtggagtga
cacgccgttce
aagtctgagg
cactgacgga
cgtcgtgctg
gcgagtcagc
taccgattga
cggcggattt

for record in pj.records:

catgtccaag
agtttatttg
cacagagtcc
ccctegtggg
gcgccggcga
ctaccatggt
aaacggctac
gaggtagtga
aatctaaacc
attccagctc
cggggcggcec
ggcttcgact
tagagtgttc
tcggtcctat
attcgtattc
agcatttgcc
agataccgtc
ctgactccgt
cgcaaggctg
ttaatttgac
gagagctctt
tttgtctggt
ccgaacggcg
caataacagg
ggcagcgagce
gggatagatc
agctcgecgtt
atggtttagt
cgagaagtcg

get the source qualifiers

source_feature =

tatgaacgct
atggttgctt
cgacttccgg
tgcccggtcecce
tggtccattc
tgcaacgggt
cacatccaag
caataaataa
ccttaacgag
caatagcgta
cggccggtcecce
gctcttgatt
aaggcaggcc
tttgttggtt
aattgtcaga
aaggatgttt
gtagtcccaa
cggcaccttg
aaacttaaag
tcaacacggg
tcttgattct
taattccgtt
ggcgacttct
tctgtgatgce
atgtccttcg
attgcaattc
gattacgtcc
gagatcttcg
atcaaacttg

record.features[0]

Sequences

USA

tcgtactgtg
gctacatgga
gagggacgta
ctgggcgatt
aaatttctgce
gacggagaat
gaaggcagca
caatgccggg
gaacaattgg
tattaaagtt
gccgcgaggce
gcggtggteg
gtcgcctgaa
tccagggccg
ggtgaaattc
tcattaatca
ccataaacta
cgagaaatca
gaattgacgg
gaaactcacc
atgggtggtg
aacgaacgag
tagagggaca
ccttagatgt
ccgagaggtg
tcgatcttga
ctgccctttg
gattggagcc
atcattta

National Systematics Lab and Smithsonian,

aaactgcgaa
taaccgtggt
tttattagat
catgataact
cctatcaact
tagggttcga
ggcgcgcaaa
ctctcgcagt
agggcaagtc
gttgcagtta
gagcactggt
aggagttcgg
tacattagca
aagtaatgat
tcggatttat
agaacgaaag
tgccgactag
agagtctttg
aagggcacca
aggtccggac
gtgcatggcc
accttaacct
accggccccg
tctgggccge
cggggaatct
acgaggaatt
tacacaccgc

gccgtgacgg

25

source_qualifiers =

get the species name
species =

None

if 'organism' in source_qualifiers:

species

qualifier values are lists

source_feature.qualifiers

source_qualifiers| 'organism']|[0]

place the genus as a qualifier in all the features
if species:

genus =

species.split()[0]

for ¥ in record.features:

f.qualifiers|'genus'] = [genus]

The genus qualifier was added to all the features.

print pj.records[@].format('genbank")

LOCUS KC902343 1728 bp DNA INV 05-SEP-2013

DEFINITION Cinachyrella cf. paterifera OM9H2022-P small subunit 18S ribosomal
RNA gene, partial sequence.

ACCESSION KC902343

VERSION KC902343.1 GI:511637204

KEYWORDS .

SOURCE Cinachyrella cf. paterifera OM9H2022-P

ORGANISM Cinachyrella cf. paterifera OM9H2022-P
Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha;
Spirophorida; Tetillidae; Cinachyrella.

REFERENCE 1 (bases 1 to 1728)

AUTHORS Redmond,N.E., Morrow,C.C., Thacker,R.W., Diaz,M.C.,
Boury-Esnault,N., Cardenas,P., Hajdu,E., Lobo-Hajdu,G., Picton,B.E.,
Pomponi,S.A., Kayal,E. and Collins,A.G.

TITLE Phylogeny and Systematics of Demospongiae in Light of New
Small-Subunit Ribosomal DNA (18S) Sequences

JOURNAL Integr. Comp. Biol. 53 (3), 388-415 (2013)

PUBMED 23793549
REFERENCE 2 (bases 1 to 1728)

AUTHORS Redmond,N. and Collins,A.G.

TITLE Direct Submission

JOURNAL Submitted (16-APR-2013) National Systematics Lab and Smithsonian,
10th and Constitution NW, Washington, DC, USA

FEATURES Location/Qualifiers
source 1..1728
/note="PorToL ID: NCI376"
/mol type="genomic DNA"
/country="Australia"
/feature id="KC902343.1 source"
/db xref="taxon:1342549"
/specimen voucher="0M9H2022-P"
/genus="Cinachyrella"
/organism="Cinachyrella cf. paterifera OM9H2022-P"
rRNA <1..>1728
/feature id="KC902343.1 fO"
/product="small subunit 18S ribosomal RNA"
/genus="Cinachyrella"
/nuc_degen prop="0.0"
/GC_content="52.0833333333"
ORIGIN

1 gtctcaaaga ctaagccatg catgtccaag tatgaacgct tcgtactgtg aaactgcgaa

26

61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961

1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
//

Important:

tggctcatta
aattctagag
ccaaaaccag
gctcgaatcg
ttcgatggta
ttccggagag
ttacccaatc
ctggcaattg
tggtgccagce
aaaagctcgt
cgggcgceccct
gacgtttact
tggaataatg
taagagggac
ggaagacgaa
ttgggggttc
ggatcggcgg
ggttccgggg
ccaggagtgg
atggtaagga
gttcttagtt
gctaactagt
aagccggcgg
acgcgcgcta
tgtgaaactc
cctagtaagc
ccgtcgcectac
gcgaccgccg

aatcagttat
ctaatacatg
cgcgggtgte
cacggccctg
cggtagtggce
ggagcctgag
ccgactcggg
gaatgagtcc
agccgcggta
agttggattt
tcctctcgaa
ttgaaaaaat
gaagaggacc
agttgggggce
caagtgcgaa
gaagacgatc
atgttagcgt
ggagtatggt
agcctgcggce
ttgacagatc
ggtggagtga
cacgccgttce
aagtctgagg
cactgacgga
cgtcgtgctg
gcgagtcagc
taccgattga
cggcggattt

agtttatttg
cacagagtcc
ccctegtggg
gcgccggcga
ctaccatggt
aaacggctac
gaggtagtga
aatctaaacc
attccagctc
cggggcggcec
ggcttcgact
tagagtgttc
tcggtcctat
attcgtattc
agcatttgcc
agataccgtc
ctgactccgt
cgcaaggctg
ttaatttgac
gagagctctt
tttgtctggt
ccgaacggcg
caataacagg
ggcagcgagce
gggatagatc
agctcgecgtt
atggtttagt
cgagaagtcg

atggttgctt
cgacttccgg
tgcccggtce
tggtccattc
tgcaacgggt
cacatccaag
caataaataa
ccttaacgag
caatagcgta
cggccggtcecce
gctcttgatt
aaggcaggcc
tttgttggtt
aattgtcaga
aaggatgttt
gtagtcccaa
cggcaccttg
aaacttaaag
tcaacacggg
tcttgattct
taattccgtt
ggcgacttct
tctgtgatgce
atgtccttcg
attgcaattc
gattacgtcc
gagatcttcg
atcaaacttg

gctacatgga
gagggacgta
ctgggcgatt
aaatttctgce
gacggagaat
gaaggcagca
caatgccggg
gaacaattgg
tattaaagtt
gccgcgaggce
gcggtggteg
gtcgcctgaa
tccagggccg
ggtgaaattc
tcattaatca
ccataaacta
cgagaaatca
gaattgacgg
gaaactcacc
atgggtggtg
aacgaacgag
tagagggaca
ccttagatgt
ccgagaggtg
tcgatcttga
ctgccctttg
gattggagcc
atcattta

taaccgtggt
tttattagat
catgataact
cctatcaact
tagggttcga
ggcgcgcaaa
ctctcgcagt
agggcaagtc
gttgcagtta
gagcactggt
aggagttcgg
tacattagca
aagtaatgat
tcggatttat
agaacgaaag
tgccgactag
agagtctttg
aagggcacca
aggtccggac
gtgcatggcc
accttaacct
accggccccg
tctgggccge
cggggaatct
acgaggaatt
tacacaccgc
gccgtgacgg

In addition to the record ID, ReproPhylo assigns a unique feature ID for each feature within
the record. In a record with a record ID KC902343, the ID of the first feature will be
KC902343 source, for the second and third features the IDs will be KC902343 £0 and
KC902343 f1 and so on. For a record with a record ID denovo2, the features will get the
feature IDs denovo2 source, denovo2 £0, denovo2 f1 and so on. This is important
because it allows to access specific features directly (say, the cox1 features), using their
feature ID.

Some ReproPhylo shortcuts

ReproPhylo adds some basic shortcuts for convenience. Here are some examples:

pj.if _this_then_that('Cinachyrella', 'genus', ‘'yes',
"porocalices’', mode='part')

This method iterates over all the records in the Project and makes some changes where
the rules provided to it apply. If the value 'Cinachyrella’ is found in the qualifier 'genus' it
will put the value 'yes' in the qualifier 'porocalices', which is a morphological trait of the
sponge genus Cinachyrella. mode="part' means that the match can be partial. The default is
mode="'whole’".

features_to_modify = ['KC902343.1 f0', 'IX177933.1 f0']
pj.add_qualifier(features_to _modify, ‘'spam?', 'why not')

This method will add a qualifier spam? with the value why not to specific features that have
the feature IDs KC902343.1_f0 and JX177933.1_f0. Within each record, ReproPhylo

assigns unique ID for each feature.

pj.add_qualifier_from_source('country")

We may want to place the source qualifier ‘country' explicitly in each of the other features in
the record. The add_qualifier_from_source method will take effect in all the records that
have a country qualifier in their source feature. It will copy it to all the other features, along
with its value in that record.

pj.copy_paste_from_features_to_source('eggs?', 'spam?')

Or vice-versa, we can make sure that a qualifier that is in only one of the features, is copied
as a value of a source feature qualifier and thus apply it to the whole record (and all its
features). In this case, the function copy_paste_from_features_to_source will take effect in
records where at least one non-source record feature has the qualifier eggs?, and it will copy
the value of eggs? to the source qualifier spam?.

pj.copy_paste within_feature('GC_content', '%GC")

Lastly, we may want to equate qualifiers that have different names in different records, but
are essentially the same thing. For example, 'sample' and 'voucher'. This can be done by
applying the qualifier name of one of them to the other, using the method
copy_paste_within_feature. In every record feature that has the qualifier GC_content, a
new qualifier will be created, %GC, and it will contain the value of GC_content.

This is the FEATURES section of the above record, with the resulting changes to it. The
method which is responsible for each qualifier is indicated next to it (the method names are

not a part of the real output):
FEATURES Location/Qualifiers
source 1..1728
/feature id="KC902343.1 source"
/mol type="genomic DNA"
/country="Australia"
/eggs?="why not" #### copy paste from features to source
/note="PorToL ID: NCI376"
/db_xref="taxon:1342549"
/specimen voucher="0M9H2022-P"
/genus="Cinachyrella" #### Biopython script from section
3.4.2.1
/organism="Cinachyrella cf. paterifera OM9H2022-P"
rRNA <1..>1728
/porocalices="yes" ####if this then that
/product="small subunit 18S ribosomal RNA"
/country="Australia" #### add qualifier from source
/nuc_degen prop="0.0"
/feature id="KC902343.1 fO"
/spam?="why not" #### add qualifier
/%GC="52.0833333333" #### copy paste within feature
/GC_content="52.0833333333"
/genus="Cinachyrella" #### Biopython script from section
3.4.2.1

Using a spreadsheet

ReproPhylo provides an alternative route for metadata editing that goes through a
spreadsheet. This way, the spreadsheet can be routinely edited and the changes read into

28

the Project and propagated to its existing components (eg, trees). The best way to edit this
spreadsheet probably goes through pandas, if you are familiar with it. Otherwise, it is
possible to edit and save in excel, libreoffice and similar programmes, although beware of
errors.

In this section | will give an example using a spreadsheet programme. This example will add
the qualifier 'monty' and the value 'python' to each source feature, and the qualifier 'holy' with
the value 'grail' to each non-source feature.

The first step is to write a csv file (the separators are actually tabs and not commas)

pj.write('outputs/metadata_example.tsv', format='csv')

In the resulting file, each feature has its own line, and each record has as many lines as
non-source features it contains. Source feature qualifiers are included in all the lines, as they
apply to all the features in the record. They are indicated in the titles with the prefix source:_.
To add a qualifier to the source feature, we will need to use this prefix in its title.

| have opened this file in a spreadsheet programme and added the qualifiers as follows:

feature_id source:_monty holy spam? % GC G
JKC902343.1 f0 |python grail why not | 52.0833333333 !
YKC902290.1 f0 |python grail null 51.9740718916 !
JKC902265.1_f0 |python grail null 50.7246376312 !
JKC202264.1_f0 |python grail null 51.8818760857
[KC902195.1_f0 |python grail null 51.566469094
JKC902189.1_f0 |python grail null 51.9397799653
JKC902108.1_f0 |python grail null 52.0894643908 !
JKC902033.1_f0 |python grail null 52.0396270396 !
JKC901899.1 f0 |python grail null 51.9397799653 !
LJIX177987.1 f0 |python grail null 49.9097472924 .
HJX177986.1 f0 |python grail null 52.1767310026 !
JJX177985.1 f0 |python grail null 50.487804878
JIX177984.1 f0 |python grail null 51.8806744438 |
JIX177983.1 f0 |python grail null 50.9895227008
JIX177982.1 f0 |python grail null 51.7354289456 !
JIX177981.1 f0 |python grail null 51.9736842105 !
JIX177980.1 f0 |python grail null 51.6547696301 !
JIX177979.1 f0 |python grail null 51.6547696301 !
JIX177978.1 f0 |python grail null 51.6547696301 |
JIX177976.1_f0 |python grail null 51.5249837768 |
JIX177975.1 f0 |python grail null 51.5249837768
JIX177974.1 f0 |python grail null 49.7424576895 .
JIX177973.1 f0 |python grail null 52.1739130435 !
JIX177972.1 f0 |python grail null 51.9050593379 !
JIX177971.1 f0 |python grail null 52.123327516
JIX177970.1 f0 |python grail null 51.9556333917 !
JIX177969.1 f0 |python grail null 51.9230769231 !
JJIX177968.1 f0 |python grail null 52.4441762221 |
JIX177967.1 f0 |python grail null 52.0979020979 !
JIX177966.1_f0 |python grail null 52.5766871166

The edited spreadsheet was saved as outputs/edited metadata example.tsv, and
it can now be read back to the Project

http://pandas.pydata.org/
https://nsaunders.wordpress.com/2012/10/22/gene-name-errors-and-excel-lessons-not-learned/

pj.correct_metadata_from_file('outputs/edited_metadata_example.tsv')

Propagate the changes so they are also updated in tree leaves.
pj.propagate_metadata()

If we print the first record again, this is how its FEATURES section looks now:

FEATURES Location/Qualifiers
source 1..1728

/note="PorToL ID: NCI376"
/mol type="genomic DNA"
/country="Australia"
/organism="Cinachyrella cf. paterifera

OMSH2022-P"
/feature id="KC902343.1 source"
/db_xref="taxon:1342549"
/specimen voucher="0M9H2022-P"
/genus="Cinachyrella"
/eggs?="why not"
/monty="python" #### New source qualifier

rRNA <l..>1728

/porocalices="yes"
/product="small subunit 18S ribosomal RNA"
/holy="grail" ###4 New non-source qualifier
/country="Australia"
/nuc_degen prop="0"
/feature id="KC902343.1 f0O"
/%GC="52.0833333333"
/spam?="why not"
/record i1d="KC902343.1"
/GC_content="52.0833333333"
/genus="Cinachyrella"

To finish this section, we’ll update the pickle file:

pickle _pj(pj, 'outputs/my project.pkpj')

'outputs/my project.pkpj'

3.4.3 Quick reference

A Biopython example
for record in pj.records:

get the source qualifiers
source_feature = record.features[0]
source_qualifiers = source_feature.qualifiers

30

get the species name
species = None
if 'organism' in source_qualifiers:
qualifier values are lists
species = source_qualifiers| 'organism'][0]

place the genus as a qualifier in all the features
if species:
genus = species.split()[0]
for f in record.features:
f.qualifiers['genus'] = [genus]

Add qualifier based on condition
pj.if_this_then_that('Cinachyrella', 'genus', 'yes', 'porocalices",
mode="part"')

Modify qualifier of specific features
features_to_modify = ['KC902343.1 f0', 'JX177933.1 f0']
pj.add_qualifier(features_to_modify, ‘'spam?', ‘'why not')

Copy qualifier from source to features
pj.add_qualifier_from_source('country")

or vice-versa
pj.copy_paste from_ features_to source('spam?', ‘'eggs?')

Duplicate a qualifier with a new name
pj.copy_paste_within_feature('GC_content', '%GC")

Write metadata spreadsheet
pj.write('outputs/metadata_example.tsv', format='csv')

Read a corrected metadata spreadsheet
pj.correct_metadata_from_file('outputs/edited metadata_example.tsv')

Propagate the changes
pj.propagate_metadata()

3.5. Pre alignment filtering

Section quick reference, Full reference

Thi o in nbvi

This section is a walk through the pre-alignment sequence filtering in ReproPhylo. We will
start by several preliminaries discussed in the previous sections:

31

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.5%20Pre%20alignment%20filtering.ipynb

from reprophylo import *

pj = unpickle pj('outputs/my project.pkpj', git=False)

3.5.1 Filtering by sequence length or GC content

At this point we have record features belonging to the loci in our Project. We have to split
them by locus:
pj.extract_by locus()

With this done, we can display length and %GC distribution for each locus:

%matplotlib inline
pj.report_seq stats()

Distribution Of Sequence Lengths
Distribution Of Sequence Statistic "Gc Content"

2200 —r— 70—
2000 | 1 e l
1800 |
B0 |
1600 |
o — 551
o R
~ o0} —
< 2 |
o [
5 £
L ool o
o Q
wn 8 O 55
1000 | |
aoo-'L t ar 1
500 | ‘ ' B L
N o ol
w e o woum o
HNU mI:GO
5 TR

Now we'll exclude all the outliers:

Define minima and maxima
gc_inliers = {
'18s': [50,54],
'28s': [57,67],
'MT-CO1': [35,43]
¥
len_inliers = {
'18s': [1200,1800],
'28s': [500,900],
'"MT-CO1': [500,1500]
¥

Apply to loci data

for locus in gc_inliers:
trim GC outliers
pj.filter_by_gc_content(locus,

min_percent_gc=gc_inliers[locus][@],
max_percent_gc=gc_inliers[locus][1])

trim length outlier
pj.filter_by seq_length(locus,

min_length=1en_inliers|[locus][@],
max_length=1en_inliers[locus][1])

We can now confirm that the filter worked:
pj.report_seq_stats()

Distribution Of Sequence Lengths
Distribution Of Sequence Statistic "Gc Content"

1800

33

— 0
I' 3.5.2 Excluding and including
e & It is possible to exclude and include sequences by record id.
Excluding
1400 . B0 L
By default, excluding is done by starting with a full bin (all the
a = sequences are included). In this case, since we have already
£ »oo S sl filtered some sequences out, we need to start excluding from the
% *5 current state and not from a full bin. Starting from a full bin by
c = using the default setting start from max=True would undo
o 1000} 8 sof the filtering by GC content and sequence length we have done
x 6] above. As an example we will exclude JX177918.1 from the
MT-CO1 Locus bin.
800 - l 1 45 |
exclude = {'MT-CO1': ['JIX177918.1"']}
600 |- 1 an b

pj.exclude(start_from_max=False, **exclude)

The following line confirms that this record id is no longer in the MT-CO1 Locus bin.

any(['JX177918.1"' in feature.id for feature in
pj.records_by locus['MT-CO1']])

False

Including

By default, including starts from empty bins, however here we want to keep the current state
and only add one sequence:

include = {'MT-CO1': ['JX177918.1']}
pj.include(start_from_null=False, **include)

The following line confirms that this record was added back to the MT-CO1 Locus bin.

any(['JX177918.1"' in feature.id for feature in
pj.records_by locus['MT-CO1']])

True

To finish this section:

Update the pickle file
pickle_pj(pj, 'outputs/my project.pkpj"')

'outputs/my project.pkpj'

3.5.3 Quick reference

Split records to loci bins
pj.extract_by locus()

Show length and %GC distributions
%matplotlib inline
pj.report_seq_stats()

Filter by GC content

pj.filter_by locus('LocusName",
min_percent_gc = 30,
max_percent_gc = 50)

Filter by sequence length

pj.filter_by seq_length('LocusName"',
min_length = 200,
max_length = 1000)

Include or exclude records in the loci bins

records = {'LocusNamel': ['recordidl', 'recordid2'],
"LocusName2': ['recordid3', 'recordid4’']}

pj.exclude(start_from_max=True, **records)

or
pj.include(start_from_null=True, **records)

3.6 Producing and accessing sequence alignment

Section quick reference

from reprophylo import *
pj = unpickle pj('./outputs/my project.pkpj’,
git=False)

The execution of sequence alignments and accessing them is wrapped with a rich set of
functions and methods that make it very convenient to handle many of them. Therefore, it
make sense to use ReproPhylo for sequence alignment, even if you do not need a tree as a
final output. Although ReproPhylo rejects alignments with less than four sequences because
they cannot serve for phylogenetic reconstruction.

3.6.1 Configuring a sequence alignment process

Sequence alignment processes are configured with the A1nConf class. An object of this
class will generate a command-line and the required input files, but will not execute the
process (this is shown below). Once the process has been successfully executed, this
AlnConf objectis stored in pj.used methods and it can be invoked as a report.

The A1nConf instance allows control over:

The program used (Mafft or Muscle)

Whether or not to conduct a codon alignment for CDS loci

The genetic code to use for codon alignment

The command that invokes the programme (if you want to use a programme that is
not in your path)

The loci names of the loci to align using this specific approach

Custom command line arguments in order to deviate from the programme's default
settings

N

2

Example 1: codon alignment of CDS loci with the MAFFT L-ins-i algorithm

The next bit of code will construct an A1nConf instance that will align only the MT-CO1 CDS

35

locus, by grabbing the protein sequences from pj . records, aligning them using the
MAFFT L-ins-i algorithm, and then proceeding with a codon alignment of the CDS sequence
with pal2nal, using the protein alignment as reference.

mafft_linsi = AlnConf(pj, # The Project

++

method name='mafftLinsi’, Any unique method name,

'mafftDefault’' by default

+*

CDSAlign=True, Use this method to align
protein sequences, and then
pal2nal to align the CDSs
This is the default setting

and it is ignored with non-CDS

H H HF HHFH

loci.
codontable=4, The genetic code that
applies to this data,
codontable=1 by default

program_name="mafft’, mafft or muscle.

'mafft' by default

H H H H H

cmd="mafft"',

++

The command on your machine

++

that invokes the program.
'mafft' by default

+

loci=['MT-CO1'], A list of loci names to align.
loci="all"' by default, which will
align all the loci in the project.
If loci=='all', and CDSAlign==True
CDS loci will be aligned as proteins
(and then at the DNA level with pal2nal)
but other DNA loci (e.g. rRNA) will be

aligned directly at the DNA level.

H oHEF HH

cline_args={'localpair': True,# Program specific keywords and arguments.
'maxiterate': 1000}# cine_args=={} by default, which will
) # execute the program with default settings

mafft --localpair --maxiterate 1000 933261440758989.85 CDS proteins MT-COl.fasta

36

Example 2: Alignment of rRNA loci with Muscle default algorithm

This is a simpler example where DNA loci will be directly aligned using Muscle with default
settings. | am not specifying CDSA1ign=False because this is not a CDS locus so there will
be no attempt to do a codon alignment. the codontable argument is also ignored. | am also
not specifying cmd="'muscle', because when we set program="'muscle"', then the default
value of cmd becomes 'muscle’.

(hint: by the way, if you have a reference alignment which accounts for the secondary
structure on your RNA locus, it can be utilized with the seed argument in Mafft).

muscle_defaults = AlnConf(pj,
method_name="muscleDefault",
program_name="muscle",
loci=['18s",'28s"'])

muscle -in 375991440758992.65 18s.fasta
muscle -in 375991440758992.65 28s.fasta

3.6.2 Executing sequence alignment processes

Once we have one or more A1nConf objects, we can execute them in one go using the
Project method align. This method accepts a list of A1nConf objects and does whatever
it is each of them tells it:

pj.align([mafft_linsi, muscle_defaults])

When the process is done, the A1nConf objects will be stored in pj .used methods,
which is a dictionary using the method names as keys:

pj.used_methods

{'mafftlinsi': <reprophylo.AlnConf instance at 0x7£103clf7128>,
'muscleDefault': <reprophylo.AlnConf instance at
0x7£103ba20050>}

if we print one of these A1nConf objects as a string, we will get complete details about the
process, including programme versions and references:

print pj.used_methods['mafftLinsi']

AlnConf named mafftLinsi with ID 933261440758989.85
Loci: MT-CO1

Created on: Fri Aug 28 11:49:49 2015

Commands:

MT-COl: mafft --localpair --maxiterate 1000
933261440758989.85 CDS proteins MT-COl.fasta

Environment:
Platform:

37

Linux-3.13.0-40-generic-x86_ 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete2 version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

cloud version: 2.8.5

reprophylo version 1.0

User: amir-TECRA-W50-A

Program and version: MAFFT v7.123b\nPal2Nal vl4

Program reference:Katoh

Standley 2013 (Molecular Biology and Evolution 30:772-780)
MAFFT multiple sequence alignment software version 7:
improvements in performance and usability.\nMikita Suyama
David Torrents

and Peer Bork (2006) PAL2NAL: robust conversion of protein
sequence alignments into the corresponding codon
alignments.Nucleic Acids Res. 34

W609-Wel2.

execution time:

2.26954507828

The dataset(s) MT-COl were first aligned at the protein level
using the program MAFFT v7.123b [1].
The resulting alignments served as guides to codon-align the
DNA sequences using Pal2Nal v14 [2].

Reference:

[1]Katoh, Standley 2013 (Molecular Biology and Evolution
30:772-780) MAFFT multiple sequence alignment software version
7: improvements in performance and usability.

[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL:
robust conversion of protein sequence alignments into the
corresponding codon alignments.Nucleic Acids Res. 34,
W609-W6l2.

3.6.3 Accessing sequence alignments
The pj.alignments dictionary

The alignments themselves are stored in the pj . alignments dictionary, using keys that

38

follow this pattern: locus name@method name where method name is the name you
have provided to your A1nConf object.

pj.alignments

{'18s@muscleDefault': <<class 'Bio.Align.MultipleSegAlignment'>
instance (52 records of length 1824, IUPACProtein()) at
7£103bba6790>,

'28s@muscleDefault': <<class 'Bio.Align.MultipleSegAlignment'>
instance (48 records of length 909, IUPACProtein()) at
7£103be32310>,

'MT-COl@mafftLinsi': <<class 'Bio.Align.MultipleSegAlignment'>
instance (73 records of length 1227, TIUPACAmbiguousDNA ()) at
7£103bbc1350>}

Accessing a MultipleSeqgAlignment object

An alignment can be easily accessed and manipulated with any of Biopython's AlignlO tricks
using the Project method fa:

print pj.fa('18s@muscleDefault')[:4,410:420].format('phylip-relaxed")

returning alignment object 18s@muscleDefault
4 10

KC762720.1 £f0 GAGAAACGGC

KC774024.1 f0 GAGAAACGGC

KC762713.1 f0 GAGAAACGGC

KC762708.1 f0 GAGAAACGGC

Writing sequence alignment files

Alignment text files can be dumped in any AlignlO format for usage in an external command
line or GUI program. When writing to files, you can control the header of the sequence by, for
example, adding the organism name of the gene name, or by replacing the feature ID with
the record ID:

record_id and source_organism are feature qualifiers in the

SeqgRecord object

See section 3.4

files = pj.write_alns(id=['record id', 'source _organism'],
format="fasta')

files

['28s@muscleDefault aln.fasta',
'18s@muscleDefault aln.fasta',

'"MT-COl@mafftLinsi aln.fasta']

The files will always be written to the current working directory (where the Jupyter notebook

39

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/wiki/AlignIO#File_Formats

file is), and can immediately be moved programmatically to avoid clutter:

make a new directory for your alignment files:
if not os.path.exists('alignment files'):
os.mkdir('alignment _files")

move the files there
for f in files:
os.rename(f, "./alignment files/%s"%f)

Viewing alignments

ReproPhylo has a Project method to view the alignments in the browser. This one also
allows you to control the content of sequence headers.

pj.show_aln('MT-COl@mafftLinsi',id=['source_organism'])
source_organism is a feature qualifier in the SeqRecord object
See section 3.4

As a result of this command, a new browser tab will open, showing the alignment.

Note1: In some cases, the tab will not open automatically, you will need to look for the html

file in your working directory and open it manually.

Note2: This is slow with large alignment. A better approach with large files would be to write
a text file, as above, and look at the alignment in AliView or any of your preferred alignment
viewers.

Mozilla Firefox e % [O®0 = @ A i ¢ wedzcaugzzar (

Tutorial_files/Basic/ 3.6 Sequencealignm... x 3.5Prealignment fil. % | [ReproPhylo User Ma... x | Bl MAFFTver7-amult... x TSI TNSREAENN N
@ file://fhome/amir/Dropbox/ReproPhylo/Tutorial_files/Basic/MT-CO1@maFftLinsi.html E1 » &||Q ynet S8 ¥ A D 9@ 20~

TYZEMEGERNOS O rDE«HNO@MDO P = SOsTw B Bes @AM S = Jevouches © H 2 O B. % # WKebridge QReproPhylo {j wiki OHome ERP 3+ H ©

amphitethya cf. microsigma AS-2012
Acanthotetilla celebensis
Acanthotetill, alteri...
Cinachyrel

Cinachyrel

Cinachyrel
Cinachyrel
Cinachyrel

Cinachyrel
Paratetilla
Cinachyrel

o)

=
5
1
| |

Of
e
r
5]
)
B

oE
©®

o

40

http://www.ormbunkar.se/aliview/

Pickle the Project to end this section:
pickle_pj(pj, 'outputs/my_project.pkpj')

'outputs/my project.pkpj'

3.6.4 Quick reference

Make a AlnConf object
alnconf = AlnConf(pj, **kwargs)

Execute alignment process
pj.align([alnconf])

Show AlnConf description
print pj.used_methods['method name']

Fetch a MultipleSegAlignment object
aln_obj = pj.fa('locus_name@method name")

Write alignment text files

pj.write_alns(id=['some_feature qualifier'], format='fasta')
the default feature qualifier is 'feature_id'

'fasta' is the default format

View alignment in browser
pj.show_aln('locus_name@method _name',id=['some_feature_qualifier'])

3.7 Alignment trimming

This section also starts with a Project that already contains alignments:

from reprophylo import *

pj = unpickle pj('./outputs/my project.pkpj"',
git=False)

If we call the keys of the pj.alignments dictionary, we can see the names of the alignments it
contains:

pj.alignments.keys()

['28s@muscleDefault', 'MT-COl@mafftLinsi',
'18s@muscleDefault']

3.7.1 Configuring an alignment trimming process

Like the sequence alignment phase, alignment trimming has its own configuration class, the

41

TrimalConf class. An object of this class will generate a command-line and the required
input files for the program TrimAl, but will not execute the process (this is shown below).
Once the process has been successfully executed, this TrimalConf object is also stored
inpj.used methods and it can be invoked as a report.

Example1, the default gappyput algorithm

With TrimalConf, instead of specifying loci names, we provide alignment names, as they
appear in the keys of pj.alignments

gappyout = TrimalConf(pj, # The Project

method_name="gappyout', # Any unique string
('gappyout' is default)

program_name="'trimal', # No alternatives in
this ReproPhylo version

cmd="default', # the default is trimal.
Change it here
or in pj.defaults['trimal’]

alns=['MT-COl@mafftLinsi'],# 'all' by default

trimal_commands={'gappyout': True} # By
default, the gappyout algorithm is used.

)

trimal -in 587711440759152.37 MT-COl€@mafftLinsi.fasta
-gappyout

List comprehension to subset alignments

In this example, it is easy enough to copy and paste alignment names into a list and pass it
to TrimalConf. But this is more difficult if we want to fish out a subset of alignments from
a very large list of alignments. In such cases, Python's list comprehension is very useful.
Below | show two uses of list comprehension, but the more you feel comfortable with this
approach, the better.

Getting locus names of rRNA loci

If you read the code line that follows very carefully, you will see it quite literally says "take
the name of each Locus found in pj.1oci ifits feature type is rRNA, and put it in a list":

rRNA_locus_names = [locus.name for locus in pj.loci if
locus.feature_type == 'rRNA']

print rRNA_locus_names

['18s', '28s']

42

http://trimal.cgenomics.org/introduction

what we get is a list of names of our rRNA loci.

Getting alignment names that have locus names of rRNA loci

The following line says: "take the key of each alignment from the pj.alignments
dictionary if the first word before the '@' symbol is in the list of rRNA locus names, and put
this key in a list":

rRNA_alignment_names = [key for key in pj.alignments.keys() if
key.split('@')[@] in rRNA_locus_names]
print rRNA_alignment_names

['28s@muscleDefault', 'l8s@muscleDefault']

We get a list of keys, of the rRNA loci alignments we produced on the previous section, and
which are stored in the pj .alignments dictionary. We can now pass this list to a new
TrimalConf instance that will only process rRNA locus alignments:

gt50 = TrimalConf(pj,
method_name="gt50",
alns = rRNA_alignment_names,
trimal_commands={'gt': 0.5} # This will keep
positions with up to
50% gaps.
)

trimal -in 915841440759159.29 28s@muscleDefault.fasta -gt 0.5
trimal -in 915841440759159.29 18s@muscleDefault.fasta -gt 0.5

3.7.2 Executing the alignment trimming process

As for the alignment phase, this is done with a Project method, which accepts a list of
TrimalConf objects.

pj.trim([gappyout, gt50])

Once used, these objects are also placed in the pj .used methods dictionary, and they
can be printed out for observation:

print pj.used_methods|['gappyout’]

TrimalConf named gappyout with ID 587711440759152.37
Alignments: MT-COl@mafftlLinsi

Created on: Fri Aug 28 11:52:32 2015

Commands:

MT-COl@mafftlLinsi@gappyout: trimal -in

43

587711440759152.37 MT-COl€GmafftLinsi.fasta —-gappyout

Environment:Platform:
Linux-3.13.0-40-generic-x86 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete?2 version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

cloud version: 2.8.5

reprophylo version 1.0

User: amir-TECRA-W50-A

Program and version: trimAl 1.2rev59

Program reference: Salvador Capella-Gutierrez; Jose M.
Silla-Martinez; Toni Gabaldon. trimAl: a tool for automated
alignment trimming in large-scale phylogenetic analyses.
Bioinformatics 2009 25: 1972-1973.
execution time:

0.478782892227

The alignment (s) MT-COl@mafftlLinsi were trimmed using the
program trimAl 1.2rev59 [1].

Reference:

Salvador Capella-Gutierrez; Jose M. Silla-Martinez; Toni
Gabaldon. trimAl: a tool for automated alignment trimming in
large-scale phylogenetic analyses. Bioinformatics 2009 25:
1972-1973.

3.7.3 Accessing trimmed sequence alignments
The pj.trimmed alignments dictionary

The trimmed alignments themselves are stored in the pj . trimmed alignments
dictionary, using keys that follow this pattern:

locus name@Ralignment method name@trimming method name where
alignment method name is the name you have provided to your A1nConf object and
trimming method name is the one you provided to your TrimalConf object.

pj.trimmed_alignments

{'18s@muscleDefault@gt50': <<class

'Bio.Align.MultipleSegAlignment'> instance (52 records of
length 1685, IUPACAmbiguousDNA()) at 7fe542480510>,
'28s@muscleDefault@gt50': <<class
'Bio.Align.MultipleSegAlignment'> instance (48 records of
length 798, IUPACAmbiguousDNA()) at 7fe542480550>,
'MT-COl@mafftLinsi@gappyout': <<class
'Bio.Align.MultipleSegAlignment'> instance (73 records of
length 1107, IUPACAmbiguousDNA()) at 7feb5424d6dd0>}

Accessing a MultipleSeqgAlignment object

A trimmed alignment can be easily accessed and manipulated with any of Biopython's
AlignlO tricks using the fta Project method:

print
pj.fta('18s@muscleDefault@gt50')[:4,410:420].format(' phylip-relaxed
")

returning trimmed alignment object 18s@muscleDefault@gt50
4 10

KC762720.1 £0 CCAATCCCGA

KC774024.1 £0 CCAATCCCGA

KC762713.1 £0 CCAATCGGGA

KC762708.1 £f0 CCAATCCCGA

Writing trimmed sequence alignment files

Trimmed alignment text files can be dumped in any AlignlO format for usage in an external
command line or GUI program. When writing to files, you can control the header of the
sequence by, for example, adding the organism name of the gene name, or by replacing
the feature ID with the record ID:

record_id and source_organism are feature qualifiers in the

SegRecord object

See section 3.4

files = pj.write_trimmed_alns(id=['record _id', 'source organism'],
format="fasta")

files

['28s@muscleDefault@gt50 trimmed aln.fasta',
'l18s@muscleDefault@gt50 trimmed aln.fasta',
'MT-COl@mafftLinsi@gappyout trimmed aln.fasta']

The files will always be written to the current working directory (where this Jupyter notebook
file is), and can immediately be moved programmatically to avoid clutter:

make a new directory for your trimmed alignment files:

45

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/wiki/AlignIO#File_Formats

if not os.path.exists('trimmed alignment files'):
os.mkdir('trimmed_alignment_files")

move the files there
for f in files:
os.rename(f, "./trimmed_alignment files/%s"%f)

Viewing trimmed alignments

Trimmed alignments can be viewed in the same way as alignments, but using this
command:

pj.show_aln('MT-COl@mafftLinsi@gappyout',id=["'source_organism'])

Pickle the Project

pickle _pj(pj, 'outputs/my project.pkpj")

'outputs/my project.pkpj'

3.7.4 Quick reference

Make a TrimalConf object
trimconf = TrimalConf(pj, **kwargs)

Execute alignment process
pj.trim([trimconf])

Show AlnConf description
print pj.used_methods['method name']

Fetch a MultipleSeqgAlignment object
trim_aln_obj =
pj.fta('locus_name@aln_method_name@trim_method_name')

Write alignment text files

pj.write_trimmed_alns(id=['some_feature_qualifier'],
format="fasta')

the default feature qualifier is 'feature_id'

'fasta' is the default format

View alignment in browser
pj.show_aln('locus_name@aln_method_name@trim_method_name',id=['some
_feature_qualifier'])

3.8 Building a supermatrix

Section quick reference
This section shows how to build a supermatrix by providing minimal requirements for gene

content per taxon (OTU). This approach is more suited for small scale analysis, because it
relies on manual decisions, whereas large scale suprematrices are better constructed with
the parameter space and data explorations tools of ReproPhylo. However, these are not
addressed in this section. First, lets load our Project with the trimmed alignments:

from reprophylo import *
pj = unpickle pj('outputs/my _project.pkpj', git=False)

3.8.1 Sorting out the metadata

The main decision to make when building a supermatrix is what metadata will be used to
indicate that sequences of several genes belong to the same OTU in the tree. Obvious
candidates would be the species name (stored as 'source organism'if we read a
GenBank file), or sample ID, voucher specimen and so on. Often, we would be required to
modify the metadata in our Project, in a way that will correctly reflect the relationship
between sequences that emerged from the same sample.

In the case of the Tetillidae.gb example file, sample IDs are stored either under
'source specimen voucher' or 'source isolate'. In addition, identical voucher
numbers are sometimes formatted differently for different genes.

In the file 'data/Tetillida otus corrected.csv', | have unified the columns
'source specimen voucher' and 'source isolate' in a single column called
'source otu' and also made sure to uniformly format all the voucher specimens:

| H | I
source:_specimen_voucher source:_otu
QMG_320216 QMG_320216
QMG_320216 QMG_320216
QMG_320270 QMG_320270
QMG_320270 QMG_320270
QMG_320636 QMG_320636
QMG_320656 QMG_320656
QMG_320656 QMG_320656
QMG_321405 QMG_321405
QMG314224 QMG_314224
QMG315031 QMG_315031
QMG316342 QMG_316342
QMG316372 QMG_316372
QMG316372 QMG_316372
QMG318785 QMG_318785
QMG320143 QMG_320143
QMG320270 QMG_320270

47

Our Project has to be updated with the recent changes to the spreadsheet:

pj.correct_metadata_from_file('data/Tetillida otus_corrected.csv')
Such fixes can also be done programmatically (see section 3.4)
3.8.2 Designing the supermatrix

Supermatrices are configured with objects of the class Concatenation.Ina
Concatenation object we can indicate the following:

The name of the concatenation

The loci it includes (here we pass Locus objects rather than just Locus names)
The qualifier or metadata that stores the relationships among the records

What loci all the OTUs must have

Groups of loci from which each OTU must have at least one

Which trimmed alignment to use, if we have more than one for each locus in our
Project

ok wh =

Here is an example:
concat = Concatenation('large_concat', # Any unique string

pj.loci, # This is a list of Locus objects

'source_otu', # The values of this qualifier
flag sequences the belong to the same
sample

otu_must_have_all of=['MT-CO1'], # All the
OTUS must have a coxl sequence

otu must_have one of=[['18s"','28s"']], # All
the OTUs must have either 18s or 28s or both

define_trimmed_alns=[] # We only have one
alignment per gene
so the list is empty (default value)

)

If we print this Concatenation object we get this message:
print concat

Concatenation named large concat, with loci 18s,28s,MT-CO1,
of which MT-COl must exist for all species

and at least one of each group of [18s 28s] 1is represented.
Alignments with the following names: are prefered

3.8.3 Building the supermatrix

Building the suprematrix has two steps. First we need to mount the Concatenation object

onto the Project where it will be stored in the list pj . concatenations. Second, we

need to construct the MultipleSeqgAlignment object, which will be stored in the

pj.trimmed alignments dictionary, underthe key 'large concat' in this case:

pj.add_concatenation(concat)
pj.make_concatenation_alignments()

Concatenation large concat will have the following data

OTU
NIWA 28507
ZMBN_ 85230
NIWA 28910

VM 14754
ZMBN_ 85239
ZMBN 81789
QMG 315031
NIWA 28617
RMNH POR_ 3206
UFBA 2021 POR
NIWA 28586
QMG 320270
QMG 318785
NIWA 25206
QMG 320216
MHNM 16194
ZMA POR 16637
SAM 51189

TAU 25529

LB 1756

MNRJ 576
NIWA 28877
NIWA 28524
QMG 316342
TAU 25568
NIWA 28929
DH_S271

ZMBN_ 85240
QMG 321405
NIWA 36097
UFBA 2586 POR
NIWA 52077
QMG 316372
QMG 320636
NIWA 28496
QMG 314224
QMG 320143
DH_S124

SP_DH S192

SP DH S193
NIWA 28957
RMNH POR 2877

Save the results of this section

18s
Jx177975.1 _£0

Jx177982.1 f0
Jx177986.1_f0
Jx177987.1 f0

JX177974.1 £0
JX177980.1 £0

Jx177978.1 f0
Jx177963.1_f0
Jx177985.1_f0
Jx177981.1 f0
Jx177966.1_f0
HM629803.1 f0

JX177970.1 £0

Jx177977.1_£0
Jx177976.1 f0
Jx177983.1_f0
Jx177969.1 f0

JX177965.1 £0

HE591469.1 f£O0
JX177971.1 £0

JX177973.1 £0

JX177961.1 £0

28s

JX177943.
HM592765.

JX177960
JX177959
HM592753
JX177942

JX177925
JX177921
JX177953
JX177931

JX177941
HM592820
JX177929
JX177939
JX177933
JX177957
JX177950
JX177945
JX177955
JX177940
JX177951
JX177935
HM592754
JX177930
JX177944
JX177958
JX177948

JX177946
JX177924
JX177922
JX177938
JX177956
JX177926
JX177949
JX177920

.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0

.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0
.1_f0

in the pickle

JX177896.
HM592717.
JX177865.
HM032751.
HM592669.
HM592667.
HM032749.
JX177912.
JX177892.
JX177907.
JX177918.
HM032741.
HM032752.
JX177917.
JX177902.
JX177905.
HM592745.
JX177910.
JX177906.
JX177886.
HM032742.
JX177864.
JX177895.
HM032747.
JX177904.
JX177863.
JX177913.
HM592668.
HM032743.
JX177866.
JX177898.
JX177916.
HM032748.
HM032745.
JX177897.
HM032744.
HM032746.
JX177903.
JX177901.
JX177300.
JX177867.
JX1779009.

pickle pj(pj, 'outputs/my project.pkpj")
'outputs/my project.pkpj'

Now that this supermatrix is stored as a trimmed alignment in the
pj.trimmed alignments dictionary, we can write it to a file or fetch the
MultipleSegAlignment object, as shown in section 3.7.

3.8.4 Quick reference

Design a supermatrix
concat = Concatenation('concat name', loci_list, 'otu qualifier’',
**kwargs)

Add it to a project
pj.add_concatenation(concat)

Build supermatrices based on the Concatenation
objects in pj.concatenations
pj.make_concatenation_alignments()

Tree reconstruction can be done with RAXML or Phylobayes. This section will cover one
example in which we will build a supermatrix tree using RAXML, and a single gene tree
using Phylobayes.

3.9 Reconstructing trees

Quick reference

from reprophylo import *
pj = unpickle pj('outputs/my project.pkpj', git=False)

3.9.1 Using RAXML

RAXML is configured with the Raxm1Conf object. This object provides control over the

following settings:

1. method name: The method name.

2. program name & cmd:. RAXML binaries exist in several versions. If you are using
the Docker container you can leave this as is. The versions vary in the number of
threads they utilized (PTHREADS or not), and the architecture they are optimized
for (AVX or SSE3). raxmIHPC-PTHREADS-SSES is the default here, both as the
program name and as the cmd. If you do not want to use multiple threads, you have
to specify the name and command of the non PTHREADS binary, ie, raxmIHPC.

3. keepfiles: Whether or not to keep the output files in the working directory (the
tree is stored in the Project)
4. preset: The RAXML algorithm. Raxm1Conf has several preset algorithms:
o 'fa' - will run a single ML search with rapid bootstrap
o "fD_fb' - will run a single ML tree with relBootstrap (quick and least

accurate supports calculation)

50

o 'fd b fb' - will run one or more ML trees with thorough bootstrap (slow
and accurate)

o "fF_£J' - will run a fast ML tree with sh-like supports (quick and dirty)
o "f£d £J' - will run one or more (proper) ML tree(s) with sh-like supports
(quick supports calculation).
5. alns: Alignments to analyze. ‘all’ by default. It can be modified by passing a list of
trimmed alignment names and/or concatenation names.
6. model: The model of rate heterogeneity. For example, GAMMA (parametric) or CAT

(nonparametric). The CAT model is a nonparametric approach to categories the rate
variation without calculating the GAMMA distribution, as a fast approximation. It is
different than the CAT model in Phylobayes, where the number of parameters
increases by categorizing the data to subsets, which differ in their substitution
matrices and rate variation categories. The CAT in RAxXML is "quick and dirty". The
CAT in Phylobayes is "slow and accurate."

7. matrix: The protein substitution matrix. This parameter is only relevant to protein
datasets, and it is ignored for DNA only datasets. By defaultitis setto 'JTT'. Ifitis a
concatenated analysis, the string specified here will be set as the substitution matrix
of each of the protein partitions. However, it is possible to pass a dictionary, instead
of a string, containing the locus names as keys, and the name of substitution matrix
assigned to each of them as values. Also important, partition information is taken
into account automatically. No need to make a partition file.

8. threads: The number of threads to use. Using PTHREADS, threads=1 is
automatically changed to 2. Using the non PTHREADS version, the threads number
is set to one, regardless of the value the user passes.

9. cline_args: Other command line arguments, most importantly, the argument ' -N'
should be used to determine the number of ML searches (it is 1 by default and it
doesn't work with fa or fF £J), and '-#' should be used to set the number of
bootstrap replicates (it is 100 by default and it only works with £D fb and
fd b fb). -N and -# are not synonyms. This is different from the RAXxML command
line.

The RAXML manual is an important read, in order to understand all the analysis modifiers
that can be passed, and to become familiar with the full range of models and substitution
matrices available.

In this example, comments which specify item numbers, refer to the list just above. It will
configure a concatenated analysis of the supermatrix ' large concat', with the GTR
GAMMA model for all the partitions, utilizing two threads and with two ML searches. Branch
supports will be derived from a relBootstrap analysis.

raxml = RaxmlConf(pj, # The Project
method_name='supermatrix', # Any string
program_name="'raxmlHPC-PTHREADS-SSE3", # item
keepfiles=False, # False is default

N

cmd="default’, # item 2
preset="fD fb"', # item 4
alns=["large concat'], # item 5
model="GAMMA", # item 6
matrix="JTT"', # item 7
threads=4, # item 8
cline_args={'-N': 2} # item 9

51

http://sco.h-its.org/exelixis/php/countManualNew.php

)

raxmlHPC-PTHREADS-SSE3 -f D -m PROTGAMMAJTT -n 221101440759352.8 large_concat0 -gq
221101440759352.8 large concat partfile -p 603 -s 221101440759352.8 large concat.fasta -T 4 -N 2

raxmlHPC-PTHREADS-SSE3 -f b -m PROTGAMMAJTT -n 221101440759352.8 large concatl -g
221101440759352.8 large concat partfile -p 369 -s 221101440759352.8 large concat.fasta -t
RAxML bestTree.221101440759352.8 large concat0 -T 4 -z

RAxXML rellBootstrap.221101440759352.8 large concatO

3.9.2 Using Phylobayes

In this example, a PbConf object is set to analyse a single trimmed alignment. The
cline args here are horrible and set this way for speed. The default settings, however,
are sensible. Still, read the manual, at least the bits about nchain, burn-in and the proper
usage of the GTR and/or CAT models (and others).

phylo = PbConf(pj, # Default setting:
method_name="'single gene', # 'dna_cat_gtr'
program_name='phylobayes"’,
keepfiles=False, # True

cmd="default’',
alns=['28s@muscleDefault@gt50'], # 'all’
cline_args={'gtr': True,
‘cat': True,
'nchain': '2 50 0.9 5',# '2 100 0.1 100'
'b': "1 # 'S’
}
)

pb -d 262531440759355.16 28s@muscleDefault@gt50.phylip -gtr
-nchain 2 50 0.9 5 -b 1 -cat
262531440759355.16_28s@muscleDefault@gt50

3.9.3 Executing the tree reconstructions and accessing trees

This is done using the tree Project method:
pj.tree([raxml, phylo])

The resulting trees are placed in the p7 . trees dictionary, with keys of the form

"locus name@aln method@trim method@tree method'. For trees from
supermatrices the key is ' concat name@mixed@mixed@tree method'. The values in
this dictionary are lists, each with two values. The first in an ETE Tree object, and the
second is an NHX string representation of the tree.

pj.trees.keys()

['large concat@mixed@mixed@supermatrix',
'28s@muscleDefaultgt50€@single gene']

52

http://megasun.bch.umontreal.ca/People/lartillot/www/phylobayes4.1.pdf

And as for alignment and trimming, we can review the approaches that we used:
print pj.used_methods| 'single gene']

PbConf named single gene with ID 262531440759355.16

Alignments: 28s@muscleDefault@gt50

Created on: Fri Aug 28 11:55:55 2015

Commands:

28s@muscleDefault@gt50: ['pb -d

262531440759355.16 28s@muscleDefault@gt50.phylip -gtr -nchain 2
50 0.9 5 -b 1 -cat 262531440759355.16 28s@muscleDefault@gt50"']

Environment:

Platform: Linux-3.13.0-40-generic-x86_ 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete?2 version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

cloud version: 2.8.5

reprophylo version 1.0

User: amir-TECRA-W50-A

Program and version: phylobayes version 3.3f

Program reference: N. Lartillot

T. Lepage and S. Blanqgquart

2009: PhyloBayes 3: a Bayesian software package for phylogenetic
reconstruction and molecular dating. Bioinformatics Vol. 25 no.
17.
execution time:

180.445002794

Phylogenetic trees were reconstructed from the dataset (s)
28s@muscleDefaultl@gt50 using the program phylobayes version 3.3f
[17.

Reference:

N. Lartillot, T. Lepage and S. Blanquart, 2009: PhyloBRayes 3: a
Bayesian software package for phylogenetic reconstruction and
molecular dating. Bioinformatics Vol. 25 no. 17.

Tree objects can be fetched easily and manipulated with ETE tricks, using the ft Project

53

http://etetoolkit.org/docs/2.3/tutorial/index.html

method.

t =
pj.ft('28s@muscleDefault@gt50@single gene').convert_to_ultrametric(10)

returning tree object 28s@muscleDefault@gt50@single gene

or written to a file in a suitable format

pj.ft('28s@muscleDefault@gt50@single _gene').write(features=["'source_organism'],
format=5, outfile="new_tree.nw")

returning tree object 28s@muscleDefault@gt50@single gene

And now update the Project’s pickle:
pickle _pj(pj, 'outputs/my_project.pkpj')

'outputs/my project.pkpj'

3.9.4 Quick reference

Configure a raxml analysis
raxml = RaxmlConf(pj, **kwargs)

Configure a phylobayes analysis
phylo = PbConf(pj, **kwargs)

Execute tree reconstruction
pj.tree([list_of_RaxmlConf_and_or_PbConf_objects])

Fetch an ETE Tree object
t = pj.ft('locus_name@aln_name@trim_name@tree_name')

Write newick file
t.write(format=5, outfile="filename.nw")

Write NHX format with all the qualifiers
t.write(features=[], format=5, outfile="filename.nw")

3.10 Tree annotation and report

The last section of this tutorial is about producing annotated tree figures and a human
readable report. First we have to load our Project again:

from reprophylo import *

pj = unpickle_pj('outputs/my_project.pkpj', git=False)

54

http://etetoolkit.org/docs/2.3/tutorial/tutorial_trees.html#reading-and-writing-newick-trees
http://etetoolkit.org/docs/2.3/tutorial/tutorial_trees.html#reading-and-writing-newick-trees

3.10.1 Updating the metadata after the tree has been built

Often, we want to display information that did not exist in the Project when we first built
our trees. This is not an issue. We can add metadata now and propagate it to all the parts
of the Project, including to our preexisting trees. For example, | add here some
morphological information. Some of the species in our data have a morphological structure
called porocalyx,

genera_with_porocalices = ['Cinachyrella’,
"Cinachyra’,
"Amphitethya’,
'"Fangophilina’,
"Acanthotetilla’,
'Paratetilla’]

while others do not:

genera_without_porocalices = ['Craniella’,
'Tetilla',
"Astrophorida’]

The following command will add the value 'present' to a new qualifier called
'porocalices' in sequence features of species that belong to
genera with porocalices:

for genus in genera_with_porocalices:
pj.if_this_then_that(genus, 'genus', 'present', 'porocalices')

and the following command will add the value 'absent' to a new qualifier called
'porocalices' to sequence features of species that belong to
genera without porocalices:

for genus in genera_without_porocalices:
pj.if_this_then_that(genus, 'genus', 'absent', 'porocalices')

The new qualifier porocalices in now updated in the SeqRecord objects within the

pJ.records list (more on this in section 3.4). But in order for it to exist in the Tree
objects, stored in the pj . trees dictionary, we have to run this command:

pj.propagate_metadata()

Only now the new qualifier is available for tree annotation. Note that qualifiers that existed
in the Project when we built the trees, will be included in the Tree object by default.

3.10.2 Configuring and writing a tree figure

The annotate Project method will produce one figure for each tree in the Project
55

according to the settings. Colors can be indicated with X11 color names. The following
settings can be controlled:
1. fig_ folder: The path for the output figure file
2. root_meta and root_value: The qualifier and its value that will indicate the
outgroup Itcan be 'mid' and 'mid"' for a midpoint root, or for example,
'source organism' and'Some species binomial'to seta group of leaves
with a shared value as an outgroup (required).

3. leaf labels_txt meta: A list of qualifiers which values will be used as leaf
labels, required.
4. leaf node_color_meta and leaf label colors: The qualifier that

determines clade background colors and a dlctlonary assigning colors to the
qualifier's values (defaults to None and None).

5. ftype and £size: Leaf label font and font size (default ' verdana' and 10)

6. node_bg_meta and node_bg_color: A qualifier that determines the leaf label
colors and a dictionary assigning colors to its values (defaults to None and None).

7. node_support_dict and support_bullet size: A dictionary assigning
support ranges to bullet colors, and the size of the bullets (defaults to None and 5),

8. heat map meta and heat map_ colour_scheme: A list of qualifiers which will be

the heatmap's columns, and the color scheme (defaults to None and 2 see ETE for
color schemes)

9. pic_meta, pic_paths, pic_wand pic_h: You can put small images next to
leaves. pic_meta will determine the qualifier according to which values an image
will be assigned. pic_paths is a dictionary assigning image file paths to the qualifier's
values. pic_wand pic h are the dimensions of the images in pixels (the defaults
are None for all the four keywords).

10. multifurc: Branch support cutoff under which to multifurcate nodes (default -
None).

1. branch_width and branch_color (defaults: 2 and DimGray)

12. scale: This will determine the width of the tree (default 1000)

13. html: The path to which to write an html file with a list of the figures and links to the
figure files (default None)

Example 1, the metadata determines background colours

bg colors = {'present':'red’,
‘absent': 'white'}

supports = {'black': [100,99],
‘gray': [99,80]}

pj.annotate('./images/", # Path to write figs to

Set OTUs that have

'genus', 'Astrophorida', #
'Astrophorida’
#
#

in their 'genus' qualifier
as outgroup

['source_organism', 'record_id'], # leaf labels

node_bg meta='porocalices', # The qualifier that

56

https://en.wikipedia.org/wiki/Web_colors#X11_color_names

will determine bg colors
node_bg color=bg colors, # The colors assigned to
each qualifier value

node_support_dict=supports,

html="'./images/figs.html’
)

pj.clear_tree_annotations()

In the resulting figure (below), clades of species with porocalices have red background,
node with maximal relBootstrap support have black bullets, and nodes with branch support
> 80 has gray bullets.

Node support: ® 100-99@ 99-80
.l—TheoneIIa swinhoei HM592820.1
Thenea levis HM592765.1

Tetilla muricyi JX177898.1
Tetilla radiata HM032742.1
Tetilla japonica JX177901.1

Craniella sp. PC-2011 HM592754.1
Craniella sp. 3318 HM032752.3
Craniella zetlandica HM032751.1

Craniella cranium HM592669.1
Craniella sagitta JX177863.1
Craniella sagitta 1X177917.1
Craniella sp. 3878 HM032747.2
Craniella sp. 3878 HE591469.1

Craniella cf. leptoderma AS-2012 JX177916.1
Craniella cf. leptoderma AS-2012 JX177897.1
Craniella cf. leptoderma AS-2012 JX177895.1
Tetilla leptoderma HM032749.2

Craniella cf. leptoderma AS-2012 JX177866.1
Craniella cf. leptoderma AS-2012 JX177896.1
Craniella cf. leptoderma AS-2012 JX177865.1

0.05

Example 2, the metadata as a heatmap

57

The second example introduces midpoint rooting and a heatmap. There are three columns
in this heatmap, representing numerical values of three qualifiers. In this instance, the
values are 0 or 1 for presence and absence. In addition, we change the branch colour to
black and assign shades of gray to the genera.

bg _colors = {'Cinachyrella': ‘'gray’,
'Cinachyra’': 'silver',
"Amphitethya': 'white',
'Fangophilina':'white’,
"Acanthotetilla’:'silver’',
'Paratetilla’:'white’,
'Craniella’: 'gray',
'Tetilla': 'silver',
"Astrophorida'’: 'white'}

pj.clear_tree_annotations()

pj.annotate('./images/", # Path to write figs to
'mid', 'mid’, # Set midpoint root
["source organism'], # leaf labels
fsize=13,
node_bg meta="'genus', # The qualifier that
will determine bg colors
node_bg color=bg colors, # The colors assigned to

each qualifier value

heatmap columns
heat_map_meta=['porocalyx’', 'cortex', 'calthrops'],

heat_map_colour_scheme=0,
branch_color="black’,

html="./images/figs.html’
)

And this is what it looks like:

58

_|_7Theonella swinhoei
Thenea levis

_LAca nthotetilla walteri
Acanthotetilla celebensis ===

Amphitethya cf. microsigma AS-2012

Paratetilla sp. 2656 -+

Teti”a muricy'r
_L[Tetllla radiata.
Tetllla]aponica.

Fangophilina sp. MK-2012 -+
Fangophilina sp. MK-2012:----------+
Cinachyra barbata.
ﬂclnachyra antarctica.

59

3.10.3 Archive the analysis as a zip file

The publish function will produce an html human readable report containing a description
of the data, alignments, trees, and the methods that created them in various ways. The
following options control this function:

1.
2.
3.

7.

folder_name: zip file name or directory name for the report (will be created)
figures_ folder: where did you save your tree figures?

size: 'small' =don't print alignment statistics graph, or ' large': print them. If
'large' is chosen, for each alignment and trimmed alignment, gap scores and
conservation scores plots will be printed. (default - ' small").

compare_trees: a list of algorithms to use to formally compare trees. The
algorithms to choose from are 'topology', '"branch-length' and
'proportional'. (default, [])

compare_meta: Similar to the OTU qualifier required for data concatenation, we
need to say which qualifier identifies a discrete sample, that will allow to compare
trees of different genes. By default, it will look for a Concatenation object and will
use the OTU meta that is specified there. If there are no Concatenation objects,
and we have not specified a compare meta, it will raise an error.
trees_to_compare: A list of keys from the pj . t rees dictionary. This allows to
control what trees will go into the pairwise comparisons and also control their order
of appearance in the results. (default, 'all')

unrooted trees: True oOr False (default). If True, the algorithm will minimize
the difference before determining it.

This is a minimal example, which does not include tree comparisons. Tree comparisons are
shown later.

publish(pj, 'my _report', './images/', size='large')

checking if file exists
reporter was called by publish
starting species table
starting sequence statistics plots
starting concatenations
starting methods

starting alignment statistics
starting RF matrix(ces)
reporting trees

pickling

archiving

report ready

pickle _pj(pj, 'outputs/my project.pkpj")

'outputs/my project.pkpj'

60

4 Git and Pickle integration in ReproPhylo

This section demonstrates the interaction of ReproPhylo and of pickled ReproPhylo
Project files with Git. In section 3 we disabled Git and saved the pickle file manually at the
end of each sub section. However, ReproPhylo is designed to update the Project's pickle
file automatically after time consuming steps and also to create a version control repository
and record versions in real time. All of this will happen if we start a Project using the
default setting git=True.

Once we start a Project this way, it can be the only version controlled Project in the

current working directory. Any additional Project will have to be started with a different

pickle name, and with gi t=False. Should it not be the case, helpful error messages will
guide you through.

Also, once we started a Project, it can only be resumed with the command unpickle pj.
If we try to reconstruct the Project using the command pj = Project(...), another
helpful error message will be raised.

4.1 The long version

4.1.1 Start a Project, read data, do alignment, show Git log

Start a Project

As we did in section 3, we start a Project, and provide a pickle file name. We do not,
however, use git=False and therefore git is invoked, as the default behaviour.

from reprophylo import *
pj = Project('git _demo files/loci_edited.csv',
pickle="'git demo_files/git demo')

/home/amir/Dropbox/python modules/rpgit.py:93: UserWarning: Thanks to Stack-Overflow
users Shane Geiger and Billy Jin for the git wrappers code

warnings.warn ('Thanks to Stack-Overflow users Shane Geiger and Billy Jin for the
git wrappers code')
/home/amir/Dropbox/python modules/rpgit.py:109: UserWarning: A git repository was
created in /home/amir/Dropbox/ReproPhylo/Tutorial files/Git.

warnings.warn('A git repository was created in %s.'SrepoDir)
/home/amir/Dropbox/python modules/reprophylo.py:255: UserWarning: The new repository
is called git demo files/git demo.

warnings.warn ('The new repository is called %s.'%open(cwd + '/.git/description',
'r').read () .rstrip())
DEBUG:Cloud:Log file (/home/amir/.picloud/cloud.log) opened

We get three warnings, which are only information messages.

° The first massage includes credit for some code | got online.
° The second gives us the location in which the repository will be maintained
° The third gives us the name of the repository

Read data

We can move on to reading data and aligning some loci:

genbank = './git demo_files/Tetillidae.gb'
pj.read_embl genbank([genbank])

Do alignment

pj.extract_by locus()
mafft = AlnConf(pj)
pj.align([mafft])

mafft 217511440955273.78 CDS proteins MT-COl.fasta

So our data was split to bins according the the Locus objects in the Project, and all the
loci were aligned with the default settings of Mafft.

Show last Git action (which was to commit the pickle with the alignment)
At this point, let's check what pickle and git did at the background, by asking for git info:

pj.last_git _log()

Sun Aug 30 18:21:15 2015
STDOUT :

[master 09df506] AlnConf named mafftDefault with ID 217511440955273.78 Loci: MT-COl
Created on: Sun Aug 30 18:21:13 2015 Commands: MT-COl: mafft
217511440955273.78 CDS proteins MT-COl.fasta

1 file changed, 0 insertions(+), 0 deletions(-)

STDERR:None
>>>>

The last git action was to commit the pickle file, after the sequence alignment was complete.
The git message is the report we get when we print the used method (from

pj.used methods if you recall).

We can show the full log like this:

pj.show_commits()

commit 09df506£5a5a003f1665d5abf52d11fb66755a90
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:21:15 2015 +0100

AlnConf named mafftDefault with ID 217511440955273.78
Loci: MT-CO1

Created on: Sun Aug 30 18:21:13 2015

Commands :

MT-COl: mafft 217511440955273.78 CDS proteins MT-COl.fasta

Environment:

Platform: Linux-3.13.0-40-generic-x86 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

62

Python version: 2.7.6
ete2 version: 2.2rev1056
biopython version: 1.64
dendropy version: 3.12.0
cloud version: 2.8.5
reprophylo version 1.0
User: amir-TECRA-W50-A
Program and version: MAFFT v7.123b\nPal2Nal vl14
Program reference:Katoh
Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple
sequence alignment software version 7: improvements in performance and
usability.\nMikita Suyama
David Torrents
and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments
into the corresponding codon alignments.Nucleic Acids Res. 34
W609-W612.
execution time:
1.39940595627

Core Methods section sentence:

The dataset(s) MT-COl were first aligned at the protein level using the program
MAFFT v7.123b [1].

The resulting alignments served as guides to codon-align the DNA sequences using
Pal2Nal v14 [2].

Reference:

[1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT
multiple sequence alignment software version 7: improvements in performance and
usability.

[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust
conversion of protein sequence alignments into the corresponding codon
alignments.Nucleic Acids Res. 34, W609-W61l2.

commit 5d9e94d44£88128374£f0470d44006f4e6cbledllc
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:20:25 2015 +0100

1 genbank/embl data file(s) from Sun Aug 30 18:20:25 2015

commit 0423808e2efbbec77daz2fdb482b7466916546da7
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:13:11 2015 +0100

Project object with the loci MT-COl, from Sun Aug 30 18:13:11 2015

commit abeaalb6195f41049a04f0dbabfe87c9bdece320
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:13:11 2015 +0100

2 script file(s) from Sun Aug 30 18:13:11 2015

This output is the complete list of git actions since we first started the Project, with the
oldest at the bottom. Each action has a commit hash, the author of the commit, the time it
was made, and an indented commit message. If we look at the messages from bottom to top
we can see that so far we have done the following:

1. Saved relevant files that preexisted in the working directory when we started the git
repository (2 script files, which are this notebook and its checkpoint)

Saved a pickle file of a Project with a single gene (MT-CO1)

Read a genbank file into the Project and updated the pickle file

w N

63

4. Ran sequence alignment for the MT-CO1 gene using Mafft

4.1.2 Revert to older Project version

In addition to logging our actions, git allows us to 'undo' and 'redo' them by reverting to
previous versions of the pickle file.

For example, let's say we want to cancel our latest sequence alignment. Our current
Project has one alignment in it:

pj.alignments.keys()

["MT-COl@mafftDefault']

To move back to when we had no alignments in the Project, we need the 'commit hash'
from our commits log, of the action the preceded the sequence alignment. The hash is the
long alphanumeric string at the top of each commit, just a few characters from it's start shoud
do it.

When | was writing this notebook, the git hash of the action which preceded the sequence
alignment (one before last) was 5d9e94d44£88128374£0470d4006f4e6cbledl0c, but
it will be something else for you. To move back to it | do:

pj = revert_pickle(pj, '5d9e94d4")

Git STDOUT:
Git STDERR:

/home/amir/Dropbox/python modules/reprophylo.py:240: UserWarning: Git repository
exists for this Project
warnings.warn('Git repository exists for this Project')

We get no output or errors from git, which is what we expect. When we revert, ReproPhylo
restarts the Project and it lets us know that a git repository already exists, and it will keep
using it.

Lets see how many alignments the Project has now:

pj.alignments.keys()

[]

Right. No alignments now. But wait, was this reversion a mistake? No problem. We can get
our alignment back. The git hash for the alignment step is
09df506f5a5a003f1665d5abf52d11fb66755a90 (will be something else for you). Let's
get it back:

pj = revert_pickle(pj, '09df506f5")
pj.alignments.keys()

Git STDOUT:
Git STDERR:
["MT-COl@mafftDefault']

OK! No git error messages, and we have our alignment back in pj.alignments.
4.1.3 Recovering from unintentional changes

Now lets do something stupid: We will make a new A1nConf object, with different run
parameters, but without changing the name of the A1nConf object, thus overwriting the
resulting alignment of the previous one. For this alignment step, this is not the end of the
world, since it is very quick. However, this will work the same for long analyses, such as tree
reconstruction or when there is a lot of data.

new_mafft = AlnConf(pj, cline_args=dict(localpair=True,
maxiterate=1000))
pj.align([new_mafft])

mafft --localpair --maxiterate 1000 611281440957509.19 CDS proteins MT-COl.fasta

Now, checking the used methods dictionary, we realize the gravity of our mistake, as the
new AlnConf is stored under the same key as the old one, which is now gone from both the
used methods and the alignment dictionaries:

print 'Alignments:'
print pj.alignments
print

print 'Used Methods:'
print pj.used_methods

Alignments:
{'MT-COl@mafftDefault': <<class 'Bio.Align.MultipleSegAlignment'> instance (92
records of length 1566, IUPACAmbiguousDNA()) at 7£239f2b2950>}

Used Methods:
{'mafftDefault': <reprophylo.AlnConf instance at 0x7f239f52f488>}

Checking the string representation of the A1nConf object, which has the same name as the
old one, will confirm it shows the new command line, rather than the old one:

print pj.used_methods['mafftDefault']

AlnConf named mafftDefault with ID 611281440957509.19
Loci: MT-CO1

Created on: Sun Aug 30 18:58:29 2015

Commands:

MT-COl: mafft --localpair --maxiterate 1000
611281440957509.19 CDS proteins MT-COl.fasta

Environment:

Platform: Linux-3.13.0-40-generic-x86 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete2 version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

65

cloud version: 2.8.5

reprophylo version 1.0

User: amir-TECRA-W50-A

Program and version: MAFFT v7.123b\nPal2Nal vl14

Program reference:Katoh

Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple sequence
alignment software version 7: improvements in performance and usability.\nMikita
Suyama

David Torrents

and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments into
the corresponding codon alignments.Nucleic Acids Res. 34

W609-W612.

execution time:

3.97148609161

The dataset(s) MT-COl were first aligned at the protein level using the program
MAFFT v7.123b [1].

The resulting alignments served as guides to codon-align the DNA sequences using
Pal2Nal v14 [2].

Reference:

[1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple
sequence alignment software version 7: improvements in performance and usability.
[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust conversion of
protein sequence alignments into the corresponding codon alignments.Nucleic Acids
Res. 34, W609-we6l2.

Thanks to the Git repository, it is possible to recover from this blunder. We can spot an old
version that contains the original alignment step and revert to it.

pj.show_commits()

commit 1e11023bab07af£3882b10bae65053301c0cl6997
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:58:33 2015 +0100

AlnConf named mafftDefault with ID 611281440957509.19

Loci: MT-CO1

Created on: Sun Aug 30 18:58:29 2015

Commands :

MT-COl: mafft --localpair --maxiterate 1000
611281440957509.19 CDS proteins MT-COl.fasta

Environment:

Platform: Linux-3.13.0-40-generic-x86 64-with-Ubuntu-14.04-trusty
Processor: x86 64

Python build: defaultJun 22 2015 17:58:13

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete2 version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

cloud version: 2.8.5

reprophylo version 1.0

User: amir-TECRA-W50-A

Program and version: MAFFT v7.123b\nPal2Nal vl14

Program reference:Katoh

Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple

sequence alignment software version 7: improvements in performance and

66

usability.\nMikita Suyama

David Torrents

and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments
into the corresponding codon alignments.Nucleic Acids Res. 34

W609-W612.

execution time:

3.97148609161

The dataset(s) MT-COl were first aligned at the protein level using the program
MAFFT v7.123b [1].

The resulting alignments served as guides to codon-align the DNA sequences using
Pal2Nal v14 [2].

Reference:

[1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT
multiple sequence alignment software version 7: improvements in performance and
usability.

[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust
conversion of protein sequence alignments into the corresponding codon
alignments.Nucleic Acids Res. 34, W609-W61l2.

commit 809b314e27f5a3303f64a2ecf3al556b4cd327bd
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:54:19 2015 +0100

2 script file(s) from Sun Aug 30 18:54:19 2015

commit 39434clc76a3909%a5f8cda246¢c714e30817a3138
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:49:46 2015 +0100

2 script file(s) from Sun Aug 30 18:49:46 2015

commit 09df506£5a5a003£f1665d5abf52d11fb66755a90
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:21:15 2015 +0100

AlnConf named mafftDefault with ID 217511440955273.78
Loci: MT-CO1

Created on: Sun Aug 30 18:21:13 2015

Commands :

MT-COl: mafft 217511440955273.78 CDS proteins MT-COl.fasta

Environment:
Platform: Linux-3.13.0-40-generic-x86 64-with-Ubuntu-14.04-trusty
Processor: x86 64
Python build: defaultJun 22 2015 17:58:13
Python compiler: GCC 4.8.2
Python implementation: CPython
Python version: 2.7.6
ete2 version: 2.2rev1056
biopython version: 1.64
dendropy version: 3.12.0
cloud version: 2.8.5
reprophylo version 1.0
User: amir-TECRA-W50-A
Program and version: MAFFT v7.123b\nPal2Nal vl14
Program reference:Katoh
Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple
sequence alignment software version 7: improvements in performance and
usability.\nMikita Suyama
David Torrents

67

and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments
into the corresponding codon alignments.Nucleic Acids Res. 34

W609-W612.

execution time:

1.39940595627

The dataset(s) MT-COl were first aligned at the protein level using the program
MAFFT v7.123b [1].

The resulting alignments served as guides to codon-align the DNA sequences using
Pal2Nal v14 [2].

Reference:

[1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT
multiple sequence alignment software version 7: improvements in performance and
usability.

[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust
conversion of protein sequence alignments into the corresponding codon
alignments.Nucleic Acids Res. 34, W609-W61l2.

commit 5d9e94d44£88128374f0470d4006f4e6cbledlOc
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:20:25 2015 +0100
1 genbank/embl data file(s) from Sun Aug 30 18:20:25 2015
commit 0423808e2efbSbec77da2fdb482b7466916546da7
Author: Amir Szitenberg <szitenberg@gmail.com>
Date: Sun Aug 30 18:13:11 2015 +0100
Project object with the loci MT-COl, from Sun Aug 30 18:13:11 2015
commit abeaalb6195f41049%9a04f0dbabfe87c9bdece320
Author: Amir Szitenberg <szitenberg@gmail.com>

Date: Sun Aug 30 18:13:11 2015 +0100

2 script file(s) from Sun Aug 30 18:13:11 2015

The git log lists a sequence alignment at the top, the very last alignment we ran. But we want
to revert to an earlier sequence alignment. If we scroll down the log we can find this earlier
alignment and get its git hash. For me it is
09df506f5a5a003f1665d5abf52d11fb66755a90 but it will be something else for you.

Wait! before we revert, we need to grab hold of the new alignment and its used method, so
that we can add them to the Project under a different method name, after we revert:

latest_alignment_object = pj.alignments['MT-COl@mafftDefault’]
latest_used_method = pj.used_methods['mafftDefault’]

now we can revert:
pj = revert_pickle(pj, '@9df5e6f5a")

Git STDOUT:
Git STDERR:

Good. Last step, we add the latest alignment and used method, but with a different name:

new_name = 'mafft_linsi'

68

add the alignment to the Project
pj.alignments|['"MT-CO1@' + new_name] = latest_alignment_object

Fix the used method name
latest_used_method.method _name = new_name

Add the latest used method to the used_methods dict:
pj.used_methods[new_name] = latest_used_method

How many alignments and used methods are there now?
pj.alignments.keys()

['"MT-COl@mafft linsi', 'MT-COl@mafftDefault']
pj.used_methods.keys()

['mafftDefault', 'mafft linsi']

Good. Now we have the Project, with the two alternative sequence alignments of the
MT-CO1 gene. Nothing is lost, nothing had to be rerun, thanks to git.

We're not done!

The Project is automatically pickled when we

° Read data
° Read metadata
° Run alignment, trimming or tree reconstruction

[]
We have done nothing of those as our last step, so the pickle is not up to date. Let's save it:

pickle pj(pj, 'git demo files/git demo")
'git_demo files/git demo'’

OK, now we're done. We can turn the machine off. Next time we'll start as follows and carry
on from where we stopped (git=True by default):

pj = unpickle pj('git demo_files/git demo')

4.2 Possible error messages

If you are not using the Docker ReproPhylo distribution, and you are new to Git, you might
get the following error when you start a new Project with
pj=Project('loci file',pickle='pikle filename'):

RuntimeError: Git: set your email with '!git config --global
user.email "your email@example.com"' or disable git (the ! is needed

69

in Jupyter Notebook. In a terminal, ommit it)

This is because git expects your email to be configured. To configure it, run the following in a
terminal:

git config --global user.email "your email@example.com"

Another possible error when you start a new Project with

pj=Project ('loci file',pickle='pikle filename'), as opposed to loading one
with unpickle pj orwith revert pickle, can arise because Project expects pickle to
be a file name that does not yet exist. Otherwise, the following error will be raised,

IOError: Pickle git_demo_files/git demo exists. If you want to keep
using it do pj=unpickle pj('git_demo_ files/git demo') instead.

to protect you from unintentionally deleting existing projects.

ReproPhylo also tries to make sure that an unpickled, reverted or new Project can identify
its unique Git repository. This connection can be broken if a Git repository already existed in
the working directory, which does not belong to the current Project or if the pickle file was
moved independently from the directory in which it is found. The Git repository is found in a
directory called . git, which is a hidden directory. To view hidden files and folders in your file
browser, click ctrt+H. If you want to move the Project to another location, the folder
containing both the . git directory and the pickle file must be moved as one unit. Should the
connection between a Project and its Git repository be broken, the following error will be
show:

RuntimeError: The Git repository in the CWD does not belong to this
project. Either the pickle moved, or this is a preexsisting repo.
Try one of the following: Delete the local .Git dir if you don't
need it, move the pickle and the notebook to a new work dir, or if
possible, move them back to their original location. You may also
disable Git by with stop git().

Note that even if the link between a repository and a project was broken, the pickle file still
contains the full Project and is totally usable, by passing git=False, like this:
pj=unpickle pj('my pickle file', git=False)

4.2 The short version

Show the last git action
pj.last git log()

Show all the commits in the git repository
pJ.show commits ()

Revert to a previous commit
Using a hash from the commits list
pJ = revert pickle(pj, '5d%e9%4d4"')

70

mailto:your_email@example.com

5. Jupyter notebooks with use cases

Parameter and data exploration 1

Parameter and data exploration 2

6. Tools in ReproPhylo

Abstract methods for including tools in ReproPhylo are in the queue for development. Currently , the
way to include tools go through hands on modification of the ReproPhylo script. To help with this,
some hints have been written in as comments, and they are searchable using the phrase PROGRAM
PLUG. For example, a programme needs to have a default path in the following section of the code:

922 self.defaults = {'raxmlHPC': programspath+'raxmlHPC-PTHREADS-SSE3",
923 "mafft': 'mafft’,

924 'muscle’: programspath+'muscle’,

925 "trimal': programspath+'trimal’,

926 'pb': programspath+'pb',

927 "bpcomp': programspath+'bpcomp’,

928 "tracecomp': programspath+'tracecomp’,

929 ‘fasttree': programspath+'FastTreeMP',

930 'pal2nal’: programspath+'pal2nal.pl’,

931 # PROGRAM PLUG

932 # 'program name': programpath+'the basic command’
933 }

where programspath == '', exceptin the WinPython version where it points to the default

programmes directory.

The user runs programmes using Project methods. As an example, the tree method interacts with
the programme in several places. First, it requires version reference information:

2606 # PROGRAM PLUG

2607 # NOTE: THIS METHOD SERVES ALL PHYLO PROGRAMS ALTHOUGH THE ITERATOR IS
2608 # CALLED raxml_method

2609 # THIS GETS THE VERSION AND REFERENCE OF THE PROGRAM

2610

2611 # elif isinstance(raxml_method, Conf object name):

2612 # p = sub.Popen(raxml_method.cmd+" command that writes version",
shell=True, stderr=sub.PIPE, stdout=sub.PIPE)

2613 # raxml_method.platform.append('Program and version: '+

2614 # # 1 for stderr, © for stdout

2615 # p.communicate()[1].splitlines()[# get the
line and split])

2616 # raxml_method.platform.append('Program reference: write the

reference here')

then it needs to execute the command line stored in the Conf object

2625 # PROGRAM PLUG

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Use_cases/Parameter_space_exploration_1/IPython_Notebook_for_ReproPhylo_MS.ipynb

2626 # THIS RUNS THE PROGRAM
2627 # elif isinstance(raxml_method, Conf Object Name):
2628 # sub.call(cline, shell=True)

finally, it needs to get the output and place it in the Project

2663 # PROGRAM PLUG

2664 # NOTE: THIS IS SIMPLIFIED. MIGHT WORK WITH SOMETHING LIKE

2665 # FASTTREE. SEE MORE EXAMPLES ABOVE

2666 # THIS SECTION MAKES A Tree OBJECT OUT OF THE OUTPUT FILE

2667

2668 # elif isinstance(raxml_method, Conf object name):

2669 # base_name = "%s_%s"%(raxml_method.id, trimmed_alignment)

2670 # tree_file = "the form of the output file with the %s"%base_name
2671 # t = Tree(tree_file)

The user configures the programme execution using Conf objects. PROGRAM PLUG hints for the

Conf objects are included in the A1nConf class.

/. ReproPhylo module index

This section provides a detailed index of the objects, object methods and preliminaries if each object.
Preliminaries are functions designed to be invoked by the object's methods but may also be useful on
their own right and therefore worth mentioning. Each entry will include usage, raised errors and
known issues. The index is organised as follows:

e The Locus object

o Locus

o Locus methods
e The Concatenation object

O Concatenation

0 Concatenation methods
e The Project object

0 Project

o Proiject methods

o Project preliminaries
e ReproPhylo functions meant to be used directly
e The AlnConf object

o AlnConf

o AlnConf methods

o AlnConf preliminaries
e The TrimalConf object

0 TrimalConf

o TrimalConf methods

o TrimalConf preliminaries
e The RaxmlConf object

o RaxmlConf

o RaxmlConf methods

o RaxmlConf preliminaries
e Undocumented functions

7.1. The Locus object

72

A Locus instance contains a description of a gene locus, required for Project methods to function
correctly

7.1.1. Locus

Usage:
locus = Locus(char_type=char_type, feature_type=feature_type, name=name, aliases=aliases)
char_type: dna or prot. The molecule type you want to analyses.

feature_type: genbank feature type (eg, CDS, gene, tRNA). Needed also for denovo data, when
the actual type is not important, as long as you specify the same type for your data with
‘add_feature to_record'

name: any string. Preferably the gene or product values as they appear in the genbank file, if one is
used. No spaces allowed. Preferably, the same name should be designated to your
denovo data with ‘add _feature to record'.

aliases: a list of names used to represent the locus in the product or gene qualifiers on
genbank. Must be identical to the way it appears in the genbank file (including
whitespaces). Each record feature that you want to include in the analysis must have
the name or one of the aliases in the gene or product qualifier, which appears in the
genbank file, or as was specified with ‘add feature to record'.

errors will be raised when:

char_type is anything but dna or prot
feature_type is not a string

aliases is not a list

any value in aliases is not a string

7.1.2. Locus methods

_ str__(self)

If L is a Locus object, str (L) will return a string representation of it.

/.2. The Concatenation object

A Concatenation instance contains instructions on how to concatenate loci into a super matrix. It
determines which loci to include, which loci must exist for all the OTUs in the supermatrix and which
are optional.

7.2.1. Concatenation

Usage

c = Concatenation(name, loci,otu_meta,otu_must_have_all of = [], otu_must_have_one_of =
‘all',define_trimmed_alns = [])

name: any string, have to be unique.
loci: a list of Locus objects

otu_meta: the name of the qualifier (or column in the CSV file) which specifies the OTU. This
column may have the same value for different record features, indicating that the
sequences belong to the same sample and should be concatenated.

73

otu_must_have_all_of: a list of Locus object names representing sequences that must exist
for each of the OTUs in the supermatrix. OTUs that do not have this sequence will
be excluded from the supermatrix.

otu_must_have_one_of: a list of lists of Locus object names. The OTUs in the supermatrix must
have at least one locus in each list.

define_trimmed_alns: list of strings which are partial or complete tokens of trimmed
alignments. Tokens are the names of the trimmed alignment. Trimmed alignment
tokens have three values connected by a ‘@', representing the locus name, the
alignment name and the trimming name. For example, “cox1@mafftDefault@trimal”.
When a locus has a single trimmed alignment, it will be used without checking this list.
If there is more than one trimmed alignment for a locus, this list will be checked for
clues regarding which alignment should be taken. For example, if all the loci were
aligned twice, once with MAFFT and again with Muscle, and we wish to use only the
mafft trimmed alignments, assuming the AlInConf.method_name is “mafftDefault’, the
value of “define_trimmed_alns” should be [“mafftDefault’]. If we want to use the MAFFT
alignment for cox1 and the Muscle alignment for cytb, the value can be
[“‘cox1@mafftDefault”, “cytb@muscleDefault’]

errors will be raised when:

e loci contain values which are not Locus objects
e a Locus.name repeats more than once in loci

known issues:

You are protected from having a locus represented by less than four sequences in the supermatrix,
the locus will be dropped. You are NOT protected from having no overlap in the loci, ie, each OTU is
represented by different loci with no overlap, if your specifications allow it.

7.2.2. Concatenation methods

str (self)

If Cis a Concatenation object, str (C) will return a string representation of it.
7.2.3. The Project object

The Project contains all the input data and analysis output. It also records the (phylogenetic analysis)
methods used. The majority of steps taken are done using Project (python) methods. The Project can
be saved as a pickle file which can then be read back in order to add data or modify the analysis. It is
the best reproducibility option in ReproPhylo, but there also alternative ‘back up' strategies such as
keeping the sequence records and metadata in a GenBank format, as well as the trees and the
various stages of the alignments in a chosen format.

/7.3. Project

Usage
project = Project (“loci file.csv”)
or

project = Project (loci objects list)

74

Attributes

The attributes are populated as the analysis progresses. The contain the inputs, outputs and
information on the analysis. If project is a Project instance, it will have the following attributes.

project.loci: a list of Locus objects

project.records: a list of SeqRecord objects of the input data. Records from genbank files only
retain features that fit one of the Locus objects. Empty list by default

project.starttime: a formatted string representing the time the project was initiated

project.user: a list of items containing user specified information. It takes its content from a file
named USER, placed in the cwd by the user, which contains lines with the format
keyword=value. It is a good place to record any important aspect of the analysis not
recorded automatically, such as the search phrase that was used in GenBank and
when GenBank was accessed, for example:

name=Amir Szitenberg
email=A.Szitenberg@hull.ac.uk
GenBank search phrase = Tetillidae[orgn]
GenBank accessed on = 24/12/2014

By default it is an empty list

project.records_by locus: a dictionary with Locus object names as keys and lists of
SeqRecord objects as values. The SegRecord objects are the precise sequence
feature described by the Locus object. For example, if we have a nuclear protein CDS
Locus with name X, and we provide a genbank entry of the DNA sequence containing
both exons and introns, the SeqRecord object in project.records_by locus[X'] will
contain only the exons, ie the CDS. It will have no metadata associated. The record ID
will be the accession number with the suffix “ f0” if it is the first feature from that
genbank entry to be used, “ f1” if it is the second and so forth. The metadata
associated with the record feature will be accessed using the extended ID (original
accession plus the suffix). This attribute is populated using the method
project.extract by locus(). By default it is an empty dictionary.

project.concatenations: a list of Concatenation objects. Each with a unique name attribute. They
can be added to the Project using project.add_concatenation(). The default value is an

empty list.

project.alignments: a dictionary with alignment tokens as keys and MultipleSegAlignment
objects as values. Alignment tokens have the form of
Locus.name@AInConf.method_name. For example, “cox1@muffiDefaults”. The

project.alignments attribute gets populated by passing an AlnConf object list to the
project.align method. By default, project.alignments is an empty dictionary.

project.trimmed_alignments: a dictionary with trimmed alignment tokens as keys and
MultipleSegAlignment objects as values. Trimmed alignment tokens have the form
of Locus.name@AInConf.method_name@TrimalConf.method_name. For example,
“cox1@mufftDefaults@gappyout”. The prject.trimmed_alignments attribute gets
populated by passing a TrimalConf object list to the project.trim method. By default,
project.trimmed_alignments is an empty dictionary.

project.trees: a dictionary with tree tokens as keys and Tree objects as values. Tree tokens
have the form of Locus.name@AInConf.method_name@RaxmlConf.method_name.

75

http://biopython.org/wiki/SeqRecord
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode

For example, “cox1@mufftDefaults@raxmitree”. The project.trees attribute gets
populated by passing a RaxmIConf object list to the project.tree method. By default,
project.trees is an empty dictionary.

project.used_methods: AInConf, TrimalConf and RaxmlConf objects that passed through
project.align, project.trim and project.iree respectively are backed up in the
project.used methods list for subsequent reporting. In picked Project objects, they are
replaced by string representations of the Conf objects. By default,
project.used_methods is an empty list.

project.aln_summaries: a list of lists of strings. Each list contains string items providing the
following information about the alignments and trimmed alignments in the Project:
token, number of columns, number of rows, nhumber of unique sequences, number of
completely undetermined (all gaps) sequence, number of variable columns, number of
parsimony informative columns and the average gap proportion. It is populated by
project.align and project.trim. By default, it is an empty list.

project.defaults: a dictionary with program names as keys (red) and command paths as values
(green). The keys have to be kept as they are. By default, it is assumed that all the
programs are executable and are in the path:

{'"raxmlHPC':
'raxmlHPC-PTHREADS-SSE3"', 'mafft':

'mafft', 'muscle': 'muscle', 'trimal':
'"trimal', '"pb': 'pb', 'bpcomp': 'bpcomp',
'tracecomp': 'tracecomp', 'palZnal':

'palZnal.pl'}

7.3.1. Project methods

project.read embl genbank(filenames_list)

filenames_list: a list of strings. The strings are paths to genbank or embl formatted files.
According to the Locus objects in project.loci, the records will be stripped from sequence
features which are not needed for the analysis. In addition, the remaining features will be given
a feature ID qualifier, as well as sequence length, GC content and the proportion of ambiguity
symbols qualifiers. If the sequence is protein or the feature is a coding sequence, protein
ambiguity symbols proportion will be added as well. If start_git was used, the input files will be
added to the repository, and .ipynb and .py files will be updated.

project.read_denovo(filenames_list, char_type, format = 'fasta')

filenames_list: a list of strings. The strings are paths to input files. If start_git was used, the
input files will be added to the repository, and .ipynb and .py files will be updated. All the files
must have the same character type, either DNA or protein. The method can be used twice
consecutively in order to read both DNA and protein data into the same Project. A source
feature will be created for each sequence. The record will be given a record ID of the form
‘denovo0'. The record id will be placed in the ‘original_id' qualifier. The record description, if
exists, will go into the ‘original_desc' qualifier. The new source feature will be given a feature id
of the form denovo0O_source, which will be placed in the feature_id qualifier of the source
feature. If the sequences are aligned, the gaps will be reset and a warning will be raised (to
read alignments as alignments see project.read alignment). The source feature on its own is
insufficient. At least one more feature has to be created with project.add feature to record.

char_type: ‘dna’ or ‘protein'. Describes the character type of the sequences in the files read.

format: the input files format. ‘fasta’ by default. Can be any Biopython SeglO or AlignlO

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

format. All the files must have the same format. To read files with different formats use
consecutively.

project.read alignment(filename, char type, feature_type, locus_name,
format="fasta", aln method name = "ReadDirectly", exclude=[])

filename: a string. The string is a path to input an input alignment file. If start_git was used,
the input file will be added to the repository, and .ipynb and .py files will be updated. The file will
be read as a MultipleSeqAlignment and placed into project.alignment with the token
“locus_name@aln_method _name” as key. The records will also be treated in the same manner
as they would have been if the file was read with project.read_denovo, with two exceptions:
first, both a source feature and an additional feature will be created. For the records to be
used, char_type, feature_type and locus_name have to fit one of the Locus objects in
project.loci. Second, the same feature qualifiers will be added as when a genbank file is read
using project.read_embl_genbank.

char_type: ‘dna’ or ‘protein'. Describes the character type of the sequences in the files read.
feature_type: a string. Needs to fit one of the feature types in project.loci.

format: the input files format. ‘fasta’ by default. Can be any Biopython SeqlO or AlignlO
format.

aln_method_name: any string. will be used in tokens serving as keys in project.alignments,
project.trimmed_alignments and project.trees. "ReadDirectly" by default.

project.add feature_ to_ record(record id, feature_ type, location='full',
qualifiers={})

record_id: string. The id of the record to which a feature is added. The qualifiers ‘GC
content', ‘nuc_degen_prop' and ‘prot_degen_prop' will be added.

feature_type: a string. Type of the added feature.

location: a list of three integers: [start, end, strand]. end has to be larger then start. strand is
either 1 or -1. By default, the whole sequence will be included. Biopython will raise an error if
the sequence is shorter than the specified location length.

qualifiers: dictionary. keys are feature qualifiers and values are the qualifier values.

project.add concatenation(concatenation_object)

concatenation_object: a Concatenation object. The object will be appended to
project.concatenations. Values of used as record ids will be checked and characters that will
break downstream analyses will be replaced with “ ro_". The original values will be backed up
in a new qualifier.

errors will be raised when:

e concatenation_object is not a Concatenation object
e concatenation_object.name allready exists in project.concatenations (you can reset by
doing project.concatenations = [])

project.make_concatenation_alignments ()

Will create a supermatrix for each Concatenation object in project.concatenations and will put
them in project.trimmed alignment using the concatenation.name as a key.

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO

errors will be raised when:

e There is more than one trimmed alignment for a locus and no extra definitions are
provides

e Cannot guess the prefered trimmed alignment based on the hits supplied via
define trimmed aln inthe Concatenation object

project.write(filename, format = 'genbank')

Will write the SeqRecord objects from project.records into a file, including their modifications.
The modifications can include the exclusion of record features, because they did not match a
Locus object. | will also include changes and additions made to feature qualifiers, either
automatically or by the user. If start_qit was used, filename will be added to the repository and
.py and .ipynb files will be updated.

filename: output file name.

format: string. Either ‘csv', to produce a fab delimited text file, or any Biopython recognizable
format. ‘genbank’ by default.

project.correct metadata from file(csv_file)

A CSV file written with project.write() can be edited manually and then read back into the
Project in order to modify and add feature qualifiers. If start_git was used, csv_file will be added
to the repository and .py and .ipynb files will be updated.

csv_file: CSV file name. The CSV file needs to be tab delimited. It is easy enough to write one
with project.write(), edit it and read it back. It is almost impossible to write one manually from
scratch. When editing, be aware of typical errors.

project.if this_then_that (IF_THIS, IN_THIS, THEN THAT, IN_THAT, mode =
'whole')

Allows to search for a value in a certain qualifier and when found to put another (or the same)
value in another (or the same) qualifier, either new or existing one. example

IF_THIS: any string. A search phrase to look for.
IN_THIS: a qualifier name.
THAN_THAT: any_string. A value to introduce to the metadata

IN_THAT: a qualifier name. The qualifier in which to put the new value. Can be a pre-existing
or new qualifier.

mode: ‘whole' or ‘part’. ‘whole' means that only an identical match to IF_THIS will be
considered a match. ‘part' means that even if IF_THIS is a subset of the target, it will be taken
as a match. For example, in order to get genera from species names, the ‘part' mode needs to
be used.

project.add qualifier (feature_ids, name, value)
Add a qualifier and its value to features for which you specify their feature_id. example

feature_ids: a list of feature ids. The feature ids can be retrieved by looking at a file

generated with project.write().

name: any string. The name of the new qualifier or existing qualifier.

http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/wiki/SeqIO#File_Formats
http://nsaunders.wordpress.com/2012/10/22/gene-name-errors-and-excel-lessons-not-learned/

value: any string. The value of the new or existing qualifier.
project.add _qualifier from source(qualifier)

For each record in Project.records, this will duplicate the source feature qualifier specified by
name and place it in all the other feature in the record. For example, for a genbank record with
a source feature and a cox1 gene feature, project.add_qualifier_from_source(‘organism') will
add the organism value to the new organism qualifier in the cox1 gene feature.

qualifier: a qualifier name present in source. If there is no qualifier of this name in the
source feature of some or all of the records, there will be no warning and no error.

project.copy_paste within feature(from qualifier, to_qualifier)

Duplicate a qualifier within a feature, and give the duplicate a new name. This can be handy if
you want to add values to a qualifier in some records, but you want to do it in another field to
keep the original as is.

from_qualifier: string. The name of the qualifier you want do duplicate within each record
feature.

to_qualifier: string. The name that you want to give to the duplicate. If the name exists, the
values will be overwritten without warning.

project.copy paste from features_ to_source (from feature qual,
to_source qual)

from_feature_qual: a string. The name of the non-source feature qualifier you want to copy
into the source feature.

to source_qual: a string. The name this qualifier will have in the source feature. Existing
source qualifier with the same name will be overwritten.

project.extract by locus()

Will iterate over records and record features in project.records. For each non-source feature: if
both the feature type and gene or product qualifiers fit the Locus.feature type and
Locus.name/Locus.aliases of any of the Locus objects in project.loci, the feature will be placed
as a SegRecord object with feature id as SeqRecord.id in the list
project.records_by_locus[Locus.name].

will raise errors when:

e trying to read a record that only has protein sequence as DNA Locus
e frying to read a DNA record that doesn't have a ‘translation’ qualifier as a Protein Locus.

project.exclude(start_from max=True, **kwargs)

Will exclude the records specified in kwargs. This method can be used instead of
project.extract_by_locus() by leaving start_from_max set to its default value - True. In such
case, all the record features will be read to project.records_by_locus, except for the ones
specified in kwargs. Alternatively, start_from_max can be set to - False. In this case, the
excluded record features passed through kwargs will be removed from the current content of
project.records_by_locus.

start_from_max: True or False. True means that all the record features in project.records that
fit any of the Locus objects will be included, except for the ones specified in kwargs. False

http://biopython.org/wiki/SeqRecord

means the excluded features will be removed from the current content of
project.records by locus

**kwargs: a dictionary with Locus.name as keys and feautre id lists as values. This
dictionary can look like this, for example:

**{coxl: [‘denovo0O fO0',
‘AM45814 £3'], cytb:
[‘FR784125 £0']}

Another way to pass this value is as a list of keywords and arguments. For example:
pJj.exclude (coxl=[‘denovo0O f0'", ‘AM45814 £3'], cytb=[‘FR784125 f0'])

Using this notation, the curly braces are omitted and the locus name is used as a name and not as a
string (i.e. no quotation marks). While looking nicer, there is a catch with this approach. Locus names
that start with a number (e.g. 18S) cannot be converted from string to name, and the method will
break. Therefore, the first notation is safer in this case.

Two records will be excluded from the cox1 dataset and one from the 18S dataset.
will warn when:

e not all the specified feature ids are found
e alocus name, as used in the kwargs keys, is not found in project.loci

project.include(start_from null=True, **kwargs)

Will include the records specified in kwargs. This method can be used instead of
project.extract_by locus() by leaving start_from_null set to its default value - True. In such
case, only the record features passed through kwargs will be read to project.records_by_locus.
Alternatively, start_from_null can be set to - False. In this case, the included record features
passed through kwargs will be added to the current content of project.records_by_locus.

start_from_null: True or False. True means that only the record features in project.records
that fit any of the Locus objects and are specified in kwargs, will be included. False means the
included features will be added to the current content of project.records by locus

kwargs: a dictionary with Locus.name as keys and feautre id lists as values. This
dictionary can look like this, for example:

**{coxl: [‘denovoO fO0',
‘AM45814 £3'], 18s:
[‘FR784125 £0']}

Two records will be added to the cox1 dataset and one to the 18S dataset.
will warn when:

e not all the specified feature ids are found
e alocus name, as used in the kwargs keys, is not found in project.loci

project.filter by seq length(locus name, min length=0, max length=None)

Will remove sequences from project.records_by_locus if they are shorter than min_length, for
the specified locus. If max_length is specified, it will also remove sequences that are longer than
max_length. The sequences will not be removed from project.records. If you run
project.extract_by locus() again, the filtering will be undone. The same will happen with
project.exclude() with start_from max=True.

min_length: integer. The minimum sequence length allowed. Zero by default.

80

e max_length: integer. The maximum sequence length allowed. Unlimited by default.

project.filter by gc_content(locus_name, min_percent_gc=0,
max_percent_gc=None)

Will remove sequences from project.records_by_locus if they fall within the GC content range
specifiers. The sequences will not be removed from project.records. If you run
project.extract_by _locus() again, the filtering will be undone. The same will happen with
project.exclude() with start_from max=True.

min_length: integer. The minimum sequence length allowed. Zero by default.

max_length: integer. The maximum sequence length allowed. Unlimited by default.

project.align(alignment methods=[], pal2nal='defaults')

Will run sequence alignments to the data of the loci specified in AInConf objects and the
programs and parameters specified. The method will run the command lines in the AInConf
object, will run pal2nal if required, and will produce platform, software and timing information
which will be stored in the AlInConf object. It will also store the resulting alignments as a
MultipleSegAlignment in the project.alignments attribute and append the used AlnConf object to
project.used methods. Finaly it will add a list of alignment statistics to project.aln_summaries.

alignment_methods: AInConf object list.

pal2nal: path to executable. The defaults value ‘defaults' means the path will be taken from
the project.defaults attribute. It can be overridden ad-hoc by providing the path as a string or for
the duration of the analysis by changing it in project.defaults. For example, to change the path
of pal2nal and using a non executable instance of it you can use the following command:

project.defaults[‘pal2nal'] = ‘perl /home/user/program/pal2nal.pl’.
will warn when:

e alignments have less than four unique sequences and are therefore dropped.
will raise errors when a codon alignment is attempted and:

e cannot find CDSs for all the protein sequences

e cannot find a protein sequence for all the CDSs

e a CDS and its respective protein sequence are not of compatible lengths (CDS three times
longer the protein

project.trim(list_of Conf_objects)

Will run alignment trimming on alignments specified in TrimalConf objects and the programs
and parameters specified. The method will run the command lines in the TrimalConf object, and
will produce platform, software and timing information which will be stored in the TrimalConf
object. It will also store the resulting trimmed alignments as MultipleSegAlignment objects in the
project.trimmed_alignments attribute and append the used TrimalConf object to

project.used_methods.

list_of_Conf_objects: RaxmlConf object list.
project.tree(list_of Conf_objects)

Will run tree reconstruction on trimmed alignments specified in RaxmIConf objects and the
programs and parameters specified. The method will run the command lines in theRaxmlConf

http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html

object, and will produce platform, software and timing information which will be stored in the
RaxmlConf object. It will also store the resulting trees as a Tree object in the project.trees
attribute and append the used RaxmlConf object to project.used methods. Finally it will add
also add a NHX string representation to project.trees.

list_of_Conf_objects: RaxmlConf object list.

Also see important reporting functions (ie not Project methods) below

project.species_vs_loci(outfile name)

Will print a CSV file with Locus names as columns and source organism qualifiers (species) as
rows. The values will be the number of occurrences of each species in each Locus. Records
without a source feature, or without an organism qualifier in the source feature will be
summarized in a line called ‘undef.

outfile_name: output file name for the CSV table.

project.write_ by locus(format = 'fasta')

Will write a sequence file for each Locus in project.records by locus. The file name will be
Locus.name.format (eg, cox1.fasta). The sequence ids in the files will be the feature ids (eg,
denovo0_f0, AM745218_f3).

format: string. Any Biopython recognizable format.

project.write_alns(id=['feature_id'], format = 'fasta')

Will write a sequence alignment file for each MultipleSegAlignment object stored in
project.alignments.

id: a list of feature qualifier names, as they appear in a genbank representation of
project.records (A genbank file can be produced with project.write()). Names of source
qualifiers have to be prefixed with “source_”. Annotations have to be prefixed with
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the
written files.The default value is [feautre_id'].

format: any Biopython AlignlO format in which the files should be written.
U rai hen:

e there are no alignments in the Project

project.write_trimmed alns(id=['feature_id'], format = 'fasta')

Will write a sequence alignment file for each MultipleSegAlignment object stored in

project.trimmed_alignments.

id: a list of feature qualifier names, as they appear in a genbank representation of
project.records (A genbank file can be produced with project.write()). Names of source
qualifiers have to be prefixed with “source_”. Annotations have to be prefixed with
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the
written files.The default value is [feautre_id'].

format: any Biopython AlignlO format in which the files should be written.

will raise an error when:

e there are no trimmed alignments in the Project

http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/AlignIO#File_Formats
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/AlignIO#File_Formats

project.show_aln(token, id=['feature id'])

Will write an html file of the alignment or trimmed alignment indicated by the token and will
show it in a new browser tab.

token: a key in the project.alignments or project.trimmed alignments dictionaries.

id: a list of feature qualifier names, as they appear in a genbank representation of
project.records (A genbank file can be produced with project.write()). Names of source
qualifiers have to be prefixed with “source_”. Annotations have to be prefixed with
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the
written files.The default value is [feautre_id'].

project.clear_ tree_ annotations()
Will clear all node Eace objects from all the trees
project.write nexml (output name)

Will write all the trees to a file in nexml format. The tree leaf attributes will include all the feature
qualifiers as well as the aligned sequences and the trimmed-aligned sequence.

output_name: any string.

project.annotate (fig_folder, root meta, root value, leaf labels_ txt meta,
leaf node color_meta=None, leaf label colors=None, node_bg meta=None,
node_bg color=None, node_support_dict=None, heat_map meta = None,

heat map colour_scheme=2, multifurc=None, scale = 1000, html = None)

Will produce annotated .png representation of all the trees in the project. The basic operation of
the method is described next, but it is not essential to understand in order to use. The method
works by storing some Face and NodeStyle objects in the Tree objects, making and adding a
TreeStyle and then rendering a png file for each tree using that TreeStyle. The TreeStyle is not
retained in the Tree object. The Face and NodeStyle objects can be cleared from the trees by
using project.clear tree annotations(). The options in project.annotate() represent a very small
selection of the total ETEZ2 capabilities. It is therefore also possible to fetch a Tree objects and
use ETE functions and Tree methods directly on it. For example, we can add a customized
NodeStyle:

t = project.ft (“coxl”)
nstyle - NodeStyle()
configure nstvle according to ETE2 manual
for n in t.traverse():
n.set style(nstyle)
fig_folder: a string. A path in which to write the png files. Required.

root_meta: a qualifier name. This gualifier will be used to look for values that match the
values in root_value and will take the record features which have this value to belong to the
outgroup. For midpoint rooting use “mid”. Required.

root_value: a string. Record features which have this value in the root_meta qualifier will be
included in the outgourp. Required.

leaf_label_text_meta: a list of strings. The strings are feature qualifier names which should
be included in the leaf labels in the trees. Required.

83

http://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.Face
http://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.Face
https://pythonhosted.org/ete2/reference/reference_treeview.html#nodestyle
http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
https://pythonhosted.org/ete2/reference/reference_treeview.html#treestyle
http://etetoolkit.org/
https://pythonhosted.org/ete2/reference/reference_treeview.html#nodestyle

leaf_node_color_meta: a string. A qualifier name. The values in this qualifier will determine
the label colors based on a dictionary passed through leaf label_colors.

leaf_label_colors: a dictionary with qualifier values as keys and color names, RGB codes

or a random color generator as values. Possible examples:

Using color names

colors = {‘Tetilla' = ‘red',
‘Craniella' = ‘blue'}

Using RGB codes

colors = {‘Tetilla' = ‘FF0000',
‘Craniella' = ‘0000CD'}

Using random

colors = {‘Tetilla' = random color (h=None, l1=None, s=None),
‘Craniella' = random color (h=None, l=None, s=None) }

You can fix any of the components by specifying h, 1 or s.

node_bg_meta: a string. A qualifier name. The values in this qualifier will determine the
background colors of tree clades based on a dictionary passed through node_bg_colors.

node_bg_colors: a dictionary with qualifier values as keys and color names, RGB codes
or a random color generator as values. Possible examples:

Using color names
colors = {'Tetilla' = 'red',
'Craniella' = 'blue'}
Using RGB codes
colors = {'Tetilla' = 'FF000O0',
'Craniella' = '0000CD'}
Using random
colors = {'Tetilla' = random color (h=None, l1=None, s=None),
'Craniella' = random color (h=None, I1=None, s=None) }
You can fix any of the components by specifying h, 1 or s.

node_support_dict: a dictionary of colors as keys and lists of two integers (upper and
lower node support limits) as values. This dictionary will determine the annotation of node
supports on the tree, using colored bullets. For example:

When node supports are percents (eg, bootstrap percentage)
supports = {'black':[100,99],

'dimgray':[99,75],

84

https://pythonhosted.org/ete2/reference/reference_treeview.html?highlight=treestyle#color-names
https://pythonhosted.org/ete2/reference/reference_treeview.html?highlight=treestyle#color-names

'silver':[75,50]}

When node supports are proportion values

(eg posterior probabilities)

supports = {'black':[1,0.99],
'dimgray':[0.99,0.75],
'silver':[0.75,0.5]}

heat_map_meta: a list of feature qualifiers. The values in all of these qualifiers have to be
numeric. They will compose a vector to be used in a profice node feature which will be plotted
with using a ProfileFace.

heat_map_colour_scheme: colors used to create the gradient from min values to max
values. 0=green & blue; 1=green & red; 2=red & blue (default). In all three cases, missing
values are rendered in black and transition color (values=center) is white.

multifurc: a numeric value within the range of node supports. For example, 1 - 100 for
bootstarp support, 0 - 1 for posterior probabilities. Nodes with lower support than specified will
be multifurcated.

scale: integer. The tree width. It is the same as the ETE2 TreeStyle attribute named scale. The
default value is 1000.

html: file path. If specified, an html with links to the figures off all the trees will be written in the
path.

Known issues:

e The node support legend orders randomly
e Multifurc is glitchi in some cases

project.report seq stats()

Will plot four figures, each with a box plot representation of sequence length, GC content,
proportion of nucleotide and protein ambiguous positions, for each locus.

In the following methods, token is a search phrase that will be looked for amongst the keys of the
relevant project attribute. For example, if we look for a trimmed alignmnet using the token “cox1”, we
will get project.trimmed_alignmnets[‘cox1@mafftDefault@gappyout].

U rai hen:

e the token is not found
e the token matches more than one key. In this case a more informative token is needed. In the
case of out cox1 token, we may get an error message looking like this:

The token coxl was found in more then one tree key:
[“coxl@mafftDefaultlgappyout”, “coxl@muscleDefault@gappyout”]

we can copy and paste our more informative token from this error message and use
cox1@mafftDefault as our more specific token.

https://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.ProfileFace
https://pythonhosted.org/ete2/reference/reference_treeview.html#id2

project.ft (token)
Fetch a Tree objects from project.trees using a token.
project. fa(token)

Fetch a MultipleSegAlignment objects from project.alignments using a foken.

project.fta (token)

Fetch a MultipleSegAlignment objects from project.irimmed_alignments using a foken.
project.fr(locus_name, filter=None)

Will fetch the SeqRecord objects of the specified locus.

locus_name: the name attribute of one of the Locus objects in project.loci.

filter: a list of lists. Every (sub)list is a pair of qualifier and value. If filter is specified, only
records that have all the specified values in the specified qualifiers will be kept. For example,
the command:

project.fr('coxl', filter = [['genus', 'Cinachyrella'],
['porocalyx','2']1])

will return a list of cox1 SegRecord objects which have the value ‘Cinachyrella’ in their genus
qualifier and the value ‘2" in their porocalyx qualifier (see here for context).

/7.4. ReproPhylo functions meant to be used directly

list loci_in genbank (genbank filename, control_ filename, loci_report=None)
genbank_filename: the path to the genbank file.
control_filename: a path to write the loci CSV
loci_report: a path to write the loci counts report. If None, will be written to stdout.
will warn when
e agene or product qualifiers are not found

will raise error when

e the file format breaks the Biopython genbank parser
known issues

for now only accept genbank files (not embl)

pickle_pj(project, pickle file name)

Will create a pickle file of the Project instance. Will commit it if start_git() was used. Will replace
the Conf objects in project.used_methods with string representations of these Conf objects.

project: a Project instance.

http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/SeqRecord

pickle_file_name: a path to write the file.
known issues
The string representations of the Conf objects are badly formatted but readable.
unpickle pj(pickle file name)
Will return a Project instance based on the pickle file passed.
pickle_file_name: the path to the pickle file
usage:
project = unpickle pj (pickle file name)
project is now a Project instance. For example,

it has the project.loci attribute.

known issues
The string representations of the Conf objects are badly formatted but readable.
publish(project, folder name, figures folder)

Will archive the following file into a zip file: a report produced with report_methods, a Project
pickle file produced with pickle_pj, a genbank file containing project.records, a nexml file
containing all the trees, with the aligned and trimmed aligned sequences as leaf attributes.

project: a Project instance
folder_name: the name of the zip file (.zip will be added if missing from this value)

figures_folder: a path to the tree figure files. The files will be picked up only if they were
generated using project.annotate() .

calc_rf(project, figs_folder)

Will calculate the robinson_foulds distance between each pair of trees in project.trees. Will
return a list with two values. The first will be a heat map plot of the rf values with numerical
labels, the second will be a list of strings forming a legend table which associate the labels in
the figure with trees in project.trees.

project: a Project instance
figs_folder: a path to write the heatmap plot png file.
draw_trimal scc(project, num col, figs folder, trimmed=False, alg = '-scc')

view_csv_as_table(csv_filename, delimiter, quotechar='|")

7.5. The AlnConf object

5.5.1. AlnConf

87

5.5.2. AlnConf methods

5.5.3. AlnConf preliminaries

7.6. The TrimalConf object

5.6.1. TrimalConf

5.6.2. TrimalConf methods

5.6.3. TrimalConf preliminaries

5.7. The RaxmlConf object

5.7.1. RaxmlConf

5.7.2. RaxmlConf methods

5.7.3. RaxmlConf preliminaries

78. Undocumented functions

The following functions are present in the module but are not yet covered by either the use cases or
this command reference. They include the PbConf object, which can be used to run a phylobayes tree
reconstruction, a bayestraits function that takes trait information from the project's metadata and a
tree from the project's trees and exonerate functions designed to run exonerate and feed the data to a
reprophylo project. The LociStats object allowing sorting and subsetting loci based on various
statistics is also available.

The three top things which are under development are a more scalable report, faster feature iteration
throughout, and multiparanoid functions.

88

8. A Galaxy workflow - Iguaninae data

Galaxy is an open, web browser based environment designed to provide workflow tools using a
graphic user interface. Galaxy takes care of all the aspects of reproducibility by controlling the input
and output files and their provenance in recorded histories. The histories record the order of the tools
that were used, the input and output files and the choice of parameters. It is possible to export,
publish and share Galaxy histories in a way that will allow others to import them directly into galaxy,
review the analysis, repeat it and extend it.

The following use case focuses on an exploratory analysis of genbank data of iguanas. Since the
ReproPhylo Galaxy tools are powered by the python module, they lag behind in versatility. the Galaxy
tools do not allow us to configure the phylogenetic analysis at the moment. This is obviously a
drawback which is the focus of the current development. However, they still provide a powerful
environment for making sense of your data as well as publicly available data.

In this use case we will perform the following tasks:

e Obtain and install Galaxy with ReproPhylo

8.1. Getting ReproPhylo in Galaxy

An archived Galaxy distribution with the ReproPhylo tools already set up can be downloaded here.

For any linux distribution which uses apt-get, you can extract the archive file and run the
INSTALL.sh file.

$ cd ~/Downloads && unzip ReproPhyloGalaxy-master.zip
$ cd ~/Downloads/ReproPhyloGalaxy-master && sudo ./INSTALL.sh

It will place a galaxy-dist folder and will download dependencies using apt-get and pip. To run
Galaxy, do the following:

$ cd ~/galaxy-dist && sudo sh run.sh --reload

The first start up takes time because Galaxy downloads dependencies as well. Subsequent start ups
will be quick. Once it is done, you'll receive the message

serving on http://127.0.0.1:8080

89

http://galaxyproject.org/
https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
http://127.0.0.1:8080

Go to this address in your browser.
Later on, in order to quit Galaxy when you're done working, use ctrl+c.

If you want to add the ReproPhylo tools to your existing Galaxy download the archive here, and
extract:

$ cd ~/Downloads && unzip ReproPhyloGalaxy-master.zip
Then copy the reprophylo directory to your tools directory:

$ cp -r ~/Downloads/ReproPhyloGalaxy-master/galaxy-dist/tools/reprophylo
/path/to/your/galaxy-dist/tools/.

Next, you'll have to update the tool_conf file with the new tools (also these instructions for more help).
This file can be either

/your-path/galaxy-dist/tool conf.xml,
or
/your-path/galaxy-dist/config/tool conf.xml.main.

copy the text in bold into anywhere in the file, according to the place you want ReproPhylo to appear
in your Galaxy tools menu. However, make sure not to break existing section blocks:

<section id="some section" name="some section">
<tool file="directory/some tool.xml" />
</section>
<section id="ReproPhylo" name="ReproPhylo">
<tool file="reprophylo/start_a project.xml" />
<tool file="reprophylo/read data.xml" />
<tool file="reprophylo/read revised metadata.xml" />
<tool file="reprophylo/run _exploratory pipeline.xml" />
<tool file="reprophylo/annotate_trees.xml" />
<tool file="reprophylo/report.xml" />
<tool file="reprophylo/manage project.xml" />
</section>
<section id="some other section" name="some other section">
<tool file="directory/some tool.xml" />
</section>

You'll also need to install some more dependencies. On machines with apt-get, it is a good idea to
start with

$ sudo apt-get update

You'll need to make sure you have python 2.7 or later, python-pip. (if you use apt-get you can do sudo

90

https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial
https://www.python.org/downloads/
https://pypi.python.org/pypi/pip

apt-get install python python-dev python-pip). On OSX homebrew is a good
replacement for apt-get (ie brew install [whatever]).

Then get some python modules and MAFFT:

Biopython and ETE2 dependencies and modules

$ sudo apt-get install python-setuptools python-numpy python-gt4 python-scipy
python-mysqgldb python-lxml

$ sudo apt-get install python-biopython
$ sudo pip install ete2

Dendropy

$ sudo pip install dendropy

Cloud

$ sudo pip install cloud
Pandas
$ sudo pip install pandas

Matplotlib

$ sudo apt-get build-dep python-matplotlib sudo apt-get install
python-matplotlib

and Mafft

$ sudo apt-get install mafft

Once this is all done you can start your Galaxy instance:

$ cd ~/galaxy-dist && sudo sh run.sh --reload

The first start up takes time because Galaxy downloads dependencies as well. Subsequent start ups
will be quick. Once it is done, you'll receive the message

serving on http://127.0.0.1:8080

Go to this address in your browser.

Later on, in order to quit Galaxy when you're done working, use ctrl+c.

Finally, if the above methods do not fit your system. you can check the Galaxy manual for their
supported OSs.

While developing, we target Ubuntu. However, | will be willing to attempt to assist with installation on
other systems if all of the above fails. Contact me at A.Szitenberg@Hull.ac.uk.

8.2. Getting data from GenBank

This is probably very obvious for most, but here's a short example, for the sake of completeness. In
this use case we'll take all the available lguaninae data from the Nucleotide database in GenBank.
Type in the search phrase iguaninae[orgn] to the search box in the Nucleotide database:

91

http://brew.sh/
http://www.biopython.org/
http://etetoolkit.org/
https://pythonhosted.org/DendroPy/
https://pypi.python.org/pypi/cloud/2.8.5
http://pandas.pydata.org/
http://matplotlib.org/
http://mafft.cbrc.jp/alignment/software/
http://127.0.0.1:8080
https://wiki.galaxyproject.org/Admin/GetGalaxy
https://wiki.galaxyproject.org/Admin/GetGalaxy
mailto:A.Szitenberg@Hull.ac.uk
http://eol.org/pages/4530497/overview
http://www.ncbi.nlm.nih.gov/nucleotide/

;’_, NCBI Resources ¥ How To [¥)
iguaninae[orgn]| ‘ [Search |

Advanced

Nucleotide Nucleotide =

The result page should look as follows:

Display Settings: | Summary, 20 per page, Sorted by Default order Send to: (V)
Results: 1 to 20 of 1548 Page (1 | of 78 Next> Last>>

Cyclura cychlura inornata D-loop, partial sequence; mitochondrial

1. 677 bp linear DNA
Accession: KM275474.1 GI: 712001548
GenBank FASTA Graphics

Cyclura cychlura inornata cytochrome b (Cytb) gene, partial cds; mitochondrial
2. 416 bp linear DNA

Accession: KM275473.1 Gl: 712001532
GenBank FASTA Graphics

Use the send to: link on the top right hand side to download a genbank file:

Send to: %] Filters: Manage F

Choose Destination
oI

Pi @ File O Clipboard

O Collections 1
ful

. us
Download 1548 items. ec
Format ai
| GenBank = C:f?:

lito Sort by

Default order =
|

Create File bt

Datapase: | Select
|lene, partial cds; tRNA-His

The file will be saved in your Downloads directory and will be most likely called sequence.gb.

8.3. Uploading your data to Galaxy

Since Galaxy is in your web browser, we will use the term “uploading” for getting data into Galaxy,
even if it is local, just because this is a browser page terminology. If you haven't already started
Galaxy, do it as follows. If this is the first start-up, it will take a little time:

$ cd /path/to/your/galaxy-dist/
$ sudo sh run.sh --reload
When you get the message:

serving on http://127.0.0.1:8080

go to this address in your browser. The Galaxy page has the tools panel on the left, the analysis
history on the right. Tool forms and output will appear in the middle. To upload your Iguaninae
sequences click the icon on the top, right-hand side of the Tools panel:

92

http://127.0.0.1:8080

ReproPhylo
Get Data

Workflows
B All workfows

The upload box will open. You can either drag and drop your file or locate it using the “Choose local
file” button. Once dropped/ chosen, click the start button.

Download data directly from web or upload files from your disk

Name Size Type Genome Settings Status

O sequence.ad 48MB Auo-det. + Q unspecified (7) v o v

You can Drag & Drop files into this box.

Choose local file || Paste/Fetch data | Start = Pause | Reset || Close

When the file has been uploaded you can close the box. You will then be able to spot your file at the
top of the History panel.

History S 'l}
[

Unnamed history

4.6 MB ™~ % ™

1: sequence.gb @& R

If you wish, you can click “Unnamed history” to edit this history's name.

8.4. Explore and choose the loci to analyse

For this we will use the “Start a Project” tool. In the Tools sidebar, click ReproPhylo, then click Start a
Project. The tool's gui will appear in the middle panel. From the drop-down menu “Initiate the Project
with:”, choose “a GenBank file”. In the drop-down menu “genbank or embl file:” make sure that your
uploaded genbank file is chosen. It should be, as it is the only item in the history. Finally click Execute.

93

1
Tools = Start a Project (version 0.1)

search tools (] Initiate the Project with:
ReproPhylo a GenBank file =

Start a Project genbank or embl file:

Read Data 1: sequence.gb

Read Revised Metadata

Run Exploratory Pipeline @

Annotate Trees

Report This tool starts a ReproPhylo Project. F

A genbank or embl file

e i)

Manage a Project

Once the tool has started running, four new items will appear in the History panel:

4.6 MB ~ % ®»

1" 5: Start a Project [CW AR
on data 1: Metadata
csv

2™ 4: Start a Project [CW AR
on data 1: Loci CSV

' 3: Start a Project @ &S x
on data 1: ReproPhylo
Project

' 2: Start a Project @ &S x
on data 1: Log

1: sequence.gb & SR

They will first appear grey as the tool is initiating, then they will turn yellow as the tool runs, and green
when it's done:

8.8 MB ~ % »

5: Start a Project on @ S xR
data 1: Metadata CSV

4: Start a Project on [OW AR
data 1: Loci CSV

3: Start a Project on @ &S X
data 1: ReproPhylo
Project

2: Start a Project on @ &S x
data 1: Log

1: sequence.gb @ &S %

The new items are identified by their number in the queue, the name of the tool that generated them,
the index of the input file and the output type. For example, item number two was generated with the
tool “Start a Project” using item 1 (sequence.gb) as input, and is a log file of the run. We will look at
this file in a moment.

Iltem number 3 is a pickle file of the Project we have generated. It has all the loci from the genbank file
in its project.loci attribute and all the records from the genbank file in its project.records attribute (see
Project for full description). In this use case we are going to ignore this output because we are going
to customize the included loci instead of taking all of them.

Iltem number 4 is a CSV file (comma delimited) describing all the loci in the genbank file. This is the

94

file we are going to download and edit, in order to determine the loci we want to include.

Item number 5 is another CSV file (tab delimited) describing the metadata of all the records in the
genbank file. Since we are going to exclude some records by removing some loci, this file is also not
relevant for us in this use case.

To download the loci CSV file, click item number 4, which will expand and look like this:

4: Start a Project on (O AR
data 1: Loci CSV

124 lines
format: txt, database: 2

= S . e

On the top right hand side of window shown above, from left to right, we can see the ‘view' button, the
‘edit' button and the ‘hide' button. The ‘view' button will present this output in the main panel, the ‘edit’
button will allow you to edit things like the output's name and its format. The ‘hide' button will hide this

output. It can be shown again using the menu that opens when you use the gear button on the top
right hand side of the History panel.

On the middle left hand side of the window there are the ‘save’, ‘info’ and ‘rerun' buttons. Click the
‘save' button to save the loci csv file to your Downloads directory.

In order to choose our loci, we will also need to see the log of this tool. To do that, expand item
number 2 from the history “Start a Project on data 1: Log” and click the ‘view' (eye) icon.

2: Start a Project on W AR
data 1: Log

293 lines

format: txt, database: ?

B e - e

The log will appear in the middle panel and will look like this:

95

ReproPhylo was called with:
/home/amir/galaxy-dist/tools/reprophylo/base_reprophylo.p

There are 148 gene names (or gene product names) detected

384 instances of CDS,ND4

229 instances of CDS,cytb

48 instances of CDS,Cytb

47 instances of CDS,COIII

23 instances of rRNA,28S ribosomal RNA
21 instances of CDS,alpha enolase

21 instances of rRNA,5.85 ribosomal RNA
15 instances of CD5,C-mos

15 instances of CDS,NADH dehydrogenase subunit 4
13 instances of CDS,NT3

11 instances of CDS,c-mos

9 instances of CDS,cytochrome B

9 instances of rRNA,125 ribosomal RNA

7 instances of CDS,cytochrome b

6 instances of CDS,BONF

6 instances of CDS,ND1

6 instances of CDS.ND2

The top line is the command-line that was used to call the command-line program that powers this
Galaxy tool (it is truncated in this figure). First we are informed that 148 loci were found in this
genbank file, loci being unique values found in the gene and product qualifiers of the genbank
records. Than, all the loci are listed in descending order based on their count in the file. A locus that
appears in four different names in the genbank file will also appear four times in this list. We are going
to exclude most of the loci and keep only the abundant ones. To do that, open the loci csv file you
have saved to Downloads (item number 4) in any text editor (not in a word processor). Keep only the
lines that appear in the image below and delete the rest. Note that for some loci, such as cyt-b,
synonyms were identified and placed on one line. In other cases, such as with NT3, synonyms were
not identified. To indicate that NT3 and NT-3 are synonyms, add “,9” at the end of both lines- as is
shown below. By adding any shared integer at the end of two or more lines, we can indicate that
these names belong to the same gene. It can be any integer at all. Go here for more on the structure
of the loci CSV file.

edited_loci.csv x

dna, rRNA, 285,285 ribosomal RNA

dna, rRNA,5.85 ribosomal RNA,5.85 ribosomal RNA
dna,CDS,C_mos,C-mos,c-mos, C-MOS
dna,CDS,MT-C03,C0III, cox III,COX3
dna,CDS,MT-CYB,cytb,CYTB, Cytb, cytochrome B,cytochrome b
dna, CDS,MT-ND4,NADH dehydrogenase subunit 4,nadh4,ND4
dna,CDS,NT-3,NT-3,9

dna,CDS,NT3,NT3,9

dna, rRNA, rrnS, 125 ribosomal RNA,125 rRNA
Fna,CDS,alpha_enolase,alpha enolase

= © W o~ O Wl

= =

When you are done editing, save the file. Use the name ‘edited_loci.csv' to match the name used
here. Upload the file in the same way we uploaded the genbank file. Finally we can start a project that
will include only the loci we are interested in.

8.5. Start a Project with the selected loci and the
relevant records from the genbank files

Go to the “Start a Project” tool again. This time, choose the “GenBank and loci CSV files” option from
the “Initiate the Project with:” drop down menu. Now indicate the loci CSV file you have just uploaded

(should be number 6) and the genbank file and execute (It is also possible to start a Project using a
loci CSV file only, and to then add sequence from other file formats using another tool. This is not
covered here).

Start a Project (version 0.1)

Initiate the Project with:
GenBank and loci CSV files

Input loci CSV file: [3]

6: edited_loci.csv =

genbank or embl file: [§ |

3

1: sequence.gb =

Three new items (7-9) will appear in the history, and will include a new log file (7), a new Project file
(8) and a new metadata CSV file (9). The Project and metadata will now only include records that
belong to loci we have indicated in our loci CSV file. Note that since we have provided our own loci
CSV file, one is not generated and is not part of the output.

(9: Start a Project @ 4| %
on data 6 and data
1: Metadata CSV

(@ 8: Starta Project @ 4 x
on data 6 and data

1: ReproPhylo Project

(@ 7: Starta Project @ & X
on data 6 and data

1: Log

P | T g R P g Y

8.6. Explore the available metadata from the genbank
file.

The next step in our use case is to edit the metadata. Specifically, we are going to add a genus
qualifier that will allow us to color the clades according to genus. The first stage is to expand the new
metadata CSV item in the history panel (item 9).

9: Start a Projecton @ 4 %
data 6 and data 1:

Metadata CSV

780 lines

format: csv, database: ?

B0 M - e

The history panel provides a peek to the content of the file, but we can also view the full table in the

97

main panel by clicking the eye icon. This is a section of the display that should appear:

record_id seq source:_feature_id source:_sub_species source:_mol_type source:_organelle source:_db_xref source:_organi
KM275473.1 TIACAC.TCTGA KM275473.1_source inornata genomic DNA mitochondrion taxon:118682 Cyclura cychiu
KM275472.1 CTACTA..GACAA KM275472.1_source inornata genomic DNA mitochondrion taxon:118682 Cyclura cychiu
KC433331.1 GCTCTA..AAAAA KC433331.1_source null genomic DNA mitochondrion taxon:51217 Dipsosaurus d
KC433330.1 GCTCTA..AAARAA KC433330.1_source null genomic DNA mitochondrion taxon:51217 Dipsosaurus d
KC433329.1 GCTCTA..CAAAA KC433329.1_source null genomic DNA mitochondrion taxon:51217 Dipsosaurus d
KC433328.1 GCTCTA..AAAAA KC433328.1_source null genomic DNA mitochondrion taxon:51217 Dipsosaurus d
KC433327.1 GCTCTA..AAAAA KC433327.1 _source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433326.1 ACCCTA..GTTTT KC433326.1_source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433325.1 GCTCTA..AAAAA KC433325.1 source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433324.1 ACCCTA..GTTTT KC433324.1_source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433323.1 GCTCTA..AAAAA KC433323.1 _source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433322.1 GCTCTA..AAAAA KC433322.1 source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KC433321.1 GCTCTA..AAAAA KC433321.1_source null genomic DNA mitochondrion taxon:51217 Dipsosaurus d
KC433320.1 GCTCTA..AAAAA KC433320.1_source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
KCB16550.1 ATCCTA..GATAA KCB16550.1_source null genomic DNA mitochondrion taxon:31140 Conolophus sul
KCB16549.1 KC816549.1_source null genomic DNA mitochondrien taxon:31140 Conalophus sul
KCB16548.1 KC816548.1_source null genomic DNA mitochondrien taxon:31140 Conolophus sul
KCB16547.1 KC816547.1_source null genomic DNA mitochondrien taxon:31140 Conalophus sul
KC621625.1 KC621625.1_source null genomic DNA mitochondrien taxon:51217 Dipsosaurus d
AJ278511.2 AJ278511.2_source null genomic DNA mitochondrion taxon:8517 Iguana iguana
AJ278511.2 AJ278511.2_source null genomic DNA mitochondrion taxon:8517 Iguana iguana
AJ278511.2 AJ278511.2_source null genomic DNA mitochondrion taxon:8517 Iguana iguana
AJ278511.2 AJ278511.2_source null genomic DNA mitochondrion taxon:8517 Iguana iguana
1Q340914.1 1Q340914.1_source null genomic DNA mitochondrion taxon:8517 Iguana iguana
JQ340913.1 ACACTC..AAAAT JQ340913.1 source null genomic DNA mitochondrion taxon:8517 Iguana iguana
HM352539.1 TGCAGT..GCAAG HM352539.1 source null genomic DNA null taxon:8517 Iguana iguana
HM352538.1 TGCAGT..GCAAG HM352538.1 source null genomic DNA null taxon:51191 Iguana delicati
HM352537.1 TGCAGT..GCAAG HM352537.1_source null genomic DNA null taxon:65995 Sauromalus at
HM352536.1 TGCAGT..GCAAG HM352536.1 source null genomic DNA null taxon:767358 Sauromalus ki
HM352535.1 TGCAGT..GCAAG HM352535.1_source null genomic DNA null taxon:65996 Sauromalus auf

This view allows us to easily explore the metadata and consider the changes we want to make. In
order to introduce these changes we will have to download this file, which is a tab delimited text file,
and open it in a spreadsheet program such as Excel or Libre Office. Click the diskette icon and look
for the file in the Downloads directory on your machine.

8.7. Add additional information of our own

This section has nothing much to do with Galaxy or ReproPhylo. It is one possible example of how
one might edit the metadata using an external program. In this case we will make a ‘genus' column
out of the “source:_organism” column:

1. Spot the source:_organism column in the spreadsheet.

[H]

B source:_organism source:_specimen_voucher S0
Cyclura cychlura inomata null null
Cyclura cychlura inomata null nul
Dipsosaurus dorsalis YPM:13527 35,
Dipsosaurus dorsalis YPM:13364 3
Dipsosaurus dorsalis MVZ:230560 33.
Dipsosaurus dorsalis MVZ:150059 34
Dipsosaurus dorsalis MVZ:137449
Dipsosaurus dorsalis JOS655
Dipsosaurus dorsalis JOS604
Dipsosaurus dorsalis JOS146
Dipsosaurus dorsalis CAS:HERP:208708
Dipsosaurus dorsalis RBO05084
Dipsosaurus dorsalis CSDDO030608
Dipsosaurus dorsalis CSDDO010608
Conolophus subcristatus null
Conolophus subcristatus null
Conolophus subcristatus null
Conolophus subcristatus null
Dipsosaurus dorsalis JAG
Iguana iguana null
lguana iguana null
Iguana iguana null
Iguana iguana null
Iguana iguana null
Iguana iguana null
lguana iguana null
Iguana delicatissima null
Sauromalus ater null
Sauromalus klauberi null
Sauromalus australis null
Cyclura carinata null
Cyclura ricordi null
Conolophus subcristatus null
Conolophus pallidus null
lguana iguana null
loiana imiana nll

H { J K L ™M N
sorce,_organism Soce:_specimen_voucher
inomata null
inorn nuil
YPW13527
YPH13364
MVZ230560
MVZ150059
MVZ137449
108655
108604
5146
CASHERP208708
805084
CSDD030608
[1 CSDD010608
lophus sub nul
lophus sub nuil
Conolophus subcrstas null
lophus sub nuil
Dipsosaurus dorsalis G
lguanalgu: nuil
lquanaiguana nuil
lquanaiguana nuil
lquanaiguana nuil
lquanaiguana nuil
lquanaiguana nuil
lguanaigu: nuil
lguana delicatissima nuil
Sauromalus ater nuil
Sauronalus Kauberi nuil
| J K [L [M
source:_organism ource:_organism | Sorce:_specimen_voucher
inormat Clura Gychiura INOraE nuil
inomat inoma nuil
YPH13527
YPH13364
WVZ230560
MVZ150059
WVZ137449
08655
08604
105146
CASHERP:208708
B05084
CSDD030608
CSDD010608
ophus sub G S nul
Jophus sub e il
Jophus sub e il
lophus sub s n nul
G
lguana iguana lguana iguana nuil
quana iguana lquana iguana nuil
guana iguana lguana iguana nul
guana iguana lguana iguana nuil
guana iguana lguana iguana nuil
guana iguana lguana iguana nuil
quana iguana lquana iguana nuil
nuil
Sauromalus ater Sauromalus ater nuil
s Kaub by il

4. Select the new source:_organism column and use the menu “data/text to columns” to split the
values to columns on whitespaces.

hi
ura cychlura nomat Cyclura

Dipsosaurus
Conolophus
Conolophus
Conolophus
Conolophus
Dipsosaurus
lguana iguana lguana
guana iquana lguana
guana iquana lguana
guana iquana lguana
guana iquana lguana
guana iquana lguana
Iguana guana lguana
Iquana delicatissima lguana
Sauromalus ater Sauromaius
Sauromalus Kiauberi Sauromaius

H |
sorce:_organism ource:_organism
1urd cychiura inornai

ychiura inornata
cychiura inornata
dorsalis
dorsals
dorsals
dorsals
dorsalis
dorsalis
dorsals
dorsals
dorsals
dorsals
dorsalis
dorsalis
subcristatus.
subcristatus.
subcristatus.
subcristatus.
dorsalis
iguana
iguana
iguana
iguana
iguana
iguana

iquana
delicatissima
er

at
Kiauberi

Source;_specimen_voucher
nul

nul

YPWM13527
YPM13364
MVZ:230560
MVZ:150059
MVZ137449
08655

308604

J0S146
CASHERP:208708
RB05084
CSDD030608
CSDD010608

5. Rename the duplicate source:_organism column as “genus”. Note that now it only contains the
first word of source:_organism, which is the genus. Then delete the other new columns, which
contain the other parts of the source:_organism split values.

1 -

SOUICE:_organism
Cyclura cychlura inornata
Cyclura cychlura ingmata
Dipsosaurus dorsalis
Dipsosaurus darsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Dipsosaurus dorsalis
Conglophus subcristatus
Conolophus subcristatus

Conolophus subcristatus
I

genus source:_specimen_voucher
Cyclura null

Cyclura null

Dipsosaurus YPM:13527
Dipsosaurus YPM:13364
Dipsosaurus MVZ230560
Dipsosaurus MVZ:150059
Dipsosaurus MVZ:137449
Dipsosaurus JOS655
Dipsosaurus JOS604
Dipsosaurus JO5146
Dipsosaurus CASHERP:208708
Dipsosaurus RBO5084
Dipsosaurus CsDD030608
Dipsosaurus C5DD010608
Canolophus null

Conolophus null

Conolophus null

Conplophus null

Pinananre Tar

6. Save your edited file. Use the name “edited_metadata.csv” to match the name used here. Make
sure to save it as a tab delimited CSV file. Now you can upload your edited file to galaxy. Once it
is done, you should expect to see it as a new item (most likely number 10) in your history panel.

10:

@ & R

edited metadata.csv

Revised metadata files are read back using the tool “Read Revised Metadata”. The tool takes a
Project file (use the most recent, number 8, which includes only our loci of choice), and the metadata
CSV file. Click “Execute” to run.

=

ools

eproPhylo
Start a Project
Read Data
Read Revised Metadata
Run Exploratory Pipeline
Annotate Trees
Report
Manage a Project

Eet Data

search tools O

Read Revised Metadata (version 0.1)
Input Project file: [3 7
8: Start a Project on data 6 and data 1: ReproPhylo Project =

Input metadata CSV: 8

10: edited_metadata.csv

When you read data with Read Data, a CSV file containing the metadall
contains ten genes will produce 10 lines in the metadata CSV. In this g
columns will be identical accross the ten lines. Then there's a taxonom
file in excell and read it back using this tool. You can moedify existing co

This tool should add a log file (11) and a Project file (12) which will now have the corrected metadata

in it.

100

(O 12: Read Revised @& 4 ¥
Metadata on data 10
and data 8: ReproPhylo Project

() 11: Read Revised @ 4 Xx
Metadata on data 10

and data 8: Log

A M- o N

8.8. Run a fixed phylogenetic pipeline

Unlike the python module, the Galaxy tools do not allow us to configure the phylogenetic analysis at
the moment. This is obviously a drawback which is the focus of the current development. However, as
a first run that allows you to evaluate your data, or the data from GenBank, it is still very useful. To
perform this run, click the “Run Exploratory Pipeline” tool.

jiools + Run Exploratory Pipeline (version 0.1)
search tools [} Input Project file: 3
ReproPhylo 12: Read Revised Metadata on data 10 and data 8: ReproPhylo Project 2
Start a Project How many threads?:
Read Data 4
Bead Revised Mctadata Overwrite Project's analyses?:
Run Exploratory Pipeline
Annotate Trees figs:
Report Jhome/amir
Manage a Project
S

The tool takes a Project file as input. Specify the most recent, which has the edited metadata.
According to your machine specs, specify the number of threads to run (if in doubt 4 is a good
choice). You can also select to overwrite existing analyses. This can be useful when you are using a
Project which already contains trees, by adding a locus to it with some new data. In this case you may
want to run the analysis again for all the loci, by ticking this box, or just for the new locus, by leaving
the box unticked. The utility of this option will increase, once it is possible to configure the analysis.
Bear in mind that it is possible to analyse the same locus twice, if we would like for example to try
several different taxon samplings, by having the same line twice in the loci CSV file, but with a
different third value, which is the locus name, in each of the lines.

The last bit of information needed is a path to write .png graphic files showing the trees. The .png files
will be written in the path you specify here, and will not be tracked by Galaxy. There are several
reasons for this. First, these files are not needed for reproducibility. You can print them at any time
using your Project file. Therefore, there is no need to clutter the history with them. Second, if you
archive the analysis, as we will when we are done here, the archive will contain these figures and it
will be a part of the history.

This tool will add two output items to your history. A Project file, which now also contains alignments,
trimmed alignments and trees, and a log file:

101

15.1 MB ~ % ™

<" 14: Run @ & K
Exploratory Pipeline
on data 12: ReproPhylo Project

<" 13: Run @& & X
Exploratory Pipeline
on data 12: Log

12: Read Revised Q £ ﬁ

The log file this tool produces can be viewed in the main panel by clicking the eye icon, and it has the
following sections:

The command line used to call ReproPhylo (truncated in the figure) followed by a table showing the
loci in the Project, their record content, and some sequence statistics:

ReproPhylo was called with:
/home/amir/galaxy-dist/tools/reprophylo/base_reprophylo.py /home/amir/galaxy-dist/database/fil

Locus Records Sequence length (max min mean)
5.85_ribosomal_RNA 21 72 72 72.0

MT -ND4 320 1381 12 551.3
MT-CYB 204 1148 180 982.8

C_mos 27 495 227 377.1

rrns 16 952 29 385.0

NT-3 14 510 482 491.4
MT-C03 49 786 643 650.7
alpha_enolase 21 88 88 88.0

28s 23 699 126 169.8

Next, the log shows all the MAFFT command lines that were executed and also information about
dropped loci or taxa. The alignment strategy is fixed to default MAFFT settings without codon
alignment.

mafft 197351417472577.26 5.85 ribosomal RNA.fasta

mafft 197351417472577.26 MT-ND4.fasta

mafft 197351417472577.26 MT-CYB.fasta

mafft 197351417472577.26 C_mos.fasta

mafft 197351417472577.26_rrnS.fasta

mafft 197351417472577.26 NT-3.fasta

mafft 197351417472577.26 MT-C03.fasta

mafft 197351417472577.26 alpha_enolase.fasta

mafft 197351417472577.26_28s.fasta

Alignment 5.85_ribosomal RNA@MafftDefaults has less than 4 unique sequences and will be dropped

The next part shows the TrimAl command lines, which are fixed to the gappyput approach. It also
informs us of sequences that were all gap after trimming and were therefore removed.

/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 MT-CO3@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 NT-3@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 MT-ND4@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 alpha_enolase@afftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 C mos@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 rrnS@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 28s@MafftDefaults.fasta -gappyout
/home/amir/galaxy-dist/tools/reprophylo/programs/trimal -in 993301417472586.53 MT-CYB@MafftDefaults.fasta -gappyout

Alignment MT-ND4@MafftDefaults@gappyout has undetermined sequences which will be dropped: ['U66233.1 f@', 'U66232.1 f@', 'U66235

The log ends with RAXML command lines, html formated links to the figures, and references for all the
software used. The tree reconstruction strategy is fixed to the default RAXML rapid hill climbing

102

algorithm for a single ML search, with relBootstrap branch supports.

Jhome/ami r/galaxy-dist/tools/reprophylo/prograns, raxnlHPC -PTHREADS -SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns/ raxmlHPC-PTHREADS - SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns/ raxmlHPC-PTHREADS - SSE3. -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns/ raxmlHPC-PTHREADS - SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS - SSE3. -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS -SSE3 -
/home/amir/galaxy-dist/tools/reprophylo/prograns/ raxmlHPC-PTHREADS - SSE3 -
/home/anir/galaxy-dist/tools/reprophylo/prograns, raxmlHPC-PTHREADS - SSE3. -

-m GTRGAMMA -n 835451417472580.37 rrnS@afftDefaults@gappyoutd -p 14 -s 835451417472580.37 rrnSH
-m GTRGAMMA -n 835451417472589.37_rrns@iafftDefaults@gappyoutl -p 354 -s 835451417472589.37_rrns@
-m GTRGAMMA -n 835451417472589.37_C_mos@MafftDefaults@gappyoutd -p 657 -5 835451417472589.37 C mo:
-m GTRGAMMA -n 835451417472589.37_C_mos@MafftDefaults@gappyoutl -p 278 -s 835451417472589.37_C_mo:
-m GTRGAMMA -n 835451417472589.37 alpha enolase@MafftDefaults@gappyoutd -p 632 -s 835451417472589
-m GTRGAMMA -n 835451417472589.37 alpha enolase@afftDefaults@gappyoutl -p 157 -s 835451417472580
-m GTRGAMMA -n 835451417472589.37_MT-CYB@MafftDefaults@gappyoute -p 32 -s 835451417472589.37 MT-C
-m GTRGAMMA -n 835451417472589.37_MT-CYB@afftDefaults@gappyoutl -p 675 -5 835451417472589,37 MT-I
-m GTRGAMMA -n 835451417472589.37_MT-NDd@afftDefaults@gappyout® -p 271 -s 835451417472589.37 MT-I

-m GTRGAMMA -n 835451417472589.37_NT-3@MafftDefaultsggappyout® -p 789 -s 835451417472589.37 NT-3@
-m GTRGAMMA -n 835451417472589.37_NT-3@MafftDefaultsegappyoutl -p 976 -s 835451417472589.37 NT-3@
-m GTRGAMMA -n 835451417472589.37 28s@MafftDefaults@gappyoutd -p 581 -s 835451417472589.37 28s@Ma
-m GTRGAMMA -n 835451417472589.37 28s@MafftDefaults@gappyoutl -p 696 -s 835451417472589.37 28s@ia

coococoToUoToToT o

<html>

rooting tree 28s@dafftDefaultsegappyoutefd fb at midpoint

835451417472589. 37_28s@afftDefaul tsegappyout

rooting tree MT-CO3@MafftDefaults@gappyout@fd_fb at midpoint

835451417472589.37_MT-C03@Maf ftDefaul ts@gappyout</A=

rooting tree MT-NDA@MafftDefaultsGgappyout@fD fb at midpoi

835451417472589. 37_MT-ND4@Mat FtDefaul tsegappyoute/A><aR>
rooting tree MT-CYB@MaffiDefaultsgappyout@fD_fb at midpoi

835451417472589.37_MT-CYB@Mat ftDefaul ts@gappyout

rooting tree alpha enolase@MafftDefaults@gappyout@fD fb at midpoint

835451417472589. 37 alpha enolase@afftDefaults@gappyout

rooting tree rrs@MafftDefaultsegappyout@fd b at midpoint

<A href=/home/amir/835451417472589.37_rrns@HafftDefaults@gappyout . png=835451417472589.37_rrns@Mat ftDefaultsegappyout</A=

rooting tree NT-3@MafftDefaults@gappyout@fd_fb at midpoint

835451417472589.37_NT-3@Maf ftDefaul tsgappyout

rooting tree C mos@MafftDefaults@gappyout@fd fb at midpoint

<A href-/home/amir/835451417472589.37_C_mos@iafftDefaultsegappyout . png>835451417472589.37_C_mos@MafftDefaul tsegappyoute/A><aR>
</html>

/home/amir

Exploratory Pipeline References

If you check out the path you specified for the png files, you will see a png file for each one of the
trees:

835451417472589.37_rrnS@MafftDefaults@gappyout.png
835451417472589.37_NT-3@MafftDefaults@gappyout.png
835451417472589.37_MT-CYB@MafftDefaults@gappyout.png
835451417472589.37_C_mos@MafftDefaults@gappyout.png
835451417472589.37_alpha_enclase@MafftDefaults@gappyout.png
835451417472589.37_MT-ND4@MafftDefaults@gappyout.png
835451417472589.37_MT-CO3@MafftDefaults@gappyout.png

835451417472589.37_28s@MafftDefaults@gappyout.png

The file names are composed of a unique ReproPhylo process ID (mostly an internal thing, but can be
useful to assert which process created which tree by checking the log), the locus name, the AInConf
name and the TrimalConf name. The RaxmlConf name is not included, but if you run several tree
strategies on the same trimmed alignment (currently only possible using the python module directly) it
will be noted by a different process ID. You will be able to identify the process by checking the log or
the archive we will create later.

8.9. Annotate the resulting trees using the metadata

The “Run Exploratory Pipeline” tool provides very basic and somewhat uninformative tree figures,
because they have no meaningful annotation. The “Annotate Trees” tool allows you to add all those
things that will make the trees easier to interpret. The first value taken in the tool's GUI is the Project
file produced by the “Run Exploratory Pipeline” tool. The second is a path to which you wish to write
your annotated trees png files. Next comes “Tree width” which controls the width of the trees
compared to the figure borders.

By default, rooting is done at midpoint. If you wish to change this, you can choose “Specify outgroup
using metadata” from the “How to root” dropdown menu. This will add two new boxes to the form, the
first of which will ask you to specify a column name in your metadata. If you wish to use a source
qualifier, the format will be source qualifierName (no colon). In the second new box, put the value
specifying an outgroup OTU. In our case we might have put ‘genus’ in the first of these boxes and
some outgroup genus name in the second of these boxes. For sets of loci that don't have the this
genus, the rooting would stay at midpoint.

103

I+

el Annotate Trees (version 0.1)

search tools () Input Project file: [3 ¢

ReproPhylo 26: Report on data 19: ReproPhylo Project | =

Start a Project Local path to keep figures:
Read Data /home/amir
Read Revised Metadata Tree width:
Run Exploratory Pipeline 1000
Annotate Trees How to root the tree?:
Report Root at midpoint &
Manage a Project How to label leaves?:
Get Data Label leaves with the species name 2

Workflows How to color labels?:

= All workflows

Black =

Color node backgrounds?:

Yes 7

A metadata column name to use for determining bg color:

genus

Select a color scheme:

Blues

Use default ranges for node support annotations?:

Yes

make a heatmap?:

Yes 7

A list of metadata column names comprising the data vector:
GC_content

Select a color scheme:

Green to blue

Collapse nodes?:

No 2

Choose report type:
HTML with links to figures 7

After sorting out rooting, we need to decide how to label the leaves. By default they are labeled with
the species name from the organism qualifier of the source feature. If you wish to change this, choose
“specify labels using the metadata” from the dropdown menu. This will open a new box, in which you'll
need to provide a whitespace delimited list of all the qualifiers you want to include in the label (eg
“source_organism feature_id gene”).

You can also decide whether to leave the labels black or to color them based on some metadata. If
you wish to color the labels, choose “According to rules” in the “How to color labels” dropdown menu.
As before, this will open a box in which to specify a column name, and a dropdown menu in which to
choose a color scheme.

In this use case, we will color clade backgrounds according to genera. Choose yes for “Color node
backgrounds?”. In the box that appears, labeled “A metadata column name to use for determining bg
color” type in “genus”. In the dropdown menu “select color scheme” choose “blues”.

We are going to leave “Use default ranges for node support annotation?” at Yes. If you wish to change
it to No, you'll be asked to provide support ranges and corresponding colors. You will need to type in a
string similar to this one: “black 100 90 gray 90 80 silver 80 50”. You can see color names here.

Another feature we'll take advantage of now is the heatmap. Our's is going to be a simple one with
just one column, but the principle is the same for any size. Change “make heatmap?” to Yes. In the
box that appears, type in “GC_content”, which is one of the column names in the metadata
spreadsheet. Finally, we can choose a color scheme. Here we'll leave it on Red to blue.

Last option in the form has to do with node collapsing based on node support. You can specify a
value, under which nodes will be multifurcated in the figure. We are going to leave as is.

The tool allows you to either make only the figures, with an html file to point at them, or to make a full
archive. We are going to do the first, and leave the second for later.

104

http://en.wikipedia.org/wiki/Web_colors#X11_color_names

Execute the action. Once it is done, your tree files in the path you specified should look like this:
—

u 835451417472589.37_C_mos@MafftDefaults@gappyout.png

5\ 835451417472589.37_rrnS@MafftDefaults@gappyout.png

7l 835451417472589.37_NT-3@MafftDefaults@gappyout.png

835451417472589.37_MT-CYB@MafftDefaults@gappyout.png

'- 835451417472589.37_alpha_enclase@MafftDefaults@gappyout.png

[Z| 835451417472589.37_MT-ND4@MafftDefaults@gappyout.png

[| 835451417472589.37_MT-CO3@MafftDefaults@gappyout.png

P2 835451417472589.37_28s@MafftDefaults@gappyout.png

.bash history

The cox 3 tree (next page) seems to be a nice example of how even this quick analysis provides
insight on the data. Each genus in the tree is colored with a different shade of blue, and GC values
are color coded on the right hand side. Since the extreme colors (red and blue in this case) are given
to the actual lowest and highest values encountered, (which are 42.9% for the species Ctenosaura
pectinata and 48.99% for the species Sauromalus ater in this case) our example is on one hand a bit
misleading because it looks like the range of GC values is higher than it really is. On the other hand,
using the full range of the color scale allows us to visualize the fit between the GC values and the
phylogeny, and to highlight the connection between the tree's midpoint (as it is midpoint rooted) and
the GC content of the leaves. This kind of information is valuable while building a phylogenetic tree,
and we make it jump out at us with almost no effort at all.

105

Node support: ® 99-75@ 100-99¢ 75-50

0.05

106

8.10. Archive the results

An archive of our analysis can be produced by the annotation tool, by selecting an archive output at
the very bottom of the form.

Choose report type:

Full report archive

4

However, typically we would want to archive only after having a look at the figure. We might also want
to write files that are not part of the default archive. For these things we can use the “Report” tool. The
input for this tool is our latest Project file, then we get to choose between producing a zip file and
between producing a GenBank file for the records and alignment files with our choice of format. Here
we'll make a zip file. The last input is the path that contains our figure files, the same one we specified
in the annotation tool.

kS : Report (version 0.1)
search tools (%) Input Project file: 3 7
ReproPhylo 16: Annotate Trees on data 14: ReproPhylo Project
Start a Project Misc Utils:
Read Data Dump a full report to zip file
Read Revised Metadata Local path to figures:
Run Exploratory Pipeline /home/amir
Annotate Trees
p—
Manage a Project
Get Data This tool can either dump all the seugnece alignments (raw and trimmed) in the Project or|

Running the tool with the zip file option will produce three outputs: A log file (18) a Project file (19) and
a report zip file (20).

£ : 20: Report on @® X
data 16: Report
archive

+ > 19: Report on A A
data 16: ReproPhylo
Project

%.: 18: Report on A A
data 16: Log

Expand number 20 and click the diskette icon to download the zip file once the analysis is ready.

20: Report on data @ PR
16: Report archive

data
format: data, database: 2

B 6 - e

107

Extract or mount the zip file and have a look on the files it contains:

loads report_arcive

Name

[files

Mon_01_Dec_2014_22:39:03.pkl

n report.html

% sequences_and_metadata.gb

¢/» tree_and_alns.nexml

Now open the report.html in your web browser. It should have the following sections:

The report begins with a header specifying the date it was made, followed by a table counting the
number of sequence per locus per species in the Project's records.

reprophylo analysis from Mon Dec 1 22:38:27 2014

Data

Species Representation In Sequence Data

species 5.8S_ribosomal RNA MT-ND4 |MT-CYB |C_mos 1mnS NT-3| MT-CO3 | alpha_enolase 28s
Amblyrhynchus cristatus 0 2 12 0 1 1] 0 0 1]
Brachylophus fasciatus 0 1 8 1 0 1 0 0 0
Brachylophus vitiensis 0 0 12 0 0 0 0 0 0
Conolophus marthae 0 0 16 0 0 0 0 0 0
Conolophus pallidus 0 1 7 1 0 1 0 0 1]
Conolophus subcristatus 0 1 130 1 4 1 0 0 0
Ctenosaura acanthura 0 2 0 0 0 0 0 3 0

The second section is a set of plots showing a bunch of sequence statistics, such as sequence
length, for each locus.

Distribution of sequence lengths

400

N
8
=)

o i oo
om
——

-

28s
omal_RNA
C_mos
MT-CO3
MT-CYB

MT-ND4 e o
NT-3
a_enolase
ms

This is followed by a description of each of the Conf objects that were used to align, trim and
reconstruct a tree. These descriptions include the names of the analyzed loci, the time the analysis
started, the command lines that were run, environment info and the length of the execution.

108

AlnConf named MafftDefaults with ID 197351417472577.26

AlnConf named MafftDefaults with ID 197351417472577.26

Loci: 5.85_ribosomal RNA,MT-ND4,MT-CYB,C_mos,rrnS,NT-3,MT-C03,alpha_enolase,28s
Executed on: Mon Dec 1 22:22:57 20814

Commands :

5.85 ribosomal RNA: mafft 197351417472577.26 5.85 ribosomal RNA.fasta
MT-ND4: mafft 197351417472577.26_MT-ND4.fasta

MT-CYB: mafft 197351417472577.26_MT-CYB.fasta

C mos: mafft 197351417472577.26_C_mos.fasta

rrnS: mafft 197351417472577.26_rrnS.fasta

NT-3: mafft 197351417472577.26 NT-3.fasta

MT-C03: mafft 197351417472577.26 MT-C03.fasta

alpha_enolase: mafft 197351417472577.26 alpha enolase.fasta

28s: mafft 197351417472577.26_28s.fasta

Environment:

Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty
Processor: x86_64

Python build: defaultMar 22 2814 22:59:56

Python compiler: GCC 4.8.2

Python implementation: CPython

Python version: 2.7.6

ete? version: 2.2rev1056

biopython version: 1.64

dendropy version: 3.12.0

cloud version: 2.8.5

User: amir-TECRA-W58-A

Program and version: MAFFT v7.123b (2813/18/15)
execution time:

9.25475597382

The results section of the report include the following alignment statistics table

Global Alignmnet Statistics

Nane-Alignment nane
NunPos=ATignnent length

NunSeq=Number of sequences

Unique=Number of unique sequences

(GapProp-Average gap proportion

Varcols=Total variable positions

ParsInf-parsinony informative positions
Unseqs=Completely undetermined sequences (only gaps)

Name NumPos|NumSeq| Unique| GapProp | VarCols| ParsInf| UnSeqs

5.85 ribosomal RNA@MafftDefaults |72 21 1 0.000000 [0 0 0
MT-ND4@MafftDefaults 1386|320 246 [0.602239(373 328 |0
MT.CYB@MafftDefaults 1140 [204 161 [0.137904[550 (468 |0
C_mos@MafftDefaults 504 27 20 0.251690 |55 36 0
rrnS@MafftDefaults 956 10 5 0.597280 |85 75 0
NT-3@MafftDefaults 526 14 10 0.065861 | 160 16 0
MT.CO3@MafftDefaults 786 19 30 0.172119 180 171 o
alpha_enolase@MafftDefaults 88 21 5 0.000000 4 2 0
28s@MafftDefaults 785 23 5 0.783661 | 241 14 0
rrnS@MafftDefaults@gappyout 703 10 5 0.543101 |78 75 0
C_mos@MafftDefaults@gappyout 370 27 19 0.035235 |48 36 0
alpha_enolase@MafftDefaults@gappyout | 88 21 5 0.000000 4 2 0
MT-.CYB@MafftDefaults@gappyout 819 204 150 [0.064414 403 353 |0
MT-ND4@MafftDefaults@gappyout 361 320 170 [0.040313 182 162 |10 ‘[&%6222373_'11}{]9:"&%6223382_'11}{]9:'&%6223345_'11}{]9]" U66228.1 10", U66237.1_10", 'U66220.1f0', 'U66236.1 10"
MT.CO3@MafftDefaults@gappyout 643 19 29 0.000000 179 170
NT-3@MafftDefaults@gappyout 487 14 10 0.007480 156 15 0
28s@MafftDefaults@gappyout 127 23 5 0.003766 |86 14 0

[Alignnent 5.85_ribosonal RNA@HafftDefaults has less than 4 unique sequences and will be dropped

as well as plots showing gap proportions and residue similarity values for each position in each full
and trimmed alignment.

Trimal's Residue Similarity Score (-scc)

MT-CO3 MafftDefaults

LI

100 200 300 400 500 600 700

similarity score

coogQocQor

I
similarity score

coopoH
onvBkO®oO

oONBOOOO
T

alignment position

rity score

p oo

L oo o
T

rity score

pocor

b oo o
T

109

The final section of the report shows all the trees in the Project, including their newick and nhx
representations, and the figure generated.

MT-CO3

Alignment method: MaffiDefaults
Trimming method: gappyout
Tree method: fD_fb

Tree Method ID: 835451417472589.37 MT-C03@MafftDefaults@gappyout

newick format

(((AJ278511.2 f1:3.12957e-06,NC_002793.1 f1:3.12957e-06)100:0.0742247, (H0141194.1 fB:3.12
06)100:0.00635496)100:0.11928)100:0.0437839, ((HQ141186.1_f0:0.00258398, ((HQ141211.1 fe:@.
06,HQ141214.1 f0:3.12957e-06)100:0.00324413, (HQ141216.1 f0:0.00162554, (HQ141212.1 f@:3.12
06,H0141203.1 f0:3.12957e-06)100:3.12957e-06, ((HO141198.1 f@:3.12957e-06,H0141199.1 f0:3.
((H0141183.1 f0:0.00158794,H0141220.1 f0:0.00157031)63:3.12957e-06, ((HQ141185.1 fO:0.0048:
06,H0141190.1 fB:3.12957e-06)0:3.12957e-06)86:3.12957e-06)55:3.12957e-06)86:3.12957e-06) 9
06,HQ141210.1 fB8:3.12957e-06)100:0.00158855, ((HQ141209.1 f0:3.12957e-06, (HQ141206.1 f0:3.
((H0141228.1 f0:3.12957e-06,H0141229.1 f0:3.12957e-06)95:3.12957e-06, (HQ141223.1 f0:3.129
06)95:0.0352605)12:0.00307436)93:0.0484971)100:0.0437839) ;

nhx format

(AJ278511.2 f1:3.12957e-06[&&NHX:dist=3.12957417765e-06:tree_method id=835451417472589.37

Node support: ® 99-75@ 100-99¢ 75-50

The archive includes several additional files. One of them is a genbank file, which is different from the
input file in several ways. First of all, it includes any data we included, even sequences we have
passed through the Read Data tool (see below). It also includes some automatically included feature
qualifiers (such as feature id and GC content) and ones that were manually added (such as genus),
as the snippet below shows. We have written this data in genbank file format because it is a standard
format that can be opened and analysed easily by many scripts and other programs.

DS <1..>416
/product="cytochrome b"
/genus="Cyclura"
/prot_degen prop="8"
/codon_start=3
/nuc_degen_prop="8"
/protein_id="AIW62967.1"
/transl_table=2
/feature_id="KM275473.1_f@"
/db_xref="6I:712001533"
/tree label="Cyclura cychlura inornata"
/record id="KM275473.1"
/GC_content="44.7115384615"
/gene="Cytb"
Jorganism="Cyclura cychlura inornata"
/translation="TRKSHPILKMINNSFIDLPTPSNISSWWNFGSLLGLCLIIQVLTG
LFLAMHYTANISHAFSSVAHICRDVQYGWLIRNLHANGASMFFICLYLHIGRGLYYGSY
LYKETWNLGVILLLLVMATAFVGYVLPWGQMSFW"

110

Finally, it includes a PhyloXML file, containing all the trees and alignments format. The leaf attributes
in those trees include the aligned and trimmed-aligned sequences, as the snippet below shows.
Remember you can produce sequence alignment files in any format using the Report tool.

8.11. Tools not covered by this use case

Earlier we included data from a genbank file in a new project. The Read Data tool allows us to add
data to an existing Project. We have the option to read a genbank file, a fasta file or both. Since
ReproPhylo is capable to read any file format of unaligned or aligned sequences supported by
BioPython, this feature will soon follow in the galaxy tools as well.

In the example below, the choice taken is to add both file formats. We therefore get a dropdown menu
from which to choose a genbank file, and another to choose a fasta file. We also need to specify
whether the fasta file is DNA or protein, the gene name of the fasta sequences and their feature type.
The tool can be used several times consecutively to add several files. The command line tool also
allows to use the file name as gene and feature, in order to enable reading multiple files in one go, so
this will follow in Galaxy as well.

Read Data (version 0.1)
Input Project file: (3 ¢

40: Annotate Trees on data 26: Figures html | =

Read new data?:

Read a fasta and a genbank file 7

Input genbank or embl file: [3 =

40: Annotate Trees on data 26: Figures html | =

fastafile: [3 =

40: Annotate Trees on data 26: Figures html | =

DNA or Protein sequences?:
DNA
The gene name of the fasta sequences (eg coxl):

FeatureType:

Replace data with new one?:

This tool allows to add or replace the data in the project.
char_type (dna or prot), a feature_type (CDS, rRNA etc..

The Manage Project tool includes most of the functions encountered in other tools, but in a way that
allows to break them down to independent operations or to clump them in a different way than they
are clumped by the other tools. This should allow more flexibility in designing a workflow.

8.12. Export your history

The History panel allows you to export the history to a file, which can then be imported by others (or
your future self) into Galaxy. This file will include all the inputs, outputs and intermediates, as well as a
record of all the tools and parameter choice. The history is exported to a file by choosing “Export to
file” from the gear button at the top right side of the panel.

8.13. Save and edit a workflow

The history can be saved as a workflow, which will present the tools in the order they were used and
will allow you to repeat the analysis with or without changing the parameters. You can also edit the
workflow to add or remove tools, as well as split and parallelize the workflow. See this page on how to
do all those things.

111

http://www.phyloxml.org/
http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/wiki/AlignIO#File_Formats
https://usegalaxy.org/u/aun1/p/galaxy101

9. FAQ
9.1. Where can | get ReproPhylo?

The software is available to download from the ReproPhylo GitHub repository. It is under the most
permissive licence we could find, CC0, which makes it public domain. Our intention is that you can do
anything you wish with this software including re-using, modifying, and incorporating into other
software, whether commercial or not. It would be great however if you fed any improvements back in
to ReproPhylo.

9.2. How can I cite ReproPhylo?

If you use ReproPhylo in a publication, please cite:

Szitenberg A, John M, Blaxter ML, Lunt DH. ReproPhylo: An Environment for Reproducible
Phylogenomics. PLoS Comput Biol. 2015;11: €1004447. doi:10.1371/journal.pcbi.1004447

The programs running within the ReproPhylo pipeline should also be cited appropriately. So, if you
align with MAFFT, trim the alignment with TrimAl and create a tree with RAXML or PhyloBayes which
you modify with ETE2 you should cite appropriately. All the program references are in the next
section.

9.3. | have found an error in the code or manual

If something is generating an error, and you think it is a bug rather than your setup, you should create
an issue (bug report) on GitHub. See if you can replicate the error using a standard Docker
ReproPhylo installation- that way we will know it is not the environment. If you can help you could fix
the code yourself and then issue a pull request on GitHub, otherwise create a GitHub issue.

If the problem is with documentation then you can just directly edit this manual to improve or correct it.
Be bold. We consider this manual an evolving community document and actively encourage your
contributions. You could also email the authors if you would like to discuss the documentation or the

code at A.Szitenberg@hull.ac.uk.
9.4. | would like [my favourite feature] included

There are far too many approaches in phylogenetics for us to attempt to include them all, though we
will try to build in the most important. Suggestions could be added to the GitHub issue page. It is not
that difficult to ‘wrap' many existing programs so that they will operate within the ReproPhylo pipeline.
Have a look at adding tools into ReproPhylo section, we would welcome contributions. If you would
like to take a more active role in developing ReproPhylo, welcome, please email us.

10. Program References

RAxML: A. Stamatakis: "RAXML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of
Large Phylogenies". In Bioinformatics, 2014

Phylobayes: N. Lartillot, T. Lepage and S. Blanquart, 2009: PhyloBayes 3: a Bayesian software

112

https://github.com/HullUni-bioinformatics/ReproPhylo
http://dx.plos.org/10.1371/journal.pcbi.1004447
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
mailto:A.Szitenberg@hull.ac.uk
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btu033.abstract?keytype=ref&ijkey=VTEqgUJYCDcf0kP
http://megasun.bch.umontreal.ca/People/lartillot/www/PhyloBayes2009.pdf

package for phylogenetic reconstruction and molecular dating. Bioinformatics Vol. 25 no. 17.

MAFFT: Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple
sequence alignment software version 7: improvements in performance and usability.

Muscle: Edgar 2004: MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research 32(5):1792-1797

Pal2Nal: Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust conversion of
protein sequence alignments into the corresponding codon alignments.Nucleic Acids Res. 34,
W609-W612.

trimAl: Salvador Capella-Gutierrez; Jose M. Silla-Martinez; Toni Gabaldon. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009 25:
1972-1973.

ETE: Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon. ETE: a python Environment for Tree
Exploration. BMC Bioinformatics 2010, 11:24.

NumPy: Stefan van der Walt, S. Chris Colbert and Gael Varoquaux. The NumPy Array: A Structure for
Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011)

Matplotlib: John D. Hunter. Matplotlib: A 2D Graphics Environment ,Computing in Science &
Engineering, 9, 90-95 (2007)

Pandas: Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th
Python in Science Conference, 51-56 (2010)

HTML.py: http://www.decalage.info/python/html

Biopython: Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg |, Hamelryck T,
Kauff F, Wilczynski B, and de Hoon MJ. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 2009 Jun 1; 25(11)
1422-3.doi:10.1093/bioinformatics/btp163 pmid: 19304878

Cython: Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn and

Kurt Smith. Cython: The Best of Both Worlds, Computing in Science and Engineering, 13, 31-39
(2011)

Cloud: https://pypi.python.ora/ i/cloud/2.8.5

11. Contact

For general questions about ReproPhylo contact Amir Szitenberg (szitenberg@gamail.com) or Dave Lunt
(dave.lunt@gmail.com). For technical issues, bug reports, and feature suggestions you should create a
GitHub issue if possible. If the problem is with documentation then you can just directly edit this manual
to improve or correct it. Be bold.

113

http://mbe.oxfordjournals.org/content/30/4/772
http://europepmc.org/abstract/MED/15034147
http://www.bork.embl.de/pal2nal/pal2nal.pdf
http://trimal.cgenomics.org/_media/trimal.2009.pdf
http://www.biomedcentral.com/1471-2105/11/24
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5725236
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4160265
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://www.decalage.info/python/html
http://www.hubmed.org/display.cgi?uids=19304878
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5582062
https://pypi.python.org/pypi/cloud/2.8.5
mailto:szitenberg@gmail.com
mailto:dave.lunt@gmail.com
https://github.com/HullUni-bioinformatics/ReproPhylo/issues

	
	ReproPhylo
	reproducible
	phylogenomics
	
	
	1. Introduction
	1.1. What ReproPhylo is
	1.2. About this Manual
	1.3. Brief overview of reproducibility
	1.4. Version control in ReproPhylo

	2. Installation and Launch
	2.1. ReproPhylo in Docker (Linux machines)
	2.1.1. Starting up
	2.1.2. Stopping a ReproPhylo Docker container

	2.2. Linux installation without Docker
	2.3. Windows and OSX (and also linux)
	2.3.1 Vagrant
	2.3.2. WinPython (deprecated)

	
	3. Tutorial
	3.1. Jupyter Notebook Intro
	
	
	3.2. Starting a Project
	3.2.1 Describing Loci
	3.2.2 Loading loci to a new Project
	3.2.3 Modifying the loci of an existing Project
	3.2.4 Quick reference

	3.3. Reading Data
	3.3.1 Reading data from GenBank or EMBL files
	3.3.2 Reading other sequence file formats
	3.3.3 Reading sequence alignments
	3.3.4 Reading a Nexus alignment with PAUP commands
	3.3.5 Quick reference

	3.4. Metadata handling
	3.4.1 What is metadata in ReproPhylo?
	3.4.2 Modifying the metadata
	3.4.3 Quick reference

	3.5. Pre alignment filtering
	3.5.1 Filtering by sequence length or GC content
	3.5.2 Excluding and including
	3.5.3 Quick reference

	3.6 Producing and accessing sequence alignment
	3.6.1 Configuring a sequence alignment process
	3.6.2 Executing sequence alignment processes
	3.6.3 Accessing sequence alignments
	3.6.4 Quick reference

	3.7 Alignment trimming
	3.7.1 Configuring an alignment trimming process
	3.7.2 Executing the alignment trimming process
	3.7.3 Accessing trimmed sequence alignments
	3.7.4 Quick reference

	3.8 Building a supermatrix
	3.8.1 Sorting out the metadata
	3.8.2 Designing the supermatrix
	3.8.3 Building the supermatrix
	3.8.4 Quick reference

	3.9 Reconstructing trees
	3.9.1 Using RAxML
	3.9.2 Using Phylobayes
	3.9.3 Executing the tree reconstructions and accessing trees
	3.9.4 Quick reference

	3.10 Tree annotation and report
	3.10.1 Updating the metadata after the tree has been built
	3.10.2 Configuring and writing a tree figure
	3.10.3 Archive the analysis as a zip file

	4 Git and Pickle integration in ReproPhylo
	4.1 The long version
	4.1.1 Start a Project, read data, do alignment, show Git log
	4.1.2 Revert to older Project version
	4.1.3 Recovering from unintentional changes

	4.2 Possible error messages
	4.2 The short version

	5. Jupyter notebooks with use cases
	6. Tools in ReproPhylo
	7. ReproPhylo module index
	7.1. The Locus object
	7.1.1. Locus
	7.1.2. Locus methods

	7.2. The Concatenation object
	7.2.1. Concatenation
	7.2.2. Concatenation methods
	7.2.3. The Project object

	7.3. Project
	7.3.1. Project methods
	
	
	
	
	

	

	7.4. ReproPhylo functions meant to be used directly
	7.5. The AlnConf object
	5.5.1. AlnConf
	5.5.2. AlnConf methods
	5.5.3. AlnConf preliminaries

	7.6. The TrimalConf object
	5.6.1. TrimalConf
	5.6.2. TrimalConf methods
	5.6.3. TrimalConf preliminaries

	5.7. The RaxmlConf object
	5.7.1. RaxmlConf
	5.7.2. RaxmlConf methods
	5.7.3. RaxmlConf preliminaries

	78. Undocumented functions

	
	
	8. A Galaxy workflow - Iguaninae data
	8.1. Getting ReproPhylo in Galaxy
	8.2. Getting data from GenBank

	Selection_016.png
	Selection_017.png
	8.3. Uploading your data to Galaxy

	Selection_020.png
	8.4. Explore and choose the loci to analyse
	8.5. Start a Project with the selected loci and the relevant records from the genbank files
	8.6. Explore the available metadata from the genbank file.
	8.7. Add additional information of our own
	8.8. Run a fixed phylogenetic pipeline
	8.9. Annotate the resulting trees using the metadata
	8.10. Archive the results
	8.11. Tools not covered by this use case
	8.12. Export your history
	8.13. Save and edit a workflow

	9. FAQ
	9.1. Where can I get ReproPhylo?
	9.2. How can I cite ReproPhylo?
	9.3. I have found an error in the code or manual
	9.4. I would like [my favourite feature] included

	10. Program References
	11. Contact

