
 

ReproPhylo  
reproducible  
phylogenomics 

 

User Manual 
ReproPhylo v1 CC0. ​ ​ ​             You can edit this document to improve it. Be bold.

 

Software: https://github.com/HullUni-bioinformatics/ReproPhylo​  
This manual: http://goo.gl/aZeRXf 
Webpage: http://hulluni-bioinformatics.github.io/ReproPhylo ​@ReproPhylo 
Quick links: FAQ; Citation; Contact; Download; Installation 

 

 

Table of contents 
1. Introduction 

1.1. What ReproPhylo is 
1.2. About this Manual 
1.3. Brief overview of reproducibility 
1.4. Version control in ReproPhylo 

2. Installation and Launch 
2.1. ReproPhylo in Docker (Linux machines) 

2.1.1. Starting up 
2.1.2. Stopping a ReproPhylo Docker container 

2.2. Linux installation without Docker 
2.3. Windows and OSX (and also linux) 

2.3.1 Vagrant 
2.3.2. WinPython (deprecated) 

3. Tutorial 
3.1. Jupyter Notebook Intro 
3.2. Starting a Project 

3.2.1 Describing Loci 
3.2.2 Loading loci to a new Project 
3.2.3 Modifying the loci of an existing Project 
3.2.4 Quick reference 

3.3. Reading Data 

1 

http://creativecommons.org/publicdomain/zero/1.0/
https://github.com/HullUni-bioinformatics/ReproPhylo
http://goo.gl/aZeRXf
http://hulluni-bioinformatics.github.io/ReproPhylo
https://twitter.com/reprophylo
https://github.com/HullUni-bioinformatics/ReproPhylo


3.3.1 Reading data from GenBank or EMBL files 
3.3.2 Reading other sequence file formats 
3.3.3 Reading sequence alignments 
3.3.4 Reading a Nexus alignment with PAUP commands 
3.3.5 Quick reference 

3.4. Metadata handling 
3.4.1 What is metadata in ReproPhylo? 
3.4.2 Modifying the metadata 
3.4.3 Quick reference 

3.5. Pre alignment filtering 
3.5.1 Filtering by sequence length or GC content 
3.5.2 Excluding and including 
3.5.3 Quick reference 

3.6 Producing and accessing sequence alignment 
3.6.1 Configuring a sequence alignment process 
3.6.2 Executing sequence alignment processes 
3.6.3 Accessing sequence alignments 
3.6.4 Quick reference 

3.7 Alignment trimming 
3.7.1 Configuring an alignment trimming process 
3.7.2 Executing the alignment trimming process 
3.7.3 Accessing trimmed sequence alignments 
3.7.4 Quick reference 

3.8 Building a supermatrix 
3.8.1 Sorting out the metadata 
3.8.2 Designing the supermatrix 
3.8.3 Building the supermatrix 
3.8.4 Quick reference 

3.9 Reconstructing trees 
3.9.1 Using RAxML 
3.9.2 Using Phylobayes 
3.9.3 Executing the tree reconstructions and accessing trees 
3.9.4 Quick reference 

3.10 Tree annotation and report 
3.10.1 Updating the metadata after the tree has been built 
3.10.2 Configuring and writing a tree figure 
3.10.3 Archive the analysis as a zip file 

4 Git and Pickle integration in ReproPhylo 
4.1 The long version 

4.1.1 Start a Project, read data, do alignment, show Git log 
4.1.2 Revert to older Project version 
4.1.3 Recovering from unintentional changes 

4.2 Possible error messages 
4.2 The short version 

5. Jupyter notebooks with use cases 
6. Tools in ReproPhylo 
7. ReproPhylo module index 

7.1. The Locus object 
7.1.1. Locus 
7.1.2. Locus methods 

7.2. The Concatenation object 
7.2.1. Concatenation 
7.2.2. Concatenation methods 
7.2.3. The Project object 

7.3. Project 
7.3.1. Project methods 

7.4. ReproPhylo functions meant to be used directly 

2 



7.5. The AlnConf object 
5.5.1. AlnConf 
5.5.2. AlnConf methods 
5.5.3. AlnConf preliminaries 

7.6. The TrimalConf object 
5.6.1. TrimalConf 
5.6.2. TrimalConf methods 
5.6.3. TrimalConf preliminaries 

5.7. The RaxmlConf object 
5.7.1. RaxmlConf 
5.7.2. RaxmlConf methods 
5.7.3. RaxmlConf preliminaries 

78. Undocumented functions 
8. A Galaxy workflow - Iguaninae data 

8.1. Getting ReproPhylo in Galaxy 
8.2. Getting data from GenBank 
8.3. Uploading your data to Galaxy 
8.4. Explore and choose the loci to analyse 
8.5. Start a Project with the selected loci and the relevant records from the genbank files 
8.6. Explore the available metadata from the genbank file. 
8.7. Add additional information of our own 
8.8. Run a fixed phylogenetic pipeline 
8.9. Annotate the resulting trees using the metadata 
8.10. Archive the results 
8.11. Tools not covered by this use case 
8.12. Export your history 
8.13. Save and edit a workflow 

9. FAQ 
9.1. Where can I get ReproPhylo? 
9.2. How can I cite ReproPhylo? 
9.3. I have found an error in the code or manual 
9.4. I would like [my favourite feature] included 

10. Program References 
11. Contact 

 
 

3 



1. Introduction 
1.1. What ReproPhylo is 
ReproPhylo is a pipeline of modules to implement reproducible workflows for phylogenomic analysis. 
It is open source software (CC0 public domain) for you to use, modify and distribute as you see fit. 
This is community software, we would welcome your contributions. 

1.2. About this Manual 
This document outlines how best to use the reproducible phylogenomics pipeline ReproPhylo. You 
can edit this document like you would a wiki and also leave comments. Be bold. We would 
welcome your additions, edits, and corrections to this document. You could also create a GitHub 
issue. This manual has medium level information; its more than basic, but some details are linked to 
rather than included as they break up the flow. 

1.3. Brief overview of reproducibility 
Our reproducible phylogenomics ideas are outlined in a series of blog posts part 1, part 2a, part 2b. 
ReproPhylo allows you to carry out a phylogenomic analysis using pre-written or self-written 
commands. This programmatic approach ensures that all stages of the analysis are explicitly 
recorded, and can be exactly replicated, or reproduced with modification, as required. Sequence data, 
and any generated intermediate data files (e.g. alignments, metadata), are tracked and held in version 
control- meaning that there can be no doubt which version of which file was used for any analysis. 
ReproPhylo will write a human-readable detailed graphical report for each experiment. ReproPhylo 
will create a .zip archive of the entire experiment to upload to FigShare or equivalent repository. 
ReproPhylo is best deployed as a Docker container, which includes not just the experimental 
components but also the phylogenetics programs and any dependencies, ensuring that it can be run 
exactly as it was on the previous phylogeneticist's machine. 

1.4. Version control in ReproPhylo 
The purpose of version control is to track all changes to your files and to enable you to return to any 
previous file version if you require. This allows you to recover from mistakes and to change your mind 
about some of your actions, without having to repeat previous analysis.  

In ReproPhylo, the input data (sequences) and its metadata (eg sampling location), the output (eg 
alignments, trees), its statistics (eg, informative alignment positions), methods information (eg 
command lines, supermatrix content) and environment information (eg program versions) are all 
automatically and continuously saved in a single file, termed pickle. This file is automatically and 
continuously tracked by the version control program Git without you having to do anything 
(ReproPhylo GIt demo). We are considering an automated push to GitHub, but at the moment, you 
can push your Git repository manually using the git push command. Tailored instructions for doing so 
are provided on GitHub every time you start a new repository there. 

2. Installation and Launch  
The recommended way to use ReproPhylo is in Jupyter Notebook (previously called IPython 
notebooks), with commands and instructions in an interactive GUI environment for you to run or 
modify. [about Jupyter notebooks aka ‘IPython’]. Instructions for installation without Docker can be 
found here.  

4 

http://n.wikipedia.org/wiki/Pipeline_(computing)
http://www.davelunt.net/evophylo/2014/10/reproducible-phylogenetics-part-1-why/
http://github.com
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
http://www.davelunt.net/evophylo/2014/10/reproducible-phylogenetics-part-1-why/
http://www.davelunt.net/evophylo/2014/11/reproducible-phylogenetics-part-2a-what/
http://www.davelunt.net/evophylo/2014/11/reproducible-phylogenetics-part-2b-what/
http://figshare.com/
http://www.docker.com/
http://en.wikipedia.org/wiki/Pickle_%28Python%29
http://en.wikipedia.org/wiki/Git_(software)
http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Git/Git_Demo.ipynb#
https://github.com/
http://ipython.org/notebook.html
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile#installation-without-docker


As a proof of concept, ReproPhylo is also available in Galaxy; a web-based GUI, incorporating 
interactive workflows, and providing its own set of reproducibility tools [about Galaxy] 

The latest software can be downloaded from the GitHub ReproPhylo page, but it is not a single-click 
install. We provide a ReproPhylo Docker environment available from dockerhub, which is a 
ready-to-go self-contained virtual machine with all dependencies pre-installed and is the easiest way 
to install ReproPhylo. A Galaxy instance containing ReproPhylo tools is also provided (see section 5). 

2.1. ReproPhylo in Docker (Linux machines) 
2.1.1. Starting up 

The quickest way to deploy ReproPhylo in Jupyter Notebook is by using the Docker container on a 
Linux machine. Instructions on how to install on Windows/ OSX can be found in the next section.  

You will first need to install_Docker on your system.  

Then, download_startRP. 
 It is a script which will deploy Jupyter notebook with ReproPhylo, as well as tutorial notebooks. 

The startRP script is downloaded as a zip file. Extract it and then copy the startRP shell script 
anywhere on your machine. 

startRP runs as follows: 

$ cd /path/to/startRP/ 

$ sh ./startRP /absolute/path/to/your/project/directory 

Done! 

The project directory refers to wherever you are going to work, e.g. you could create an empty 
“my_experiment” directory in your home folder with mkdir ~/my_experiment and the absolute path 
would be /home/your_user_name/my_experiment. The directory will be created if it does not 
already exist, so take care to avoid typos, as a misspelled path will be created and used instead of the 
one you have intended to point at. The script will allow the Docker container to access your display, 
and will start up your default browser with the Jupyter notebook login page. If this is your first start-up, 
getting to this point will take a few minutes as the Docker image will be downloaded. The browser 
may warn you that the address is untrusted, in which case you should follow the given instruction to 
permit access. Jupyter notebook will ask for a password, which is password. You may change it by 
editing the startRP shell script, if you intend to access the container remotely.  

ReproPhylo should now be working and you can run it through the tutorial Jupyter notebooks (as 
described in section 3 below) or modify them for your own analyses. The tutorial notebooks should be 
visible in the Jupyter notebook file browser, once you have logged in, in the 
Tutorial_files/Basic directory. 

The same script can be used to start a ReproPhylo container in subsequent runs, provided the 
program was stopped appropriately (see next paragraph). It won't reinstall everything and will be 
considerably quicker. 

Ins and outs of startRP (Only read if startRP doesn’t work) 

The startRP script was tested on Ubuntu 14.04 and thus uses apt-get frequently. Other commands 
(such as pip, wget, mkdir, xhost, xdg-open) are universal for GNU/Linux machines. If you are trying to 
use it on another Linux distribution, some modifications will be required, and we’ll be happy to try and 
assist should you get stuck (see below for Windows and OSX). 

5 

https://usegalaxy.org/
https://github.com/HullUni-bioinformatics/ReproPhylo
http://www.docker.com/
https://registry.hub.docker.com/u/szitenberg/reprophylo/
http://www.docker.com/
https://docs.docker.com/installation/#installation
https://github.com/szitenberg/startRP/archive/master.zip
https://pip.pypa.io/en/latest/installing.html


startRP is designed for a local installation, and it therefore contains two classes of commands. The 
first class perceives your local computer as a server. It will take care of “serving” the Docker container 
with ReproPhylo in it. The second class perceives your computer as a client. It will take care of 
running ReproPhylo in your browser. This means that the script as it is, cannot be used directly on a 
true server, as some commands will make no sense, and there will be some additional security 
considerations. For convenience, I am listing the two classes here:  

 

Server side: 

Creating the working directory on your local machine as a server 

As the script is set up at the moment, the working directory is considered to be on the server side. It 
makes no difference if your server and client are the same machine, but a different solution may be 
needed if ReproPhylo is truly served remotely ($1 is the startRP command line argument stating the 
path to the working directory). 

 
echo "checking if path exists: $1" 
if [ -d $1 ]; then 
  echo "Already exists" 
else 
  echo "Path was not found, creating." 
  mkdir $1 
fi 
 
If you wish to make this operation manually, the appropriate command would be: 
 
mkdir /path/to/workdir 

Downloading tutorial files to your local machine as a server 

The script checks if the tutorial files are in the working directory (which is “server side”) and if you 
want to install them (i.e., if there is no --xt flag in the startRP command line). It makes no difference 
if you serve and use on the same machine, but a different solution may be needed if ReproPhylo is 
truly served remotely ($1 is the startRP command line argument stating the path to the working 
directory). 

if [ -d $1/Tutorial_files ]; then 
   echo "Tutorial_files exists in $1" 
elif [ $2 = "--xt" ]; then 
   echo "Tutorial files opt out" 
elif [ $# -eq 2 ] && [ $2 != "--xt" ] || [ $# -eq 1 ]; then 
   echo "Putting tutorial files in $1" 
   wget -c  https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip 
   unzip -qq master.zip 
   cd ReproPhylo-master 
   cp -r Tutorial_files $1 
   cd .. 
   rm -r ReproPhylo-master 
   rm master.zip 
   echo "Tutorial files are in $1" 
fi 
 

If you wish to get the tutorial files and extract them in the working directory manually, here are 
the needed commands: 

cd /path/to/workdir 
wget -c https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip 

6 

https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip


unzip -qq master.zip 
cp -r ReproPhylo-master/Tutorial_files . 
rm -r ReproPhylo-master master.zip 
 

Serving the Docker container 
 
sudo docker run --net=host --name rpnotebook -d -p 8888:8888 -e "PASSWORD=password" -v 
/tmp/.X11-unix:/tmp/.X11-unix:ro -v $1:/notebooks -e DISPLAY=$DISPLAY szitenberg/reprophylo 
/notebook.sh 
 

sudo docker run  -The docker command to (download an image), create and run a container 

--net=host -Use host to access the internet 

--name rpnotebook -The container’s name 

-d -Run as daemon (at the background) 

-p 8888:8888 -Couple port 8888 in the container with port 8888 in the server. This is limiting because 
it does not take advantage of Jupyter notebook’s ability to dynamically choose a vacant port. To 
change the port you’ll need to edit both startRP and notebook.sh in the container: Clone the 
Dockerfile repository and edit the script there, by changing 8888 in the ipython notebook command 
line to something else. In the Dockerfile itself, the line EXPOSE 8888 will have to be changed 
accordingly. Then build the Docker image locally.  

 
-e "PASSWORD=password" -sets up the password to access Jupyter notebook 
 
-v /tmp/.X11-unix:/tmp/.X11-unix:ro -Couple the location of x-server in the container and server in 
a read only mode (ro). 
 
-v $1:/notebooks -Couples the work dir on the server with the one in the container (/notebooks) 
 
-e DISPLAY=$DISPLAY -Couples the DISPLAY variable between the container and the server 
 
szitenberg/reprophylo -The Docker image name 
 
/notebook.sh -The container’s start up command. Runs the script notebook.sh 
 
Running this step manually will be done the same, just remember to change $1 to the actual 
/path/to/workdir 
 
Also remember to install Docker beforehand. Note that Docker does have Windows and OSX 
versions, but ReproPhylo will only work in the Docker terminal (called boot2docker and is a virtual 
machine) in those OSs. This means you will be able to use all the programs and python modules, 
ReproPhylo included, in IPython, in itself very useful, but you will not be able to run Jupyter notebook 
(easily solvable) or produce figures (very difficult).  
        

Client side: 

Allowing the served program to access the local x server 

xhost +local:root 

Since the container is designed to work locally, the program is ran as root. We then need to allow the 
“remote” container to access the “local” x-server, local and remote being the same physical machine.  
A remote Docker container will have to be set up to run the program as a specific user, rather than 

7 

https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile/blob/master/notebook.sh
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile
https://docs.docker.com/reference/builder/
https://docs.docker.com/installation/
http://odewahn.github.io/docker-jumpstart/ipython-notebook.html


root as it is now, for security reasons, and then the local xhost command will have to change 
accordingly.   

 

Starting up a browser 

xdg-open https://localhost:8888 

Start up the default browser at https://localhost:8888. localhost should be changed to the server name 
or IP if the container is served remotely. You could just open your browser as you normally would 
and stick the address in instead. 

 

 

2.1.2. Stopping a ReproPhylo Docker container 

When you use startRP, your files are read from and written to a local directory. Therefore it is safe to 
stop and remove a container between sessions. You can save the following shell script as stopRP 
and use it to stop your Docker container once you're done: 

#!/bin/bash​
sudo docker rm -f rpnotebook 

 and run as follows: 

$ cd /path/to/stopRP/ 

$ sh ./stopRP 

or you could just run  

sudo docker rm -f rpnotebook 

in the terminal 

2.2. Linux installation without Docker 
Instructions for Linux installation without Docker can be found here. 

2.3. Windows and OSX (and also linux) 
2.3.1 Vagrant 

This option was tested on OSX and Ubuntu 14.04, and should work just as well on Windows. At the 
background, we’ll set a virtual machine to serve Jupyter notebook without a display, and then use the 
local web browser as GUI. A great thank you to Dr. Steve Moss for his work on this distribution. Here 
are steps: 

Install vagrant on your OS. 
Make sure to get the latest version, which is not always what you get with your distro manager. 

Install virtualbox for your OS  

Download ReproPhyloVagrant, which is a zip file (or git clone) 

Extract the zip file, a directory called ReproPhyloVagrant-master should appear. 

8 

http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
http://stackoverflow.com/questions/25281992/alternatives-to-ssh-x11-forwarding-for-docker-containers/25334301#25334301
https://github.com/HullUni-bioinformatics/ReproPhyloDockerfile#installation-without-docker
https://github.com/gawbul
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/szitenberg/ReproPhyloVagrant/archive/master.zip
https://github.com/szitenberg/ReproPhyloVagrant


Start a terminal or a cmdva 

Change location into the extracted folder:  
cd /path/to/ReproPhyloVagrant-master  

Run the command vagrant up 
This command will set up the virtual machine and can take half an hour to run the first time.  

Run the command: vagrant ssh 
The prompt in the terminal should change and indicate that you are now inside the virtual machine 

Run the command: startRP.sh 

In your browser, go to https://localhost:8888 
You may get a warning about security, follow the instructions to allow the page to load. There are no 
security issues, it all happens locally. 

Type in the password reprophylo 
Done!  
Further instructions are in section 3. 
 
Your notebooks and output files will be saved in ReproPhyloVagrant-master/notebooks, or any 
subdirectory you create in there. Data you want to use also has to be placed within  
ReproPhyloVagrant-master/notebooks or its subfolders. 

To stop the virtual machine do the following: 

cd /path/to/ReproPhyloVagrant-master  
ctrl+C twice to stop ipython notebook 
exit to leach the virtual machine 
vagrant halt to stop it 

Next time you run vagrant up it will be very quick. 

 

2.3.2. WinPython (deprecated) 

A WinPython 64bit version, which includes ReproPhylo and most of the dependencies is available to 
download here. It is an older version of ReproPhylo and we do not expect to maintain this distribution 
in the near future. Setting it up should work as follows: 

1.​ Download Git installer for Windows 
2.​ Run it to install. You may need to right-click and run as administrator. When asked, choose to 

allow Git to work in the Windows command prompt and not only in bash. Otherwise, keep the 
default settings. 

3.​ Optional: Perl is required for codon alignment. If you may need to use this option and Perl is not 
yet installed, download and run this installer. 

4.​ Download the WinPython+ReproPhylo zip file. Note that this is not the official WinPython 
distribution, but version 2.7.9.5, Release 2015-04 of May 12th, 2015. 

5.​ Extract anywhere on your machine. 
6.​ To start up Jupyter Notebook, find IPythoNotebook.exe and double-click it. Jupyter Notebook 

will start up in your default browser. 

All done!  

Notebooks you create will be written within WinPython-64bit-2.7.9.5/notebooks. However, you 
can use data from anywhere on your machine, as long as you specify the path in your scripts. This 
directory already contains two subdirectories, one with the tutorials discussed in the next section, and 

9 

https://localhost:8888
https://git-scm.com/download/win
http://www.activestate.com/activeperl/downloads/thank-you?dl=http://downloads.activestate.com/ActivePerl/releases/5.20.2.2001/ActivePerl-5.20.2.2001-MSWin32-x64-298913.msi
https://www.dropbox.com/s/anr4yx1prk6n16d/WinPython-64bit-2.7.9.5_rp1.zip?dl=0
https://winpython.github.io/
https://winpython.github.io/
https://github.com/winpython/winpython/issues/73


another with WinPython documentation. 

The programs already included within this WinPython distribution are raxmlHPC, 
raxmlHPC-PTHREAD-SS3, MAFFT, MUSCLE, TrimAl and PAL2NAL. They are accessed by default 
by ReproPhylo and there is no need to set up paths.  You can run any other command line tool that is 
on your machine by specifying its full path. Since there are ReproPhylo functions that run 
EXONERATE, you might want to install its Windows/cygwin version. Similarly, Bayestraits is also 
available for Windows. Any function in ReproPhylo that execute external software will have a cmd 
keyword where the full path to the executable can be specified. Programs that are not wrapped by 
ReproPhylo can be executed using the included subprocess module or the ! notation in Jupyter 
Notebook. 

 

10 

http://www.ebi.ac.uk/~guy/exonerate/
http://www.evolution.rdg.ac.uk/BayesTraits.html
https://docs.python.org/2/library/subprocess.html


3. Tutorial 
This tutorial is currently being rewritten, as many options were added since it was first written.  
Sections 3.1 - 3.4 are new, and the remaining, while informative, is not completely up to date. This 
notebook illustrates most of the additional functionality. 

3.1. Jupyter Notebook Intro 
The use cases described in this manual are also provided as functional Jupyter Notebooks which can 
be downloaded from ReproPhylo github. They are downloaded by default when you use a Docker 
container with the startRP script. A Jupyter Notebook consists of formatted text (markdown) cells, 
which contain comments and explanations, but do not affect the program. Actual script is written in 
code cells, which have a shaded background. The code in the code cells can be executed (run) by 
placing the cursor anywhere inside a code cell and clicking shift+enter.  
 

 
 
 

 

 

11 

http://nbviewer.ipython.org/github/szitenberg/Szitenberg_et_al_15-ReproPhylo/blob/master/IPython_Notebook_for_ReproPhylo_MS.ipynb
https://github.com/HullUni-bioinformatics/ReproPhylo
https://github.com/szitenberg/startRP/archive/master.zip
http://daringfireball.net/projects/markdown/syntax


3.2. Starting a Project 
Section quick reference, Full reference 

This section in nbviewer 

 
In the beginning of each analysis, the first step is to load ReproPhylo and its dependencies 
with the command 
 
from reprophylo import *​
 
Once this is done we can start a Project. A Project contains all the data, metadata, methods 
and environment information, and it is the unit that is saved as a pickle file, which is version 
controlled with Git. 
 
Although ReproPhylo is designed to record versions and update the pickle file automatically, 
this will be opt-out of in this tutorial, and will be introduced after we have covered the basics. 
Instead, we will manually save a pickle file at the end of each section, and will load it in the 
next one. You should use the same pickle file name at the end of all the sections. The new 
content will be added to the one already present in the file. 
 
If you want to jump ahead, there are presaved pickle files 
(Tutorial_files/basic/outputs), numbered according to the section after which they 
were saved. For example, outputs/3.6.alignments.pkpj was saved at the end of 
section 3.6 and can be loaded at the top of section 3.7, instead of your own file. 
To start a Project, we have to specify the loci to analyse (not actual sequence data, only 
some information on the loci) and a pickle file name. 

3.2.1 Describing Loci 

A Locus can be described manually using a command or by providing a file. For each 
Locus, we have to specify the character type (DNA or protein) the feature type (eg, rRNA, 
CDS or gene), the name of the locus (eg, MT-CO1) and other possible aliases which may 
come handy if we want to read a genbank file (eg, cox1, coi). 
 
Describe loci using a command 
 
coi = Locus(char_type='dna', ​
            feature_type='CDS', ​
            name='MT-CO1',​
            aliases=['cox1', 'coi'])​
 
This is a single Locus description (a Locus object). We can confirm its content by printing it 
like this: 
 
print coi​
 

to get this output: 
​

12 

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.2%20Starting%20a%20Project.ipynb
http://en.wikipedia.org/wiki/Pickle_%28Python%29
http://en.wikipedia.org/wiki/Git_(software)


Locus(char_type=dna, feature_type=CDS, name=MT-CO1, aliases=cox1; 
coi)​
 
Describing loci using a file 
Another way of describing loci is to write them in a file. The file has one line for each Locus, 
where each line has at least four items, separated by commas. The items, as above, are the 
character type, the feature type, the name of the locus and other possible aliases. At least 
one alias must be specified, but it can be identical to the name. For the MT-CO1 Locus, a file 
would look like this: 
 
dna,CDS,MT-CO1,cox1,coi 
 
Deducing a loci file from a genbank file 
A third way of describing loci is to run a command that guesses them from a genbank file and 
writes them into a comma delimited file, as above. This file can be used as is, or it can be 
edited. The following command will prepare such a loci file from a genbank file containing all 
the GenBank records belonging to the sponge family Tetillidae. Text starting with a hash (#) 
is a comment which do not affect the command: 
 
list_loci_in_genbank('data/Tetillidae.gb', # The input genbank​
                                           # file​
​
                     'data/loci.csv',      # The loci file​
​
                     'outputs/loci_counts.txt') # Additional​
                                                # output,​
                                                # discussed​
                                                # below.​
 
The command generated the loci file and wrote it in data/loci.csv. Here are some 
excerpts separated by three dots: 
 
dna,rRNA,18s,18S ribosomal RNA,18S rRNA​
dna,rRNA,28s,28S large subunit ribosomal RNA,28S ribosomal RNA​
...​
dna,CDS,MT-ATP8,atp8,ATP8​
dna,CDS,MT-CO1,coi,COI,cox1,COX1,coxI​
...​
dna,rRNA,rnl,rnl​
dna,rRNA,rns,rns​
dna,rRNA,rrnL,rrnL​
 
Each line represents a locus that was found in the genbank file data/Tetillidae.gb. For 
some genes, such as 18s, synonyms were recognized and placed as aliases in one line. In 
other cases, such as for rnl and rrnL, they were not. 
 
Editing the loci file 
 
Possible edits to this file include: 
 

13 



Synonymization. This is done by adding a comma and a shared integer in all the lines that 
are the same locus. For example the lines 
 
dna,rRNA,rnl,rnl 
dna,rRNA,rrnL,rrnL 
 
will become 
 
dna,rRNA,rnl,rnl,9 
dna,rRNA,rrnL,rrnL,9 
 
Which integer is written is unimportant, as long as it is shared between synonymous lines. 
 
Change of character type. If our data includes translations to protein sequence, we can 
change dna to prot, as such: 
 
prot,CDS,MT-CO1,coi,COI,cox1,COX1,coxI. 
 
This will tell the program to use protein sequences instead of DNA sequence. The sequence 
alignment tutorial explains how to use both protein and DNA sequence of the same locus to 
conduct codon alignment. 
 
Deletion of loci. It is possible to delete loci we do not want to analyse. They will not be read, 
even if they exit in our data.  
 
The second file that the command above produced, the outputs/loci_counts.txt, 
contains a list of the loci found in the genbank file, with the number of their occurrences. This 
can be used as a guide when deciding which loci to delete and which to keep. 

3.2.2 Loading loci to a new Project 

Loading Locus objects 
 
First we'll make another Locus object to make a point that more than one can be read: 
 
ssu = Locus('dna','rRNA','18S',['ssu','SSU-rRNA'])​
 
Regardless of whether we have one or more Locus objects, they are read as a list, which 
means that they are wrapped with square brackets and separated by commas: 
 
loci_list = [coi, ssu]​
 
This command will start the Project and will write it to the pickle file 
outputs/dummy.pkpj: 
 
pj = Project(loci_list, pickle='outputs/dummy.pkpj')​
 
This following alternative will start a Project and will load the loci from a file 
data/edited_loci.csv  that looks like this: 
 
dna,rRNA,18s,18S ribosomal RNA,18S rRNA​

14 



dna,rRNA,28s,28S large subunit ribosomal RNA​
dna,CDS,MT-CO1,coi,COI,cox1,COX1,coxI 
​
 
pj = Project('data/edited_loci.csv',​
             pickle='outputs/my_project.pkpj', git=False)​
​
 
This will provoke a bunch of Git related messages which will be discussed in the version 
control section of this tutorial. 
If we print the Project we'll get this message: 
 
print pj​
​
Project object with the loci 18s,28s,MT-CO1,​
 
3.2.3 Modifying the loci of an existing Project 

As you have seen, when you start a Project you pass a list of loci or a csv file name with 
the loci attributes: 
 
pj = Project(loci_list, pickle='filename') 
 
Once the Project exists, it is possible to modify the Locus objects it contains. To add a 
Locus, you need to create it, as you have done: 
 
lsu = Locus('dna', 'rRNA', '28S', ['28s','LSU-rRNA']) 
 
and then also add it to the Project. Loci are stored in a list called pj.loci. So the new 
Locus can be appended to it: 
 
pj.loci.append(ssu) 
 
or if we have a list of new loci to add, for example: 
 
new_loci_list = [nd5, lsu] 
 
it can be added to the loci list like so: 
 
pj.loci += new_loci_list 
 
Lastly, we can modify loci that are already in pj.loci. For example, change the name and 
add an alias to the MT-CO1 Locus object: 
 
for l in pj.loci:                # Find the Locus named MT-CO1​
    if l.name == 'MT-CO1':​
        l.name = 'COI'           # Rename it to COI​
        l.aliases.append('coi')  # Add the alias coi​
 

15 



The last step in any of the sections is to update the pickle file. 
​
pickle_pj(pj, 'outputs/my_project.pkpj')​
​
​
​
​
'outputs/my_project.pkpj'​
 

3.2.4 Quick reference 

# A Locus object​
coi = Locus(char_type='dna',         # or 'prot'​
            feature_type='CDS',      # any string​
            name='MT-CO1',           # any string​
            aliases=['coi', 'cox1']) # list of strings​
​
# Guess loci.csv file from a genbank file​
list_loci_in_genbank('genbank.gb',​
                     'loci.csv',​
                     'loci_counts.txt')​
​
# Start a Project​
# With a Locus object list​
pj = Project([coi, ssu], pickle='pickle_filename')​
​
# With a loci.csv file​
pj = Project('loci.csv', pickle='pickle_filename')​
​
# Add a Locus to an existing Project​
pj.loci.append(coi)​
#Or​
pj.loci += [coi]​
​
# Modify a Locus existing in a Project​
for l in pj.loci:​
    if l.name == 'MT-CO1':​
        l.name = 'newName'​
        l.feature_type = 'newFeatureType'​
        l.char_type = 'prot'​
        l.aliases.append('newAlias')​
        #Or​
        l.aliases += ['newAlias1,newAlias2']​
 

 

16 



3.3. Reading Data 
Section quick reference, Full reference 

This section in nbviewer 

 
This part will show methods by which to read data into the ReproPhylo Project 

3.3.1 Reading data from GenBank or EMBL files 

GenBank or EMBL files should be the prefered way to read data from online databases 
because ReproPhylo can store all the associated metadata and make it available for steps 
such as tree annotation or even Bayestraits analysis. When we pass a GenBank file, only loci 
and feature types that match the loci we have passed upon creating the Project will be 
retained, and the rest will be ignored. This is handy for multi-featured GenBank entries that 
contain any number of genes on top of the ones we are interested in. In this example, only 
cox1 CDSs will be read from entries of complete mitochondrial genomes. First we read the 
pickle file from the section 3.2: 
 
from reprophylo import *​
pj = unpickle_pj('outputs/my_project.pkpj', git=False)​
 
Now we can add data to the Project, by reading a list of one or more GenBank files: 
 
input_filnames = ['data/Tetillidae1.gb', 'data/Tetillidae2.gb']​
pj.read_embl_genbank(input_filnames)​
​
/home/amir/Dropbox/python_modules/reprophylo.py:1015: 
UserWarning: Version control off​
  warnings.warn('Version control off')​
 

3.3.2 Reading other sequence file formats 

When GenBank or EMBL files are read, the accession numbers are used as sequence IDs in 
ReproPhylo. But when other file formats are used, it is difficult to predict whether a unique 
sequence ID is available in the sequence header. Therefore, ReproPhylo regards data read 
from other file formats as 'denovo' and creates denovo sequence IDs. For the same reason, 
there is no mechanism to prevent you from reading the same file twice, at the moment. All 
the information found in the original sequence header is retained and made available as 
metadata. ReproPhylo can handle any format that is compatible with the SeqIO module of 
Biopython. Reading prealigned sequences is done by a different dedicated method which will 
be discussed below. 

Reading files 

In this example we read a fasta file with an unpublished sequence. We will specify the data 
type ('dna') and the file format. This means that DNA and protein files need to be read in 
two separate actions. 
 

17 

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.3%20Reading%20Data.ipynb
http://biopython.org/wiki/SeqIO#File_Formats


# This list can include one or more file names​
denovo_sequence_filenames = 
['data/Tetillidae_denovo_sequence.fasta'] ​
pj.read_denovo(denovo_sequence_filenames, 'dna', format='fasta')​
​
1​
 
This is how the 'denovo' record looks like if we ask to print it in GenBank format: 
for r in pj.records:​
    if r.id == 'denovo0': print r.format('genbank')​
​
LOCUS       denovo0                 2092 bp    DNA              UNK 01-JAN-1980​
DEFINITION  NIWA2850 Craniella microsigma cox1​
ACCESSION   denovo0​
VERSION     denovo0​
KEYWORDS    .​
SOURCE      .​
  ORGANISM  .​
            .​
FEATURES             Location/Qualifiers​
     source          1..2092​
                     /feature_id="denovo0_source"​
                     /original_id="NIWA2850"​
                     /original_desc="Craniella microsigma cox1"​
ORIGIN​
        1 atgataggaa ctggatttag cttgcttatt agattagaac tatccgctcc cggattaatg​
       61 ttgggtgacg accatttata caatgttatg gtcacggccc acggtcttat aatggtcttt​
      121 ttcttagtta tgccggttat gataggtggg ttcggtaatt gaatggttcc cctttacatc​
      181 ggggcaccgg atatggcttt tccaagatta aacaatatta gtttttgagt tttacccccc​
      241 tcattaatac tactgctagg ttctgctttt gttgaacaag gggttgggac aggatggacc​
      301 ctttatccac cattatcaag tatacaggct cattctgggg gctcagtcga tgcggcaatt​
      361 tttagtcttc atttggctgg gatctcttca attttagggg caatgaattt tataactact​
      421 atctttaata tgcgggcacc tgggattacc atggatagat tgcctctatt tgtttgatct​
      481 attttaataa caacttattt gttattatta gctttgccag tattggctgg tgccataact​
      541 atgcttttaa cagatagaaa tttcaataca acgttcttcg atcccgctgg tggtggggac​
      601 ccaatattat ttcaacattt attttggttc tttgggcatc cggaagttta tgtactagtt​
      661 ctccccgggt ttggaattgt ttctcagatt attccaacat tcgcggctaa aaaacaaata​
      721 tttggctatc tagggatggt ctatgctatg gtttctatag gaattttagg ttttatagtt​
      781 tgagcttgta gatgggcgtg cgatagagtg atctatcgta gtataacatg actgtatgct​
      841 ggaaagccta aaaaaagaaa ttcattaatt actcgtaatg acaggttcga tacagtaaaa​
      901 atattaatgg agggtcaatc agcaggcaac ggtatagttt atactggagc ctcagagact​
      961 acacgtcatg cccttgagga tgatttatat tgagctattg gtttatttga ggccgaagga​
     1021 accttaaaga taagtaaggg tcggatctat attagtgcgt gtcaatcgac tagtaatata​
     1081 aaggtccttt accgaataaa gggaatattt tgtttagggg gcgttaaaat aagaaaagac​
     1141 ccccgttata gtgattgaaa gttagggagc gatttaaata aaatagtaaa attattagtt​
     1201 tattaatgga gactaatcac tagaaagaaa aatatacaat tagtagagtt gataaagttc​
     1261 ataaattgta aatattttcc taatttggtt gaatactttg gtttagagta ttgaccccga​
     1321 ataatgcttg attaactggg tttgttgagg gagatggaaa cttaaatatt cagataagac​
     1381 cacaccagtg gcggcccgaa tttcgattac acaaaaagag agagatgttt agatttaatc​
     1441 aatgatattt ttcctgggtc catttgggct tcaggcaatc catcagaaca ctttaaatat​
     1501 tcggcggggt caataagaac tcgaagtgac tggataaaat attttactag gtatccattt​
     1561 aaggggaata aaaatattca atatgtgcgt tggttgaaat gccataatat tgttattcaa​
     1621 ggtctacaca aaaccgagaa ggggttagct caaattaaat caatttggac tcaaggtgaa​
     1681 gatatagtcc aatcccctta gtaatagggg ggtataacac gattgagtgt tgtaatttaa​
     1741 gcatcacatg tttacagttg gaatggatgc cgactctagg gcatacttta gcgctgcaac​
     1801 gatgataatc gccgtaccaa ccggaataaa aatctttagt tggatcgcta cagtagtagg​
     1861 gggctcattg agaatagata ctcctatgtt atgggctatg ggatttgttt ttttatttac​
     1921 tgtaggagga ttaaccggaa ttgtggtagc aagtaattct ttagatgtgt tgctccacga​
     1981 cacatattac gttgttgctc attttcatta tgttctatcc atgggggcta tctttgctat​
     2041 ctttggaggg gtttattatt gatttggtaa aattactggt tattgttaca ac​
//​
 

The record was assigned the ID 'denovo0', and a 'source' feature was created, 
including the fasta header as the 'original_id' and 'original_desc' qualifiers. 

18 



However, it has no feature to indicate what locus it is and it will be ignored down the line. It is 
now up to us to add such a feature. Note that for large scale data, such as Exonerate results, 
other methods apply and will be discussed later. 

Adding features 

Here we only have one new sequence and we know its ID - 'denovo0' so it is easy enough 
to add a feature: 
 
pj.add_feature_to_record('denovo0', 'CDS', qualifiers={'gene': 
'cox1'})​
​
'denovo0_f0'​
 
Feature 'denovo0_f0' was created. 
Often we would want to assign gene names to a whole lot of sequences based on one name 
we recognize in the fasta header. We can create a dictionary that will specify the gene and 
feature type of each sequence: 
 
feature_lookup = {'NIWA2850': ['CDS','cox1'],​
                     # If we had more sequences  
                     # we would add them here:​
                     # 'Seq2': ['18S', 'rRNA'],​
                     # ...​
                    }​
 
Now we can use this dictionary to create the feature: 
 
for r in pj.records:​
​
    source = r.features[0]​
    quals = source.qualifiers​
​
    if ('original_id' in quals and  
        quals['original_id'][0] in feature_lookup):​
​
        original_id = quals['original_id'][0]​
        feature_type = feature_lookup[original_id][0]​
        gene = feature_lookup[original_id][1]​
        pj.add_feature_to_record(r.id, 
                                 feature_type, 
                                 qualifiers={'gene': gene})​
 
The add_feature_to_record method allows to limit the feature to just a part of the 
sequence and to add any number of qualifiers. Look it up in the module reference. 
This is how the record looks now, with the new feature added: 
 
 
 
 

19 



for r in pj.records:​
    if r.id == 'denovo0': print r.format('genbank')​
​
LOCUS       denovo0                 2092 bp    DNA              UNK 01-JAN-1980​
DEFINITION  NIWA2850 Craniella microsigma cox1​
ACCESSION   denovo0​
VERSION     denovo0​
KEYWORDS    .​
SOURCE      .​
  ORGANISM  .​
            .​
FEATURES             Location/Qualifiers​
     source          1..2092​
                     /feature_id="denovo0_source"​
                     /original_id="NIWA2850"​
                     /original_desc="Craniella microsigma cox1"​
     CDS             1..2092​
                     /feature_id="denovo0_f0"​
                     /GC_content="37.3804971319"​
                     /gene="cox1"​
                     /nuc_degen_prop="0.0"​
ORIGIN​
        1 atgataggaa ctggatttag cttgcttatt agattagaac tatccgctcc cggattaatg​
       61 ttgggtgacg accatttata caatgttatg gtcacggccc acggtcttat aatggtcttt​
      121 ttcttagtta tgccggttat gataggtggg ttcggtaatt gaatggttcc cctttacatc​
      181 ggggcaccgg atatggcttt tccaagatta aacaatatta gtttttgagt tttacccccc​
      241 tcattaatac tactgctagg ttctgctttt gttgaacaag gggttgggac aggatggacc​
      301 ctttatccac cattatcaag tatacaggct cattctgggg gctcagtcga tgcggcaatt​
      361 tttagtcttc atttggctgg gatctcttca attttagggg caatgaattt tataactact​
      421 atctttaata tgcgggcacc tgggattacc atggatagat tgcctctatt tgtttgatct​
      481 attttaataa caacttattt gttattatta gctttgccag tattggctgg tgccataact​
      541 atgcttttaa cagatagaaa tttcaataca acgttcttcg atcccgctgg tggtggggac​
      601 ccaatattat ttcaacattt attttggttc tttgggcatc cggaagttta tgtactagtt​
      661 ctccccgggt ttggaattgt ttctcagatt attccaacat tcgcggctaa aaaacaaata​
      721 tttggctatc tagggatggt ctatgctatg gtttctatag gaattttagg ttttatagtt​
      781 tgagcttgta gatgggcgtg cgatagagtg atctatcgta gtataacatg actgtatgct​
      841 ggaaagccta aaaaaagaaa ttcattaatt actcgtaatg acaggttcga tacagtaaaa​
      901 atattaatgg agggtcaatc agcaggcaac ggtatagttt atactggagc ctcagagact​
      961 acacgtcatg cccttgagga tgatttatat tgagctattg gtttatttga ggccgaagga​
     1021 accttaaaga taagtaaggg tcggatctat attagtgcgt gtcaatcgac tagtaatata​
     1081 aaggtccttt accgaataaa gggaatattt tgtttagggg gcgttaaaat aagaaaagac​
     1141 ccccgttata gtgattgaaa gttagggagc gatttaaata aaatagtaaa attattagtt​
     1201 tattaatgga gactaatcac tagaaagaaa aatatacaat tagtagagtt gataaagttc​
     1261 ataaattgta aatattttcc taatttggtt gaatactttg gtttagagta ttgaccccga​
     1321 ataatgcttg attaactggg tttgttgagg gagatggaaa cttaaatatt cagataagac​
     1381 cacaccagtg gcggcccgaa tttcgattac acaaaaagag agagatgttt agatttaatc​
     1441 aatgatattt ttcctgggtc catttgggct tcaggcaatc catcagaaca ctttaaatat​
     1501 tcggcggggt caataagaac tcgaagtgac tggataaaat attttactag gtatccattt​
     1561 aaggggaata aaaatattca atatgtgcgt tggttgaaat gccataatat tgttattcaa​
     1621 ggtctacaca aaaccgagaa ggggttagct caaattaaat caatttggac tcaaggtgaa​
     1681 gatatagtcc aatcccctta gtaatagggg ggtataacac gattgagtgt tgtaatttaa​
     1741 gcatcacatg tttacagttg gaatggatgc cgactctagg gcatacttta gcgctgcaac​
     1801 gatgataatc gccgtaccaa ccggaataaa aatctttagt tggatcgcta cagtagtagg​
     1861 gggctcattg agaatagata ctcctatgtt atgggctatg ggatttgttt ttttatttac​
     1921 tgtaggagga ttaaccggaa ttgtggtagc aagtaattct ttagatgtgt tgctccacga​
     1981 cacatattac gttgttgctc attttcatta tgttctatcc atgggggcta tctttgctat​
     2041 ctttggaggg gtttattatt gatttggtaa aattactggt tattgttaca ac​
//​
 
Through the qualifiers dictionary, we can also attempt to add a translation of the sequence. 
We can also define a location for the feature, as a subset of the whole sequence : 
 
 

20 



qualifiers={'gene': 'cox1',​
            'transl_table': 4,​
            'codon_start': 1,​
            'organism': 'Craniella microsigma'}​
 
 
for record in pj.records:​
   if 'denovo' in record.id: # New sequences are assigned 
                             # with IDs starting​
                             # with 'denovo'​
       pj.add_feature_to_record(record.id, 'CDS',​
                     # The location is specified as a list​
                     # of lists. Every sub-list is an exon​
                     # and has the start, the end and the strand.​
                     # The numbers are "real" positions and not​
                     # machine. ie, counting starts from 1.​
                                location=[[1,786,1],[1742,2092,1]],​
                                qualifiers=qualifiers)​
​
 
transl_table is the genetic code to use in order to translate the coding sequence into a 
protein. The number, 4 in this case, specify the table to use, out of the GenBank genetic code 
tables. 

3.3.3 Reading sequence alignments 

ReproPhylo allows to read prealigned sequences in any of the Biopython AlignIO compatible 
formats, as follows: 
 
pj.read_alignment('Another_locus.nex', 'dna', 'CDS', 'ND5', 
                  format='nexus')​
 
This will place the alignment in the Project.alignments attribute (pj.alignments in 
this case) and the unaligned sequences as records in Project.records. There must be a 
Locus object in pj.loci, that is compatible with the character (dna) feature type (CDS) 
and the locus name (ND5) specified in the read_alignmnet command. The records will be 
assigned ‘denovo’ IDs, and the nexus sequence names will be stored in the ‘original_id’ 
qualifiers. ‘original_desc’ qualifier remain empty in this case, because nexus files don’t have 
them. 
 

3.3.4 Reading a Nexus alignment with PAUP commands 

Many published datasets are available in nexus format with charset commands that describe 
the data partitions. ReproPhylo can read such a matrix, split the partitions into individual 
alignments and place them in Project.alignments, and then put each sequence from 
each partition in Project.records. This facilitates experimentation with the data 
composition. It is even possible to turn such a nexus file directly into a new Project 
instance with all the information set up. To do that use the following command: 
 

21 

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t
http://biopython.org/wiki/AlignIO#File_Formats


nexus_filename = 'data/some_supermatrix.nex'​
​
pj = pj_from_nexus_w_charset(nexus_filename,​
​
                             'data',                ​
                             # path to write intermediate fasta file​
                             'dna', 
                             # Character type ('dna' or 'prot')​
                             'CDS', 
                             # Feature type (Any)​
                             project = True,      
                             # Will return a Project instance  
                             # instead of a list​
                             # of fasta files per partition ​
                             # if project will save it to this file:​
                             pickle = 'new_pickle_name', 
                             git = True) 
                             # Will start and manage repository​
 
To finish the section we’ll update the Project’s pickle file:​
pickle_pj(pj, 'outputs/my_project.pkpj')​
 

'outputs/my_project.pkpj'​
 

3.3.5 Quick reference 

# Read GenBank or embl files​
input_filnames = ['file1', 'file2']​
pj.read_embl_genbank(input_filnames)​
​
# Read other formats​
denovo_sequence_filenames = ['file1.fasta', 'file2.fasta'] ​
pj.read_denovo(denovo_sequence_filenames, 'dna', format='fasta')​
#Or​
pj.read_denovo(denovo_sequence_filenames, 'prot', format='fasta')​
​
# Add asequence feature to a record​
pj.add_feature_to_record('someRecordID', 'CDS', 
                         qualifiers={'gene': 'cox1'})​
# Or​
qualifiers={'gene': 'cox1',​
            'transl_table': 4,​
            'codon_start': 1,​
            'organism': 'Craniella microsigma'}​
​
pj.add_feature_to_record(someRecordID, 'CDS',​
                         location=[[1,786,1],[1742,2092,1]],​

22 



                         qualifiers=qualifiers)​
​
# Read a sequence alignment​
pj.read_alignment('Another_locus.nex', 'dna', 'CDS', 'ND5', 
format='nexus')​
​
# Read a Nexus alignment with a super-matrix and charset commands​
nexus_filename = 'data/some_supermatrix.nex'​
pj = pj_from_nexus_w_charset(nexus_filename,​
                             'data',​
                             'dna',​
                             'CDS',​
                             project = True,​
                             pickle = 'new_pickle_name',​
                             git = True) 

 

3.4. Metadata handling  
Section quick reference 

 
This section reviews the various methods for reading and 
modifying metadata within a ReproPhylo Project. Utilizing it 
will be discussed in later sections. 
 
3.4.1 What is metadata in ReproPhylo? 

Within a ReproPhylo Project, metadata is tied to sequences 
and sequence features, in the Biopython sense. Since 
sequence records in the Project are in fact Biopython 
SeqRecord objects, a quick review of the GenBank file format, 
based on which the SeqRecord class is structured, will help 
understand basic concepts. 
 
When a data file is read, each sequence will be stored as a 
SeqRecord object in the Project.records list of 
SeqRecord objects. A SeqRecord object has an annotations 
attribute (SeqRecord.annotations) which is a Python 
dictionary containing information regarding the sequence as a 
whole. Additional SeqRecord attribute is the features Python 
list (SeqRecord.features). Features in the list are stored 
as SeqFeature Biopython objects, and they define the start 
and end of each locus in the sequence 
(SeqFeature.location attribute. The SeqFeature also 
has the SeqFeature.qualifiers dictionary, which holds 
any additional metadata about this sequence feature. For 
example, the gene name and product name. This information is 
used by ReproPhylo to sort loci into their respective bins, (eg, 
coi, 18S etc.). Note that the values in the 

23 



SeqFeature.qualifiers dictionary are always stored as Python lists, even if they 
consist of a single value. For example, a SeqFeature.qualifiers dictionary might look 
like this: 
{'gene': ['cox1'],​
'translation': ['AATRNLLK']}​
 
Another important SeqRecord attribute is type (SeqRecord.type), which is a string stating 
the feature type, whether it is 'gene', 'CDS', 'rRNA' or anything else. 
A special SeqFeature is the source feature (SeqFeature.type == 'source'). It is the 
first feature in each SeqRecord.features list, and is generated automatically by 
ReproPhylo if you read a file that does not have such features (eg, fasta format). The 
qualifiers dictionary of this automatically generated source feature will then contain the 
original_id and original_desc (description) from the fasta headers. Technically, there 
is absolutely no difference between the source feature and all the other features. However, 
conceptually, metadata stored in the source feature applies to all the other features. 
ReproPhylo knows this and provides tools to access it accordingly (further down). 
 
For a more detailed description of metadata in the SeqRecord Biopython object, refer to this 
section in the Biopython tutorial. Although ReproPhylo provides some Project methods for 
modifying the metadata, and also a method to edit the metadata in a spreadsheet, the most 
flexible way to do it is by utilizing Biopython code, and mastering it is helpful within 
ReproPhylo and in life in general! 

3.4.2 Modifying the metadata 

A Biopython example 

With Biopython we can iterate over the records and their features in the pj.records list 
and make changes or additions to the qualifiers of each feature as follows. To get a working 
example going, first we load our Project with its loci and data: 
 
from reprophylo import *​
pj = unpickle_pj('outputs/my_project.pkpj', git=False)​
​
 
The first record looks like this: 
 
print pj.records[0].format('genbank')​
​
LOCUS       KC902343                1728 bp    DNA              INV 05-SEP-2013​
DEFINITION  Cinachyrella cf. paterifera 0M9H2022-P small subunit 18S ribosomal​
            RNA gene, partial sequence.​
ACCESSION   KC902343​
VERSION     KC902343.1  GI:511637204​
KEYWORDS    .​
SOURCE      Cinachyrella cf. paterifera 0M9H2022-P​
  ORGANISM  Cinachyrella cf. paterifera 0M9H2022-P​
            Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha;​
            Spirophorida; Tetillidae; Cinachyrella.​
REFERENCE   1  (bases 1 to 1728)​
  AUTHORS   Redmond,N.E., Morrow,C.C., Thacker,R.W., Diaz,M.C.,​
            Boury-Esnault,N., Cardenas,P., Hajdu,E., Lobo-Hajdu,G., Picton,B.E.,​
            Pomponi,S.A., Kayal,E. and Collins,A.G.​
  TITLE     Phylogeny and Systematics of Demospongiae in Light of New​

24 

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc31
http://biopython.org/DIST/docs/tutorial/Tutorial.html


            Small-Subunit Ribosomal DNA (18S) Sequences​
  JOURNAL   Integr. Comp. Biol. 53 (3), 388-415 (2013)​
   PUBMED   23793549​
REFERENCE   2  (bases 1 to 1728)​
  AUTHORS   Redmond,N. and Collins,A.G.​
  TITLE     Direct Submission​
  JOURNAL   Submitted (16-APR-2013) National Systematics Lab and Smithsonian,​
            10th and Constitution NW, Washington, DC, USA​
FEATURES             Location/Qualifiers​
     source          1..1728​
                     /note="PorToL ID: NCI376"​
                     /mol_type="genomic DNA"​
                     /country="Australia"​
                     /feature_id="KC902343.1_source"​
                     /db_xref="taxon:1342549"​
                     /specimen_voucher="0M9H2022-P"​
                     /organism="Cinachyrella cf. paterifera 0M9H2022-P"​
     rRNA            <1..>1728​
                     /feature_id="KC902343.1_f0"​
                     /product="small subunit 18S ribosomal RNA"​
                     /nuc_degen_prop="0.0"​
                     /GC_content="52.0833333333"​
ORIGIN​
        1 gtctcaaaga ctaagccatg catgtccaag tatgaacgct tcgtactgtg aaactgcgaa​
       61 tggctcatta aatcagttat agtttatttg atggttgctt gctacatgga taaccgtggt​
      121 aattctagag ctaatacatg cacagagtcc cgacttccgg gagggacgta tttattagat​
      181 ccaaaaccag cgcgggtgtc ccctcgtggg tgcccggtcc ctgggcgatt catgataact​
      241 gctcgaatcg cacggccctg gcgccggcga tggtccattc aaatttctgc cctatcaact​
      301 ttcgatggta cggtagtggc ctaccatggt tgcaacgggt gacggagaat tagggttcga​
      361 ttccggagag ggagcctgag aaacggctac cacatccaag gaaggcagca ggcgcgcaaa​
      421 ttacccaatc ccgactcggg gaggtagtga caataaataa caatgccggg ctctcgcagt​
      481 ctggcaattg gaatgagtcc aatctaaacc ccttaacgag gaacaattgg agggcaagtc​
      541 tggtgccagc agccgcggta attccagctc caatagcgta tattaaagtt gttgcagtta​
      601 aaaagctcgt agttggattt cggggcggcc cggccggtcc gccgcgaggc gagcactggt​
      661 cgggcgccct tcctctcgaa ggcttcgact gctcttgatt gcggtggtcg aggagttcgg​
      721 gacgtttact ttgaaaaaat tagagtgttc aaggcaggcc gtcgcctgaa tacattagca​
      781 tggaataatg gaagaggacc tcggtcctat tttgttggtt tccagggccg aagtaatgat​
      841 taagagggac agttgggggc attcgtattc aattgtcaga ggtgaaattc tcggatttat​
      901 ggaagacgaa caagtgcgaa agcatttgcc aaggatgttt tcattaatca agaacgaaag​
      961 ttgggggttc gaagacgatc agataccgtc gtagtcccaa ccataaacta tgccgactag​
     1021 ggatcggcgg atgttagcgt ctgactccgt cggcaccttg cgagaaatca agagtctttg​
     1081 ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca​
     1141 ccaggagtgg agcctgcggc ttaatttgac tcaacacggg gaaactcacc aggtccggac​
     1201 atggtaagga ttgacagatc gagagctctt tcttgattct atgggtggtg gtgcatggcc​
     1261 gttcttagtt ggtggagtga tttgtctggt taattccgtt aacgaacgag accttaacct​
     1321 gctaactagt cacgccgttc ccgaacggcg ggcgacttct tagagggaca accggccccg​
     1381 aagccggcgg aagtctgagg caataacagg tctgtgatgc ccttagatgt tctgggccgc​
     1441 acgcgcgcta cactgacgga ggcagcgagc atgtccttcg ccgagaggtg cggggaatct​
     1501 tgtgaaactc cgtcgtgctg gggatagatc attgcaattc tcgatcttga acgaggaatt​
     1561 cctagtaagc gcgagtcagc agctcgcgtt gattacgtcc ctgccctttg tacacaccgc​
     1621 ccgtcgctac taccgattga atggtttagt gagatcttcg gattggagcc gccgtgacgg​
     1681 gcgaccgccg cggcggattt cgagaagtcg atcaaacttg atcattta​
//​
 
The next cell will get the organism name for each record, which is a qualifier in the source 
feature. It will then get the genus out of this name, and place it in a new qualifier, in all the 
record's features: 
 
for record in pj.records:​
​
    # get the source qualifiers​
    source_feature = record.features[0]​

25 



    source_qualifiers = source_feature.qualifiers​
​
    # get the species name​
    species = None​
    if 'organism' in source_qualifiers:​
        species = source_qualifiers['organism'][0]  
        # qualifier values are lists​
​
    # place the genus as a qualifier in all the features​
    if species:​
        genus = species.split()[0]​
        for f in record.features:​
            f.qualifiers['genus'] = [genus]​
 
The genus qualifier was added to all the features. 
 
print pj.records[0].format('genbank')​
​
LOCUS       KC902343                1728 bp    DNA              INV 05-SEP-2013​
DEFINITION  Cinachyrella cf. paterifera 0M9H2022-P small subunit 18S ribosomal​
            RNA gene, partial sequence.​
ACCESSION   KC902343​
VERSION     KC902343.1  GI:511637204​
KEYWORDS    .​
SOURCE      Cinachyrella cf. paterifera 0M9H2022-P​
  ORGANISM  Cinachyrella cf. paterifera 0M9H2022-P​
            Eukaryota; Metazoa; Porifera; Demospongiae; Tetractinomorpha;​
            Spirophorida; Tetillidae; Cinachyrella.​
REFERENCE   1  (bases 1 to 1728)​
  AUTHORS   Redmond,N.E., Morrow,C.C., Thacker,R.W., Diaz,M.C.,​
            Boury-Esnault,N., Cardenas,P., Hajdu,E., Lobo-Hajdu,G., Picton,B.E.,​
            Pomponi,S.A., Kayal,E. and Collins,A.G.​
  TITLE     Phylogeny and Systematics of Demospongiae in Light of New​
            Small-Subunit Ribosomal DNA (18S) Sequences​
  JOURNAL   Integr. Comp. Biol. 53 (3), 388-415 (2013)​
   PUBMED   23793549​
REFERENCE   2  (bases 1 to 1728)​
  AUTHORS   Redmond,N. and Collins,A.G.​
  TITLE     Direct Submission​
  JOURNAL   Submitted (16-APR-2013) National Systematics Lab and Smithsonian,​
            10th and Constitution NW, Washington, DC, USA​
FEATURES             Location/Qualifiers​
     source          1..1728​
                     /note="PorToL ID: NCI376"​
                     /mol_type="genomic DNA"​
                     /country="Australia"​
                     /feature_id="KC902343.1_source"​
                     /db_xref="taxon:1342549"​
                     /specimen_voucher="0M9H2022-P"​
                     /genus="Cinachyrella"​
                     /organism="Cinachyrella cf. paterifera 0M9H2022-P"​
     rRNA            <1..>1728​
                     /feature_id="KC902343.1_f0"​
                     /product="small subunit 18S ribosomal RNA"​
                     /genus="Cinachyrella"​
                     /nuc_degen_prop="0.0"​
                     /GC_content="52.0833333333"​
ORIGIN​
        1 gtctcaaaga ctaagccatg catgtccaag tatgaacgct tcgtactgtg aaactgcgaa​

26 



       61 tggctcatta aatcagttat agtttatttg atggttgctt gctacatgga taaccgtggt​
      121 aattctagag ctaatacatg cacagagtcc cgacttccgg gagggacgta tttattagat​
      181 ccaaaaccag cgcgggtgtc ccctcgtggg tgcccggtcc ctgggcgatt catgataact​
      241 gctcgaatcg cacggccctg gcgccggcga tggtccattc aaatttctgc cctatcaact​
      301 ttcgatggta cggtagtggc ctaccatggt tgcaacgggt gacggagaat tagggttcga​
      361 ttccggagag ggagcctgag aaacggctac cacatccaag gaaggcagca ggcgcgcaaa​
      421 ttacccaatc ccgactcggg gaggtagtga caataaataa caatgccggg ctctcgcagt​
      481 ctggcaattg gaatgagtcc aatctaaacc ccttaacgag gaacaattgg agggcaagtc​
      541 tggtgccagc agccgcggta attccagctc caatagcgta tattaaagtt gttgcagtta​
      601 aaaagctcgt agttggattt cggggcggcc cggccggtcc gccgcgaggc gagcactggt​
      661 cgggcgccct tcctctcgaa ggcttcgact gctcttgatt gcggtggtcg aggagttcgg​
      721 gacgtttact ttgaaaaaat tagagtgttc aaggcaggcc gtcgcctgaa tacattagca​
      781 tggaataatg gaagaggacc tcggtcctat tttgttggtt tccagggccg aagtaatgat​
      841 taagagggac agttgggggc attcgtattc aattgtcaga ggtgaaattc tcggatttat​
      901 ggaagacgaa caagtgcgaa agcatttgcc aaggatgttt tcattaatca agaacgaaag​
      961 ttgggggttc gaagacgatc agataccgtc gtagtcccaa ccataaacta tgccgactag​
     1021 ggatcggcgg atgttagcgt ctgactccgt cggcaccttg cgagaaatca agagtctttg​
     1081 ggttccgggg ggagtatggt cgcaaggctg aaacttaaag gaattgacgg aagggcacca​
     1141 ccaggagtgg agcctgcggc ttaatttgac tcaacacggg gaaactcacc aggtccggac​
     1201 atggtaagga ttgacagatc gagagctctt tcttgattct atgggtggtg gtgcatggcc​
     1261 gttcttagtt ggtggagtga tttgtctggt taattccgtt aacgaacgag accttaacct​
     1321 gctaactagt cacgccgttc ccgaacggcg ggcgacttct tagagggaca accggccccg​
     1381 aagccggcgg aagtctgagg caataacagg tctgtgatgc ccttagatgt tctgggccgc​
     1441 acgcgcgcta cactgacgga ggcagcgagc atgtccttcg ccgagaggtg cggggaatct​
     1501 tgtgaaactc cgtcgtgctg gggatagatc attgcaattc tcgatcttga acgaggaatt​
     1561 cctagtaagc gcgagtcagc agctcgcgtt gattacgtcc ctgccctttg tacacaccgc​
     1621 ccgtcgctac taccgattga atggtttagt gagatcttcg gattggagcc gccgtgacgg​
     1681 gcgaccgccg cggcggattt cgagaagtcg atcaaacttg atcattta​
//​
 
Important: 
In addition to the record ID, ReproPhylo assigns a unique feature ID for each feature within 
the record. In a record with a record ID KC902343, the ID of the first feature will be 
KC902343_source, for the second and third features the IDs will be KC902343_f0 and 
KC902343_f1 and so on. For a record with a record ID denovo2, the features will get the 
feature IDs denovo2_source, denovo2_f0, denovo2_f1 and so on. This is important 
because it allows to access specific features directly (say, the cox1 features), using their 
feature ID. 

Some ReproPhylo shortcuts 

ReproPhylo adds some basic shortcuts for convenience. Here are some examples: 
 
pj.if_this_then_that('Cinachyrella', 'genus', 'yes', 
                     'porocalices', mode='part')​
 
This method iterates over all the records in the Project and makes some changes where 
the rules provided to it apply. If the value 'Cinachyrella' is found in the qualifier 'genus' it 
will put the value 'yes' in the qualifier 'porocalices', which is a morphological trait of the 
sponge genus Cinachyrella. mode='part' means that the match can be partial. The default is 
mode='whole'. 
 
features_to_modify = ['KC902343.1_f0', 'JX177933.1_f0']​
pj.add_qualifier(features_to_modify, 'spam?', 'why not')​
 
This method will add a qualifier spam? with the value why not to specific features that have 
the feature IDs KC902343.1_f0 and JX177933.1_f0. Within each record, ReproPhylo 

27 



assigns unique ID for each feature. 
 
pj.add_qualifier_from_source('country')​
 
We may want to place the source qualifier 'country' explicitly in each of the other features in 
the record. The add_qualifier_from_source method will take effect in all the records that 
have a country qualifier in their source feature. It will copy it to all the other features, along 
with its value in that record. 
 
pj.copy_paste_from_features_to_source('eggs?', 'spam?')​
 
Or vice-versa, we can make sure that a qualifier that is in only one of the features, is copied 
as a value of a source feature qualifier and thus apply it to the whole record (and all its 
features). In this case, the function copy_paste_from_features_to_source will take effect in 
records where at least one non-source record feature has the qualifier eggs?, and it will copy 
the value of eggs? to the source qualifier spam?. 
 
pj.copy_paste_within_feature('GC_content', '%GC')​
 
Lastly, we may want to equate qualifiers that have different names in different records, but 
are essentially the same thing. For example, 'sample' and 'voucher'. This can be done by 
applying the qualifier name of one of them to the other, using the method 
copy_paste_within_feature. In every record feature that has the qualifier GC_content, a 
new qualifier will be created, %GC, and it will contain the value of GC_content. 
This is the FEATURES section of the above record, with the resulting changes to it. The 
method which is responsible for each qualifier is indicated next to it (the method names are 
not a part of the real output): 
FEATURES             Location/Qualifiers​
     source          1..1728​
                     /feature_id="KC902343.1_source"​
                     /mol_type="genomic DNA"​
                     /country="Australia"​
                     /eggs?="why not" #### copy_paste_from_features_to_source​
                     /note="PorToL ID: NCI376"​
                     /db_xref="taxon:1342549"​
                     /specimen_voucher="0M9H2022-P"​
                     /genus="Cinachyrella" #### Biopython script from section 
3.4.2.1​
                     /organism="Cinachyrella cf. paterifera 0M9H2022-P"​
     rRNA            <1..>1728​
                     /porocalices="yes" ####if_this_then_that​
                     /product="small subunit 18S ribosomal RNA"​
                     /country="Australia" #### add_qualifier_from_source​
                     /nuc_degen_prop="0.0"​
                     /feature_id="KC902343.1_f0"​
                     /spam?="why not" #### add_qualifier​
                     /%GC="52.0833333333" #### copy_paste_within_feature​
                     /GC_content="52.0833333333"​
                     /genus="Cinachyrella" #### Biopython script from section 
3.4.2.1​
 

Using a spreadsheet 

ReproPhylo provides an alternative route for metadata editing that goes through a 
spreadsheet. This way, the spreadsheet can be routinely edited and the changes read into 

28 



the Project and propagated to its existing components (eg, trees). The best way to edit this 
spreadsheet probably goes through pandas, if you are familiar with it. Otherwise, it is 
possible to edit and save in excel, libreoffice and similar programmes, although beware of 
errors. 
In this section I will give an example using a spreadsheet programme. This example will add 
the qualifier 'monty' and the value 'python' to each source feature, and the qualifier 'holy' with 
the value 'grail' to each non-source feature. 
The first step is to write a csv file (the separators are actually tabs and not commas) 
 
pj.write('outputs/metadata_example.tsv', format='csv')​
 
In the resulting file, each feature has its own line, and each record has as many lines as 
non-source features it contains. Source feature qualifiers are included in all the lines, as they 
apply to all the features in the record. They are indicated in the titles with the prefix source:_. 
To add a qualifier to the source feature, we will need to use this prefix in its title. 
I have opened this file in a spreadsheet programme and added the qualifiers as follows: 
 

​
 
 
The edited spreadsheet was saved as outputs/edited_metadata_example.tsv, and 
it can now be read back to the Project 

29 

http://pandas.pydata.org/
https://nsaunders.wordpress.com/2012/10/22/gene-name-errors-and-excel-lessons-not-learned/


 
pj.correct_metadata_from_file('outputs/edited_metadata_example.tsv')​
​
# Propagate the changes so they are also updated in tree leaves.​
pj.propagate_metadata()​
 
If we print the first record again, this is how its FEATURES section looks now: 
 
FEATURES             Location/Qualifiers​
     source          1..1728​
                     /note="PorToL ID: NCI376"​
                     /mol_type="genomic DNA"​
                     /country="Australia"​
                     /organism="Cinachyrella cf. paterifera 
0M9H2022-P"​
                     /feature_id="KC902343.1_source"​
                     /db_xref="taxon:1342549"​
                     /specimen_voucher="0M9H2022-P"​
                     /genus="Cinachyrella"​
                     /eggs?="why not"​
                     /monty="python"  #### New source qualifier​
     rRNA            <1..>1728​
                     /porocalices="yes"​
                     /product="small subunit 18S ribosomal RNA"​
                     /holy="grail"    #### New non-source qualifier​
                     /country="Australia"​
                     /nuc_degen_prop="0"​
                     /feature_id="KC902343.1_f0"​
                     /%GC="52.0833333333"​
                     /spam?="why not"​
                     /record_id="KC902343.1"​
                     /GC_content="52.0833333333"​
                     /genus="Cinachyrella"​
 
 
To finish this section, we’ll update the pickle file: 

pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj'​
 

3.4.3 Quick reference 

## A Biopython example​
for record in pj.records:​
​
    # get the source qualifiers​
    source_feature = record.features[0]​
    source_qualifiers = source_feature.qualifiers​

30 



​
    # get the species name​
    species = None​
    if 'organism' in source_qualifiers:​
        # qualifier values are lists​
        species = source_qualifiers['organism'][0]​
​
    # place the genus as a qualifier in all the features​
    if species:​
        genus = species.split()[0]​
        for f in record.features:​
            f.qualifiers['genus'] = [genus]​
​
## Add qualifier based on condition​
pj.if_this_then_that('Cinachyrella', 'genus', 'yes', 'porocalices',​
                     mode='part')​
​
## Modify qualifier of specific features​
features_to_modify = ['KC902343.1_f0', 'JX177933.1_f0']​
pj.add_qualifier(features_to_modify, 'spam?', 'why not')​
​
## Copy qualifier from source to features​
pj.add_qualifier_from_source('country')​
# or vice-versa​
pj.copy_paste_from_features_to_source('spam?', 'eggs?') 
​
## Duplicate a qualifier with a new name​
pj.copy_paste_within_feature('GC_content', '%GC') 
​
## Write metadata spreadsheet​
pj.write('outputs/metadata_example.tsv', format='csv') 
​
# Read a corrected metadata spreadsheet​
pj.correct_metadata_from_file('outputs/edited_metadata_example.tsv')​
​
# Propagate the changes​
pj.propagate_metadata()​
 

 

3.5. Pre alignment filtering 
Section quick reference, Full reference 

This section in nbviewer 

 
This section is a walk through the pre-alignment sequence filtering in ReproPhylo. We will 
start by several preliminaries discussed in the previous sections: 

31 

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Basic/3.5%20Pre%20alignment%20filtering.ipynb


 
from reprophylo import *​
​
pj = unpickle_pj('outputs/my_project.pkpj', git=False)​
​
 

3.5.1 Filtering by sequence length or GC content 

At this point we have record features belonging to the loci in our Project. We have to split 
them by locus: 
pj.extract_by_locus()​
 
With this done, we can display length and %GC distribution for each locus: 
 
%matplotlib inline​
pj.report_seq_stats()​
 
Distribution Of Sequence Lengths 
Distribution Of Sequence Statistic "Gc_Content" 

 

​
 
 

32 



Now we'll exclude all the outliers: 
 
# Define minima and maxima​
gc_inliers = {​
    '18s': [50,54],​
    '28s': [57,67],​
    'MT-CO1': [35,43]​
}​
len_inliers = {​
    '18s': [1200,1800],​
    '28s': [500,900],​
    'MT-CO1': [500,1500]​
}​
​
# Apply to loci data​
for locus in gc_inliers:​
    # trim GC outliers​
    pj.filter_by_gc_content(locus,​
                            min_percent_gc=gc_inliers[locus][0],​
                            max_percent_gc=gc_inliers[locus][1])​
​
    # trim length outlier​
    pj.filter_by_seq_length(locus,​
                            min_length=len_inliers[locus][0],​
                            max_length=len_inliers[locus][1])​
 
We can now confirm that the filter worked: 
 
pj.report_seq_stats()​
​
Distribution Of Sequence Lengths​
Distribution Of Sequence Statistic "Gc_Content" 

​
 
3.5.2 Excluding and including 

It is possible to exclude and include sequences by record id. 

Excluding 

By default, excluding is done by starting with a full bin (all the 
sequences are included). In this case, since we have already 
filtered some sequences out, we need to start excluding from the 
current state and not from a full bin. Starting from a full bin by 
using the default setting start_from_max=True would undo 
the filtering by GC content and sequence length we have done 
above. As an example we will exclude JX177918.1 from the 
MT-CO1 Locus bin. 
 
exclude = {'MT-CO1': ['JX177918.1']}​

33 



pj.exclude(start_from_max=False, **exclude)​
 
The following line confirms that this record id is no longer in the MT-CO1 Locus bin. 
 
 
 
any(['JX177918.1' in feature.id for feature in 
pj.records_by_locus['MT-CO1']])​
​
False​
 

Including 

By default, including starts from empty bins, however here we want to keep the current state 
and only add one sequence: 
 
include = {'MT-CO1': ['JX177918.1']}​
pj.include(start_from_null=False, **include)​
 
The following line confirms that this record was added back to the MT-CO1 Locus bin. 
 
any(['JX177918.1' in feature.id for feature in 
pj.records_by_locus['MT-CO1']])​
​
True​
​
To finish this section:  

​
# Update the pickle file​
pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj'​
 

3.5.3 Quick reference 

# Split records to loci bins​
pj.extract_by_locus()​
​
# Show length and %GC distributions​
%matplotlib inline​
pj.report_seq_stats()​
​
# Filter  by GC content​
pj.filter_by_locus('LocusName',​
                    min_percent_gc = 30,​
                    max_percent_gc = 50)​
​

34 



# Filter  by sequence length​
pj.filter_by_seq_length('LocusName',​
                        min_length = 200,​
                        max_length = 1000)​
​
# Include or exclude records in the loci bins​
records = {'LocusName1': ['recordid1','recordid2'],​
            'LocusName2': ['recordid3','recordid4']}​
pj.exclude(start_from_max=True, **records)​
​
# or​
pj.include(start_from_null=True, **records) 
 
 

3.6 Producing and accessing sequence alignment 
Section quick reference 

 
from reprophylo import *​
pj = unpickle_pj('./outputs/my_project.pkpj',​
                 git=False)​
 
The execution of sequence alignments and accessing them is wrapped with a rich set of 
functions and methods that make it very convenient to handle many of them. Therefore, it 
make sense to use ReproPhylo for sequence alignment, even if you do not need a tree as a 
final output. Although ReproPhylo rejects alignments with less than four sequences because 
they cannot serve for phylogenetic reconstruction. 

3.6.1 Configuring a sequence alignment process 

Sequence alignment processes are configured with the AlnConf class. An object of this 
class will generate a command-line and the required input files, but will not execute the 
process (this is shown below). Once the process has been successfully executed, this 
AlnConf object is stored in pj.used_methods and it can be invoked as a report. 
 
The AlnConf instance allows control over: 
 
1.​ The program used (Mafft or Muscle) 
2.​ Whether or not to conduct a codon alignment for CDS loci 
3.​ The genetic code to use for codon alignment 
4.​ The command that invokes the programme (if you want to use a programme that is 

not in your path) 
5.​ The loci names of the loci to align using this specific approach 
6.​ Custom command line arguments in order to deviate from the programme's default 

settings 

Example 1: codon alignment of CDS loci with the MAFFT L-ins-i algorithm 

The next bit of code will construct an AlnConf instance that will align only the MT-CO1 CDS 

35 



locus, by grabbing the protein sequences from pj.records, aligning them using the 
MAFFT L-ins-i algorithm, and then proceeding with a codon alignment of the CDS sequence 
with pal2nal, using the protein alignment as reference. 
 
 
 
 
 
 
 

mafft_linsi = AlnConf(pj,                              # The Project​
​
                      method_name='mafftLinsi',        # Any unique method name,​
                                                       # 'mafftDefault' by default​
​
                      CDSAlign=True,                   # Use this method to align​
                                                       # protein sequences, and then​
                                                       # pal2nal to align the CDSs​
                                                       # This is the default setting​
                                                       # and it is ignored with non-CDS​
                                                       # loci.​
​
                      codontable=4,                    # The genetic code that​
                                                       # applies to this data,​
                                                       # codontable=1 by default​
​
                      program_name='mafft',            # mafft or muscle.​
                                                       # 'mafft' by default​
​
                      cmd='mafft',                     # The command on your machine​
                                                       # that invokes the program.​
                                                       # 'mafft' by default​
​
                      loci=['MT-CO1'],                 # A list of loci names to align.​
                                                       # loci='all' by default, which will​
                                                       # align all the loci in the project.​
                                                       # If loci=='all', and CDSAlign==True​
                                                       # CDS loci will be aligned as proteins​
                                                   # (and then at the DNA level with pal2nal)​
                                                   # but other DNA loci (e.g. rRNA) will be​
                                                   # aligned directly at the DNA level.​
​
                      cline_args={'localpair': True,# Program specific keywords and arguments.​
                                  'maxiterate': 1000}# cine_args=={} by default, which will​
                     )                              # execute the program with default settings​
​
mafft --localpair --maxiterate 1000 933261440758989.85_CDS_proteins_MT-CO1.fasta​
 

36 



Example 2: Alignment of rRNA loci with Muscle default algorithm 

This is a simpler example where DNA loci will be directly aligned using Muscle with default 
settings. I am not specifying CDSAlign=False because this is not a CDS locus so there will 
be no attempt to do a codon alignment. the codontable argument is also ignored. I am also 
not specifying cmd='muscle', because when we set program='muscle', then the default 
value of cmd becomes 'muscle'. 
(hint: by the way, if you have a reference alignment which accounts for the secondary 
structure on your RNA locus, it can be utilized with the seed argument in Mafft). 
 
muscle_defaults = AlnConf(pj,​
                          method_name="muscleDefault",​
                          program_name="muscle",​
                          loci=['18s','28s'])​
​
muscle -in 375991440758992.65_18s.fasta​
muscle -in 375991440758992.65_28s.fasta​
 

3.6.2 Executing sequence alignment processes 

Once we have one or more AlnConf objects, we can execute them in one go using the 
Project method align. This method accepts a list of AlnConf objects and does whatever 
it is each of them tells it: 
 
pj.align([mafft_linsi, muscle_defaults])​
 
When the process is done, the AlnConf objects will be stored in pj.used_methods, 
which is a dictionary using the method names as keys: 
 
pj.used_methods​
​
{'mafftLinsi': <reprophylo.AlnConf instance at 0x7f103c1f7128>,​
 'muscleDefault': <reprophylo.AlnConf instance at 
0x7f103ba20050>}​
 
if we print one of these AlnConf objects as a string, we will get complete details about the 
process, including programme versions and references: 
 
print pj.used_methods['mafftLinsi']​
​
AlnConf named mafftLinsi with ID 933261440758989.85​
Loci: MT-CO1 ​
Created on: Fri Aug 28 11:49:49 2015​
Commands:​
MT-CO1: mafft --localpair --maxiterate 1000 
933261440758989.85_CDS_proteins_MT-CO1.fasta​
​
Environment:​
Platform: 

37 



Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
 Processor: x86_64​
 Python build: defaultJun 22 2015 17:58:13​
 Python compiler: GCC 4.8.2​
 Python implementation: CPython​
 Python version: 2.7.6​
 ete2 version: 2.2rev1056​
 biopython version: 1.64​
 dendropy version: 3.12.0​
 cloud version: 2.8.5​
 reprophylo version 1.0​
 User: amir-TECRA-W50-A​
 Program and version: MAFFT v7.123b\nPal2Nal v14​
 Program reference:Katoh​
 Standley 2013 (Molecular Biology and Evolution 30:772-780) 
MAFFT multiple sequence alignment software version 7: 
improvements in performance and usability.\nMikita Suyama​
 David Torrents​
 and Peer Bork (2006) PAL2NAL: robust conversion of protein 
sequence alignments into the corresponding codon 
alignments.Nucleic Acids Res. 34​
 W609-W612.​
execution time:​
2.26954507828​
​
​
==============================​
Core Methods section sentence:​
==============================​
The dataset(s) MT-CO1 were first aligned at the protein level 
using the program MAFFT v7.123b [1].​
The resulting alignments served as guides to codon-align the 
DNA sequences using Pal2Nal v14 [2].​
​
Reference:​
[1]Katoh, Standley 2013 (Molecular Biology and Evolution 
30:772-780) MAFFT multiple sequence alignment software version 
7: improvements in performance and usability.​
[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: 
robust conversion of protein sequence alignments into the 
corresponding codon alignments.Nucleic Acids Res. 34, 
W609-W612.​
 

3.6.3 Accessing sequence alignments 

The pj.alignments dictionary 

The alignments themselves are stored in the pj.alignments dictionary, using keys that 

38 



follow this pattern: locus_name@method_name where method_name is the name you 
have provided to your AlnConf object. 
 
pj.alignments​
​
{'18s@muscleDefault': <<class 'Bio.Align.MultipleSeqAlignment'> 
instance (52 records of length 1824, IUPACProtein()) at 
7f103bba6790>,​
 '28s@muscleDefault': <<class 'Bio.Align.MultipleSeqAlignment'> 
instance (48 records of length 909, IUPACProtein()) at 
7f103be32310>,​
 'MT-CO1@mafftLinsi': <<class 'Bio.Align.MultipleSeqAlignment'> 
instance (73 records of length 1227, IUPACAmbiguousDNA()) at 
7f103bbc1350>}​
 

Accessing a MultipleSeqAlignment object 

An alignment can be easily accessed and manipulated with any of Biopython's AlignIO tricks 
using the Project method fa: 
 
print pj.fa('18s@muscleDefault')[:4,410:420].format('phylip-relaxed')​
​
returning alignment object 18s@muscleDefault​
 4 10​
KC762720.1_f0  GAGAAACGGC ​
KC774024.1_f0  GAGAAACGGC ​
KC762713.1_f0  GAGAAACGGC ​
KC762708.1_f0  GAGAAACGGC​
 

Writing sequence alignment files 

Alignment text files can be dumped in any AlignIO format for usage in an external command 
line or GUI program. When writing to files, you can control the header of the sequence by, for 
example, adding the organism name of the gene name, or by replacing the feature ID with 
the record ID: 
 
# record_id and source_organism are feature qualifiers in the 
SeqRecord object​
# See section 3.4​
files = pj.write_alns(id=['record_id','source_organism'],​
                      format='fasta')​
files​
​
['28s@muscleDefault_aln.fasta',​
 '18s@muscleDefault_aln.fasta',​
 'MT-CO1@mafftLinsi_aln.fasta']​
 
The files will always be written to the current working directory (where the Jupyter notebook 

39 

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/wiki/AlignIO#File_Formats


file is), and can immediately be moved programmatically to avoid clutter: 
 
# make a new directory for your alignment files:​
if not os.path.exists('alignment_files'):​
    os.mkdir('alignment_files')​
​
# move the files there​
for f in files:​
    os.rename(f, "./alignment_files/%s"%f)​
 

Viewing alignments 

ReproPhylo has a Project method to view the alignments in the browser. This one also 
allows you to control the content of sequence headers. 
 
pj.show_aln('MT-CO1@mafftLinsi',id=['source_organism'])​
# source_organism is a feature qualifier in the SeqRecord object​
# See section 3.4​
 
As a result of this command, a new browser tab will open, showing the alignment. 
 
Note1: In some cases, the tab will not open automatically, you will need to look for the html 
file in your working directory and open it manually. 
Note2: This is slow with large alignment. A better approach with large files would be to write 
a text file, as above, and look at the alignment in AliView or any of your preferred alignment 
viewers. 
 

​
 
 

40 

http://www.ormbunkar.se/aliview/


Pickle the Project to end this section: 

pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj'​
 

3.6.4 Quick reference 

# Make a AlnConf object​
alnconf = AlnConf(pj, **kwargs)​
​
# Execute alignment process​
pj.align([alnconf])​
​
# Show AlnConf description​
print pj.used_methods['method_name']​
​
# Fetch a MultipleSeqAlignment object​
aln_obj = pj.fa('locus_name@method_name')​
​
# Write alignment text files​
pj.write_alns(id=['some_feature_qualifier'], format='fasta')​
# the default feature qualifier is 'feature_id'​
# 'fasta' is the default format​
​
# View alignment in browser​
pj.show_aln('locus_name@method_name',id=['some_feature_qualifier'])​
 

3.7 Alignment trimming 
This section also starts with a Project that already contains alignments: 
 
from reprophylo import *​
pj = unpickle_pj('./outputs/my_project.pkpj',​
                 git=False)​
 
If we call the keys of the pj.alignments dictionary, we can see the names of the alignments it 
contains: 
 
pj.alignments.keys()​
​
['28s@muscleDefault', 'MT-CO1@mafftLinsi', 
'18s@muscleDefault']​
 

3.7.1 Configuring an alignment trimming process 

Like the sequence alignment phase, alignment trimming has its own configuration class, the 

41 



TrimalConf class. An object of this class will generate a command-line and the required 
input files for the program TrimAl, but will not execute the process (this is shown below). 
Once the process has been successfully executed, this TrimalConf object is also stored 
in pj.used_methods and it can be invoked as a report. 

Example1, the default gappyput algorithm 

With TrimalConf, instead of specifying loci names, we provide alignment names, as they 
appear in the keys of pj.alignments 
 

gappyout = TrimalConf(pj,                      # The Project​
​
                      method_name='gappyout',  # Any unique string  
                                          # ('gappyout' is default)​
​
                      program_name='trimal', # No alternatives in  
                                          # this ReproPhylo version​
​
                      cmd='default', # the default is trimal.  
                                # Change it here​
                                # or in pj.defaults['trimal']​
​
                      alns=['MT-CO1@mafftLinsi'],# 'all' by default​
​
                      trimal_commands={'gappyout': True} # By  
                         # default, the gappyout algorithm is used.​
                      )​
​
trimal -in 587711440759152.37_MT-CO1@mafftLinsi.fasta 
-gappyout​
 
List comprehension to subset alignments 

In this example, it is easy enough to copy and paste alignment names into a list and pass it 
to TrimalConf. But this is more difficult if we want to fish out a subset of alignments from 
a very large list of alignments. In such cases, Python's list comprehension is very useful. 
Below I show two uses of list comprehension, but the more you feel comfortable with this 
approach, the better. 
 
Getting locus names of rRNA loci 
 
If you read the code line that follows very carefully, you will see it quite literally says "take 
the name of each Locus found in pj.loci if its feature type is rRNA, and put it in a list": 
 
rRNA_locus_names = [locus.name for locus in pj.loci if  
                    locus.feature_type == 'rRNA']​
print rRNA_locus_names​
​
['18s', '28s']​

42 

http://trimal.cgenomics.org/introduction


 
what we get is a list of names of our rRNA loci. 
 
 
 
Getting alignment names that have locus names of rRNA loci 
 
The following line says: "take the key of each alignment from the pj.alignments 
dictionary if the first word before the '@' symbol is in the list of rRNA locus names, and put 
this key in a list": 
 
rRNA_alignment_names = [key for key in pj.alignments.keys() if  
                        key.split('@')[0] in rRNA_locus_names]​
print rRNA_alignment_names​
​
['28s@muscleDefault', '18s@muscleDefault']​
 
We get a list of keys, of the rRNA loci alignments we produced on the previous section, and 
which are stored in the pj.alignments dictionary. We can now pass this list to a new 
TrimalConf instance that will only process rRNA locus alignments: 
 
gt50 = TrimalConf(pj,​
                  method_name='gt50',​
                  alns = rRNA_alignment_names,​
                  trimal_commands={'gt': 0.5}  # This will keep  
                                           # positions with up to​
                                           # 50% gaps.​
                  )​
​
trimal -in 915841440759159.29_28s@muscleDefault.fasta -gt 0.5​
trimal -in 915841440759159.29_18s@muscleDefault.fasta -gt 0.5​
 
3.7.2 Executing the alignment trimming process 

As for the alignment phase, this is done with a Project method, which accepts a list of 
TrimalConf objects. 
 
pj.trim([gappyout, gt50])​
 
Once used, these objects are also placed in the pj.used_methods dictionary, and they 
can be printed out for observation: 
 
print pj.used_methods['gappyout']​
​
TrimalConf named gappyout with ID 587711440759152.37​
Alignments: MT-CO1@mafftLinsi ​
Created on: Fri Aug 28 11:52:32 2015​
Commands:​
MT-CO1@mafftLinsi@gappyout: trimal -in 

43 



587711440759152.37_MT-CO1@mafftLinsi.fasta -gappyout​
​
Environment:Platform: 
Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
 Processor: x86_64​
 Python build: defaultJun 22 2015 17:58:13​
 Python compiler: GCC 4.8.2​
 Python implementation: CPython​
 Python version: 2.7.6​
 ete2 version: 2.2rev1056​
 biopython version: 1.64​
 dendropy version: 3.12.0​
 cloud version: 2.8.5​
 reprophylo version 1.0​
 User: amir-TECRA-W50-A​
 Program and version: trimAl 1.2rev59​
 Program reference: Salvador Capella-Gutierrez; Jose M. 
Silla-Martinez; Toni Gabaldon. trimAl: a tool for automated 
alignment trimming in large-scale phylogenetic analyses. 
Bioinformatics 2009 25: 1972-1973.​
execution time:​
0.478782892227​
​
==============================​
Core Methods section sentence:​
==============================​
The alignment(s) MT-CO1@mafftLinsi were trimmed using the 
program trimAl 1.2rev59 [1].​
​
Reference:​
Salvador Capella-Gutierrez; Jose M. Silla-Martinez; Toni 
Gabaldon. trimAl: a tool for automated alignment trimming in 
large-scale phylogenetic analyses. Bioinformatics 2009 25: 
1972-1973.​
 

3.7.3 Accessing trimmed sequence alignments 

The pj.trimmed_alignments dictionary 

The trimmed alignments themselves are stored in the pj.trimmed_alignments 
dictionary, using keys that follow this pattern: 
locus_name@alignment_method_name@trimming_method_name where 
alignment_method_name is the name you have provided to your AlnConf object and 
trimming_method_name is the one you provided to your TrimalConf object. 
 
pj.trimmed_alignments​
​
{'18s@muscleDefault@gt50': <<class 

44 



'Bio.Align.MultipleSeqAlignment'> instance (52 records of 
length 1685, IUPACAmbiguousDNA()) at 7fe542480510>,​
 '28s@muscleDefault@gt50': <<class 
'Bio.Align.MultipleSeqAlignment'> instance (48 records of 
length 798, IUPACAmbiguousDNA()) at 7fe542480550>,​
 'MT-CO1@mafftLinsi@gappyout': <<class 
'Bio.Align.MultipleSeqAlignment'> instance (73 records of 
length 1107, IUPACAmbiguousDNA()) at 7fe5424d6dd0>}​
 

Accessing a MultipleSeqAlignment object 

A trimmed alignment can be easily accessed and manipulated with any of Biopython's 
AlignIO tricks using the fta Project method: 
 
print 
pj.fta('18s@muscleDefault@gt50')[:4,410:420].format('phylip-relaxed
')​
​
returning trimmed alignment object 18s@muscleDefault@gt50​
 4 10​
KC762720.1_f0  CCAATCCCGA ​
KC774024.1_f0  CCAATCCCGA ​
KC762713.1_f0  CCAATCGGGA ​
KC762708.1_f0  CCAATCCCGA​
 

Writing trimmed sequence alignment files 

 
Trimmed alignment text files can be dumped in any AlignIO format for usage in an external 
command line or GUI program. When writing to files, you can control the header of the 
sequence by, for example, adding the organism name of the gene name, or by replacing 
the feature ID with the record ID: 
 
# record_id and source_organism are feature qualifiers in the 
SeqRecord object​
# See section 3.4​
files = pj.write_trimmed_alns(id=['record_id','source_organism'],​
                                   format='fasta')​
files​
​
['28s@muscleDefault@gt50_trimmed_aln.fasta',​
 '18s@muscleDefault@gt50_trimmed_aln.fasta',​
 'MT-CO1@mafftLinsi@gappyout_trimmed_aln.fasta']​
 
The files will always be written to the current working directory (where this Jupyter notebook 
file is), and can immediately be moved programmatically to avoid clutter: 
 
# make a new directory for your trimmed alignment files:​

45 

http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc67
http://biopython.org/wiki/AlignIO#File_Formats


if not os.path.exists('trimmed_alignment_files'):​
    os.mkdir('trimmed_alignment_files')​
​
# move the files there​
for f in files:​
    os.rename(f, "./trimmed_alignment_files/%s"%f)​
 

Viewing trimmed alignments 

Trimmed alignments can be viewed in the same way as alignments, but using this 
command: 
 
pj.show_aln('MT-CO1@mafftLinsi@gappyout',id=['source_organism'])​
​
​
# Pickle the Project 

pickle_pj(pj, 'outputs/my_project.pkpj') 

​
'outputs/my_project.pkpj'​
 

3.7.4 Quick reference 

# Make a TrimalConf object​
trimconf = TrimalConf(pj, **kwargs)​
​
# Execute alignment process​
pj.trim([trimconf])​
​
# Show AlnConf description​
print pj.used_methods['method_name']​
​
# Fetch a MultipleSeqAlignment object​
trim_aln_obj = 
pj.fta('locus_name@aln_method_name@trim_method_name')​
​
# Write alignment text files​
pj.write_trimmed_alns(id=['some_feature_qualifier'],   
                      format='fasta')​
# the default feature qualifier is 'feature_id'​
# 'fasta' is the default format​
​
# View alignment in browser​
pj.show_aln('locus_name@aln_method_name@trim_method_name',id=['some
_feature_qualifier'])​
 

46 



3.8 Building a supermatrix 
Section quick reference 
This section shows how to build a supermatrix by providing minimal requirements for gene 
content per taxon (OTU). This approach is more suited for small scale analysis, because it 
relies on manual decisions, whereas large scale suprematrices are better constructed with 
the parameter space and data explorations tools of ReproPhylo. However, these are not 
addressed in this section. First, lets load our Project with the trimmed alignments: 
 
from reprophylo import *​
pj = unpickle_pj('outputs/my_project.pkpj', git=False)​
 

3.8.1 Sorting out the metadata 

The main decision to make when building a supermatrix is what metadata will be used to 
indicate that sequences of several genes belong to the same OTU in the tree. Obvious 
candidates would be the species name (stored as 'source_organism' if we read a 
GenBank file), or sample ID, voucher specimen and so on. Often, we would be required to 
modify the metadata in our Project, in a way that will correctly reflect the relationship 
between sequences that emerged from the same sample. 
 
In the case of the Tetillidae.gb example file, sample IDs are stored either under 
'source_specimen_voucher' or 'source_isolate'. In addition, identical voucher 
numbers are sometimes formatted differently for different genes. 
 
In the file 'data/Tetillida_otus_corrected.csv', I have unified the columns 
'source_specimen_voucher' and 'source_isolate' in a single column called 
'source_otu' and also made sure to uniformly format all the voucher specimens: 
 
 

​
 
 

47 



Our Project has to be updated with the recent changes to the spreadsheet: 
 
pj.correct_metadata_from_file('data/Tetillida_otus_corrected.csv')​
 
Such fixes can also be done programmatically (see section 3.4) 

3.8.2 Designing the supermatrix 

Supermatrices are configured with objects of the class Concatenation. In a 
Concatenation object we can indicate the following: 
1.​ The name of the concatenation 
2.​ The loci it includes (here we pass Locus objects rather than just Locus names) 
3.​ The qualifier or metadata that stores the relationships among the records 
4.​ What loci all the OTUs must have 
5.​ Groups of loci from which each OTU must have at least one 
6.​ Which trimmed alignment to use, if we have more than one for each locus in our 

Project 
 

Here is an example: 
concat = Concatenation('large_concat', # Any unique string​
​
                       pj.loci, # This is a list of Locus objects​
​
                       'source_otu', # The values of this qualifier ​
                        # flag sequences the belong to the same​
                        # sample​
​
                       otu_must_have_all_of=['MT-CO1'], # All the  
                       # OTUS must have a cox1 sequence​
​
                       otu_must_have_one_of=[['18s','28s']], # All  
                    # the OTUs must have either 18s or 28s or both​
​
                       define_trimmed_alns=[] # We only have one  
                                            # alignment per gene​
                           # so the list is empty (default value)​
                      )​
 
If we print this Concatenation object we get this message: 
print concat​
​
Concatenation named large_concat, with loci 18s,28s,MT-CO1,​
of which MT-CO1 must exist for all species​
and at least one of each group of [ 18s 28s ] is represented.​
Alignments with the following names:  are prefered​
 

3.8.3 Building the supermatrix 

Building the suprematrix has two steps. First we need to mount the Concatenation object 

48 



onto the Project where it will be stored in the list pj.concatenations. Second, we 
need to construct the MultipleSeqAlignment object, which will be stored in the 
pj.trimmed_alignments dictionary, under the key 'large_concat' in this case: 
 
pj.add_concatenation(concat)​
pj.make_concatenation_alignments()​
​
Concatenation large_concat will have the following data​
OTU                           18s                 28s                 MT-CO1              ​
NIWA_28507                    JX177975.1_f0  JX177943.1_f0  JX177896.1_f0  ​
ZMBN_85230                                   HM592765.1_f0  HM592717.1_f0  ​
NIWA_28910                    JX177982.1_f0                 JX177865.1_f0  ​
VM_14754                      JX177986.1_f0  JX177960.1_f0  HM032751.1_f0  ​
ZMBN_85239                    JX177987.1_f0  JX177959.1_f0  HM592669.1_f0  ​
ZMBN_81789                                   HM592753.1_f0  HM592667.1_f0  ​
QMG_315031                    JX177974.1_f0  JX177942.1_f0  HM032749.2_f0  ​
NIWA_28617                    JX177980.1_f0                 JX177912.1_f0  ​
RMNH_POR_3206                                JX177925.1_f0  JX177892.1_f0  ​
UFBA_2021_POR                                JX177921.1_f0  JX177907.1_f0  ​
NIWA_28586                    JX177978.1_f0  JX177953.1_f0  JX177918.1_f0  ​
QMG_320270                    JX177963.1_f0  JX177931.1_f0  HM032741.1_f0  ​
QMG_318785                    JX177985.1_f0                 HM032752.3_f0  ​
NIWA_25206                    JX177981.1_f0                 JX177917.1_f0  ​
QMG_320216                    JX177966.1_f0                 JX177902.1_f0  ​
MHNM_16194                    HM629803.1_f0  JX177941.1_f0  JX177905.1_f0  ​
ZMA_POR_16637                                HM592820.1_f0  HM592745.1_f0  ​
SAM_S1189                                    JX177929.1_f0  JX177910.1_f0  ​
TAU_25529                     JX177970.1_f0  JX177939.1_f0  JX177906.1_f0  ​
LB_1756                                      JX177933.1_f0  JX177886.1_f0  ​
MNRJ_576                                     JX177957.1_f0  HM032742.1_f0  ​
NIWA_28877                    JX177977.1_f0  JX177950.1_f0  JX177864.2_f0  ​
NIWA_28524                    JX177976.1_f0  JX177945.1_f0  JX177895.1_f0  ​
QMG_316342                    JX177983.1_f0  JX177955.1_f0  HM032747.2_f0  ​
TAU_25568                     JX177969.1_f0  JX177940.1_f0  JX177904.1_f0  ​
NIWA_28929                                   JX177951.1_f0  JX177863.1_f0  ​
DH_S271                       JX177965.1_f0  JX177935.1_f0  JX177913.1_f0  ​
ZMBN_85240                                   HM592754.1_f0  HM592668.1_f0  ​
QMG_321405                                   JX177930.1_f0  HM032743.1_f0  ​
NIWA_36097                                   JX177944.1_f0  JX177866.1_f0  ​
UFBA_2586_POR                                JX177958.1_f0  JX177898.1_f0  ​
NIWA_52077                                   JX177948.1_f0  JX177916.1_f0  ​
QMG_316372                    HE591469.1_f0                 HM032748.2_f0  ​
QMG_320636                    JX177971.1_f0                 HM032745.1_f0  ​
NIWA_28496                                   JX177946.1_f0  JX177897.1_f0  ​
QMG_314224                                   JX177924.1_f0  HM032744.1_f0  ​
QMG_320143                    JX177973.1_f0  JX177922.1_f0  HM032746.1_f0  ​
DH_S124                                      JX177938.1_f0  JX177903.1_f0  ​
SP_DH_S192                    JX177961.1_f0  JX177956.1_f0  JX177901.1_f0  ​
SP_DH_S193                                   JX177926.1_f0  JX177900.1_f0  ​
NIWA_28957                                   JX177949.1_f0  JX177867.2_f0  ​
RMNH_POR_2877                                JX177920.1_f0  JX177909.1_f0​
​
​
​
# Save the results of this section in the pickle​

49 



pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj'​
 
Now that this supermatrix is stored as a trimmed alignment in the 
pj.trimmed_alignments dictionary, we can write it to a file or fetch the 
MultipleSeqAlignment object, as shown in section 3.7. 

3.8.4 Quick reference 

# Design a supermatrix​
concat = Concatenation('concat_name', loci_list, 'otu_qualifier',   
                       **kwargs)​
​
# Add it to a project​
pj.add_concatenation(concat)​
​
# Build supermatrices based on the Concatenation​
# objects in pj.concatenations​
pj.make_concatenation_alignments() 
 
Tree reconstruction can be done with RAxML or Phylobayes. This section will cover one 
example in which we will build a supermatrix tree using RAxML, and a single gene tree 
using Phylobayes. 
 

3.9 Reconstructing trees 
Quick reference 

 
from reprophylo import *​
pj = unpickle_pj('outputs/my_project.pkpj', git=False) 

3.9.1 Using RAxML 

RAxML is configured with the RaxmlConf object. This object provides control over the 
following settings: 
1.​ method_name: The method name. 
2.​ program_name & cmd:. RAxML binaries exist in several versions. If you are using 

the Docker container you can leave this as is. The versions vary in the number of 
threads they utilized (PTHREADS or not), and the architecture they are optimized 
for (AVX or SSE3). raxmlHPC-PTHREADS-SSE3 is the default here, both as the 
program name and as the cmd. If you do not want to use multiple threads, you have 
to specify the name and command of the non PTHREADS binary, ie, raxmlHPC. 

3.​ keepfiles: Whether or not to keep the output files in the working directory (the 
tree is stored in the Project) 

4.​ preset: The RAxML algorithm. RaxmlConf has several preset algorithms: 
○​ 'fa' - will run a single ML search with rapid bootstrap 
○​ 'fD_fb' - will run a single ML tree with relBootstrap (quick and least 

accurate supports calculation) 

50 



○​ 'fd_b_fb' - will run one or more ML trees with thorough bootstrap (slow 
and accurate) 

○​ 'fF_fJ' - will run a fast ML tree with sh-like supports (quick and dirty) 
○​ 'fd_fJ' - will run one or more (proper) ML tree(s) with sh-like supports 

(quick supports calculation). 
5.​ alns: Alignments to analyze. ‘all’ by default. It can be modified by passing a list of 

trimmed alignment names and/or concatenation names. 
6.​ model: The model of rate heterogeneity. For example, GAMMA (parametric) or CAT 

(nonparametric). The CAT model is a nonparametric approach to categories the rate 
variation without calculating the GAMMA distribution, as a fast approximation. It is 
different than the CAT model in Phylobayes, where the number of parameters 
increases by categorizing the data to subsets, which differ in their substitution 
matrices and rate variation categories. The CAT in RAxML is "quick and dirty". The 
CAT in Phylobayes is "slow and accurate." 

7.​ matrix: The protein substitution matrix. This parameter is only relevant to protein 
datasets, and it is ignored for DNA only datasets. By default it is set to 'JTT'. If it is a 
concatenated analysis, the string specified here will be set as the substitution matrix 
of each of the protein partitions. However, it is possible to pass a dictionary, instead 
of a string, containing the locus names as keys, and the name of substitution matrix 
assigned to each of them as values. Also important, partition information is taken 
into account automatically. No need to make a partition file. 

8.​ threads: The number of threads to use. Using PTHREADS, threads=1 is 
automatically changed to 2. Using the non PTHREADS version, the threads number 
is set to one, regardless of the value the user passes. 

9.​ cline_args: Other command line arguments, most importantly, the argument '-N' 
should be used to determine the number of ML searches (it is 1 by default and it 
doesn't work with fa or fF_fJ), and '-#' should be used to set the number of 
bootstrap replicates (it is 100 by default and it only works with fD_fb and 
fd_b_fb). -N and -# are not synonyms. This is different from the RAxML command 
line. 

 
The RAxML manual is an important read, in order to understand all the analysis modifiers 
that can be passed, and to become familiar with the full range of models and substitution 
matrices available. 
In this example, comments which specify item numbers, refer to the list just above. It will 
configure a concatenated analysis of the supermatrix 'large_concat', with the GTR 
GAMMA model for all the partitions, utilizing two threads and with two ML searches. Branch 
supports will be derived from a relBootstrap analysis. 
 
raxml = RaxmlConf(pj,  # The Project ​
                  method_name='supermatrix', # Any string​
                  program_name='raxmlHPC-PTHREADS-SSE3', # item 2​
                  keepfiles=False,  # False is default  ​
                  cmd='default',                         # item 2  ​
                  preset='fD_fb',                        # item 4​
                  alns=['large_concat'],                 # item 5​
                  model='GAMMA',                         # item 6​
                  matrix='JTT',                          # item 7​
                  threads=4,                             # item 8​
                  cline_args={'-N': 2}                   # item 9​

51 

http://sco.h-its.org/exelixis/php/countManualNew.php


                  )​
raxmlHPC-PTHREADS-SSE3 -f D -m PROTGAMMAJTT -n 221101440759352.8_large_concat0 -q 
221101440759352.8_large_concat_partfile -p 603 -s 221101440759352.8_large_concat.fasta -T 4 -N 2​
 

raxmlHPC-PTHREADS-SSE3 -f b -m PROTGAMMAJTT -n 221101440759352.8_large_concat1 -q 
221101440759352.8_large_concat_partfile -p 369 -s 221101440759352.8_large_concat.fasta -t 
RAxML_bestTree.221101440759352.8_large_concat0 -T 4 -z 
RAxML_rellBootstrap.221101440759352.8_large_concat0​
 

3.9.2 Using Phylobayes 

In this example, a PbConf object is set to analyse a single trimmed alignment. The 
cline_args here are horrible and set this way for speed. The default settings, however, 
are sensible. Still, read the manual, at least the bits about nchain, burn-in and the proper 
usage of the GTR and/or CAT models (and others). 
 
phylo = PbConf(pj,                               # Default setting:​
               method_name='single_gene',        # 'dna_cat_gtr'          ​
               program_name='phylobayes',​
               keepfiles=False,                  # True​
               cmd='default',​
               alns=['28s@muscleDefault@gt50'],  # 'all'​
               cline_args={'gtr': True,             ​
                           'cat': True,​
                           'nchain': '2 50 0.9 5',# '2 100 0.1 100'​
                           'b': '1'               # '5'​
                           }​
               )​
​
pb -d 262531440759355.16_28s@muscleDefault@gt50.phylip -gtr 
-nchain 2 50 0.9 5 -b 1 -cat 
262531440759355.16_28s@muscleDefault@gt50​
 

3.9.3 Executing the tree reconstructions and accessing trees 

This is done using the tree Project method: 
 
pj.tree([raxml, phylo])​
 
The resulting trees are placed in the pj.trees dictionary, with keys of the form 
'locus_name@aln_method@trim_method@tree_method'. For trees from 
supermatrices the key is 'concat_name@mixed@mixed@tree_method'. The values in 
this dictionary are lists, each with two values. The first in an ETE Tree object, and the 
second is an NHX string representation of the tree. 
 
pj.trees.keys()​
​
['large_concat@mixed@mixed@supermatrix', 
'28s@muscleDefault@gt50@single_gene']​

52 

http://megasun.bch.umontreal.ca/People/lartillot/www/phylobayes4.1.pdf


 
And as for alignment and trimming, we can review the approaches that we used: 
 
print pj.used_methods['single_gene']​
​
PbConf named single_gene with ID 262531440759355.16​
Alignments: 28s@muscleDefault@gt50 ​
Created on: Fri Aug 28 11:55:55 2015​
Commands:​
28s@muscleDefault@gt50: ['pb -d 
262531440759355.16_28s@muscleDefault@gt50.phylip -gtr -nchain 2 
50 0.9 5 -b 1 -cat 262531440759355.16_28s@muscleDefault@gt50']​
​
Environment:​
Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
 Processor: x86_64​
 Python build: defaultJun 22 2015 17:58:13​
 Python compiler: GCC 4.8.2​
 Python implementation: CPython​
 Python version: 2.7.6​
 ete2 version: 2.2rev1056​
 biopython version: 1.64​
 dendropy version: 3.12.0​
 cloud version: 2.8.5​
 reprophylo version 1.0​
 User: amir-TECRA-W50-A​
 Program and version: phylobayes version 3.3f​
 Program reference: N. Lartillot​
 T. Lepage and S. Blanquart​
 2009: PhyloBayes 3: a Bayesian software package for phylogenetic 
reconstruction and molecular dating. Bioinformatics Vol. 25 no. 
17.​
execution time:​
180.445002794​
​
==============================​
Core Methods section sentence:​
==============================​
Phylogenetic trees were reconstructed from the dataset(s) 
28s@muscleDefault@gt50 using the program phylobayes version 3.3f 
[1].​
​
Reference:​
N. Lartillot, T. Lepage and S. Blanquart, 2009: PhyloBayes 3: a 
Bayesian software package for phylogenetic reconstruction and 
molecular dating. Bioinformatics Vol. 25 no. 17.​
 
Tree objects can be fetched easily and manipulated with ETE tricks, using the ft Project 

53 

http://etetoolkit.org/docs/2.3/tutorial/index.html


method. 
 
t = 
pj.ft('28s@muscleDefault@gt50@single_gene').convert_to_ultrametric(10)​
​
returning tree object 28s@muscleDefault@gt50@single_gene​
 
or written to a file in a suitable format 
 
pj.ft('28s@muscleDefault@gt50@single_gene').write(features=['source_organism'],   
                                                  format=5, outfile="new_tree.nw")​
​
returning tree object 28s@muscleDefault@gt50@single_gene​
​
​
# And now update the Project’s pickle:​
pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj'​
 

3.9.4 Quick reference 

# Configure a raxml analysis​
raxml = RaxmlConf(pj, **kwargs)​
​
# Configure a phylobayes analysis​
phylo = PbConf(pj, **kwargs)​
​
# Execute tree reconstruction​
pj.tree([list_of_RaxmlConf_and_or_PbConf_objects])​
​
# Fetch an ETE Tree object​
t = pj.ft('locus_name@aln_name@trim_name@tree_name')​
​
# Write newick file​
t.write(format=5, outfile="filename.nw")​
​
# Write NHX format with all the qualifiers​
t.write(features=[], format=5, outfile="filename.nw")​
 

3.10 Tree annotation and report 
 
The last section of this tutorial is about producing annotated tree figures and a human 
readable report. First we have to load our Project again: 
from reprophylo import *​
pj = unpickle_pj('outputs/my_project.pkpj', git=False)​

54 

http://etetoolkit.org/docs/2.3/tutorial/tutorial_trees.html#reading-and-writing-newick-trees
http://etetoolkit.org/docs/2.3/tutorial/tutorial_trees.html#reading-and-writing-newick-trees


 

3.10.1 Updating the metadata after the tree has been built 

Often, we want to display information that did not exist in the Project when we first built 
our trees. This is not an issue. We can add metadata now and propagate it to all the parts 
of the Project, including to our preexisting trees. For example, I add here some 
morphological information. Some of the species in our data have a morphological structure 
called porocalyx, 
 
genera_with_porocalices = ['Cinachyrella', ​
                           'Cinachyra', ​
                           'Amphitethya',​
                           'Fangophilina',​
                           'Acanthotetilla',​
                           'Paratetilla']​
 
while others do not: 
 
genera_without_porocalices = ['Craniella',​
                              'Tetilla',​
                              'Astrophorida']​
 
The following command will add the value 'present' to a new qualifier called 
'porocalices' in sequence features of species that belong to 
genera_with_porocalices: 
 
for genus in genera_with_porocalices:​
    pj.if_this_then_that(genus, 'genus', 'present', 'porocalices')​
 
and the following command will add the value 'absent' to a new qualifier called 
'porocalices' to sequence features of species that belong to 
genera_without_porocalices: 
 
for genus in genera_without_porocalices:​
    pj.if_this_then_that(genus, 'genus', 'absent', 'porocalices')​
 
The new qualifier porocalices in now updated in the SeqRecord objects within the 
pj.records list (more on this in section 3.4). But in order for it to exist in the Tree 
objects, stored in the pj.trees dictionary, we have to run this command: 
 
pj.propagate_metadata()​
 
Only now the new qualifier is available for tree annotation. Note that qualifiers that existed 
in the Project when we built the trees, will be included in the Tree object by default. 

 

3.10.2 Configuring and writing a tree figure 

The annotate Project method will produce one figure for each tree in the Project 

55 



according to the settings. Colors can be indicated with X11 color names. The following 
settings can be controlled: 
1.​ fig_folder: The path for the output figure file 
2.​ root_meta and root_value: The qualifier and its value that will indicate the 

outgroup. It can be 'mid' and 'mid' for a midpoint root, or for example, 
'source_organism' and 'Some species binomial' to set a group of leaves 
with a shared value as an outgroup (required). 

3.​ leaf_labels_txt_meta: A list of qualifiers which values will be used as leaf 
labels, required. 

4.​ leaf_node_color_meta and leaf_label_colors: The qualifier that 
determines clade background colors and a dictionary assigning colors to the 
qualifier's values (defaults to None and None). 

5.​ ftype and fsize: Leaf label font and font size (default 'verdana' and 10) 
6.​ node_bg_meta and node_bg_color: A qualifier that determines the leaf label 

colors and a dictionary assigning colors to its values (defaults to None and None). 
7.​ node_support_dict and support_bullet_size: A dictionary assigning 

support ranges to bullet colors, and the size of the bullets (defaults to None and 5), 
8.​ heat_map_meta and heat_map_colour_scheme: A list of qualifiers which will be 

the heatmap's columns, and the color scheme (defaults to None and 2 see ETE for 
color schemes) 

9.​ pic_meta, pic_paths, pic_w and pic_h: You can put small images next to 
leaves. pic_meta will determine the qualifier according to which values an image 
will be assigned. pic_paths is a dictionary assigning image file paths to the qualifier's 
values. pic_w and pic_h are the dimensions of the images in pixels (the defaults 
are None for all the four keywords). 

10.​ multifurc: Branch support cutoff under which to multifurcate nodes (default - 
None). 

11.​ branch_width and branch_color (defaults: 2 and DimGray) 
12.​ scale: This will determine the width of the tree (default 1000) 
13.​ html: The path to which to write an html file with a list of the figures and links to the 

figure files (default None) 

Example 1, the metadata determines background colours 

bg_colors = {'present':'red',​
             'absent': 'white'}​
​
supports = {'black': [100,99],​
            'gray': [99,80]}​
​
pj.annotate('./images/',               # Path to write figs to​
​
            'genus', 'Astrophorida',   # Set OTUs that have  
                                       # 'Astrophorida'​
                                       # in their 'genus' qualifier​
                                       # as outgroup​
​
            ['source_organism', 'record_id'], # leaf labels​
​
            node_bg_meta='porocalices', # The qualifier that​

56 

https://en.wikipedia.org/wiki/Web_colors#X11_color_names


                                        # will determine bg colors​
            node_bg_color=bg_colors,    # The colors assigned to ​
                                        # each qualifier value​
​
            node_support_dict=supports,​
​
            html='./images/figs.html'​
           )​
​
pj.clear_tree_annotations()​
 
In the resulting figure (below), clades of species with porocalices have red background, 
node with maximal relBootstrap support have black bullets, and nodes with branch support 
> 80 has gray bullets. 
 

​
 
 

Example 2, the metadata as a heatmap 

57 



The second example introduces midpoint rooting and a heatmap. There are three columns 
in this heatmap, representing numerical values of three qualifiers. In this instance, the 
values are 0 or 1 for presence and absence. In addition, we change the branch colour to 
black and assign shades of gray to the genera. 
 
bg_colors = {'Cinachyrella': 'gray', ​
             'Cinachyra': 'silver', ​
             'Amphitethya': 'white',​
             'Fangophilina':'white',​
             'Acanthotetilla':'silver',​
             'Paratetilla':'white',​
             'Craniella': 'gray',​
             'Tetilla': 'silver',​
             'Astrophorida': 'white'}​
​
pj.clear_tree_annotations()​
​
pj.annotate('./images/',               # Path to write figs to​
​
            'mid', 'mid',              # Set midpoint root​
​
            ['source_organism'],        # leaf labels​
​
            fsize=13,​
​
            node_bg_meta='genus',       # The qualifier that​
                                        # will determine bg colors​
            node_bg_color=bg_colors,    # The colors assigned to ​
                                        # each qualifier value​
​
            # heatmap columns​
            heat_map_meta=['porocalyx', 'cortex', 'calthrops'],​
​
            heat_map_colour_scheme=0,​
​
            branch_color='black',​
​
            html='./images/figs.html'​
           )​
 
And this is what it looks like: 

58 



 
​
 

59 



 

3.10.3 Archive the analysis as a zip file 

The publish function will produce an html human readable report containing a description 
of the data, alignments, trees, and the methods that created them in various ways. The 
following options control this function: 
1.​ folder_name: zip file name or directory name for the report (will be created) 
2.​ figures_folder: where did you save your tree figures? 
3.​ size: 'small' = don't print alignment statistics graph, or 'large': print them. If 

'large' is chosen, for each alignment and trimmed alignment, gap scores and 
conservation scores plots will be printed. (default - 'small'). 

4.​ compare_trees: a list of algorithms to use to formally compare trees. The 
algorithms to choose from are 'topology', 'branch-length' and 
'proportional'. (default, []) 

5.​ compare_meta: Similar to the OTU qualifier required for data concatenation, we 
need to say which qualifier identifies a discrete sample, that will allow to compare 
trees of different genes. By default, it will look for a Concatenation object and will 
use the OTU meta that is specified there. If there are no Concatenation objects, 
and we have not specified a compare_meta, it will raise an error. 

6.​ trees_to_compare: A list of keys from the pj.trees dictionary. This allows to 
control what trees will go into the pairwise comparisons and also control their order 
of appearance in the results. (default, 'all') 

7.​ unrooted_trees: True or False (default). If True, the algorithm will minimize 
the difference before determining it. 

This is a minimal example, which does not include tree comparisons. Tree comparisons are 
shown later. 
 
publish(pj, 'my_report', './images/', size='large')​
​
checking if file exists​
reporter was called by publish​
starting species table​
starting sequence statistics plots​
starting concatenations​
starting methods​
starting alignment statistics​
starting RF matrix(ces)​
reporting trees​
pickling​
archiving​
report ready​
​
​
​
pickle_pj(pj, 'outputs/my_project.pkpj')​
​
'outputs/my_project.pkpj' 
 

60 



4 Git and Pickle integration in ReproPhylo 
This section demonstrates the interaction of ReproPhylo and of pickled ReproPhylo 
Project files with Git. In section 3 we disabled Git and saved the pickle file manually at the 
end of each sub section. However, ReproPhylo is designed to update the Project's pickle 
file automatically after time consuming steps and also to create a version control repository 
and record versions in real time. All of this will happen if we start a Project using the 
default setting git=True. 
 
Once we start a Project this way, it can be the only version controlled Project in the 
current working directory. Any additional Project will have to be started with a different 
pickle name, and with git=False. Should it not be the case, helpful error messages will 
guide you through. 
 
Also, once we started a Project, it can only be resumed with the command unpickle_pj. 
If we try to reconstruct the Project using the command pj = Project(...), another 
helpful error message will be raised. 

4.1 The long version 
4.1.1 Start a Project, read data, do alignment, show Git log 

Start a Project 
 
As we did in section 3, we start a Project, and provide a pickle file name. We do not, 
however, use git=False and therefore git is invoked, as the default behaviour. 
 
from reprophylo import *​
pj = Project('git_demo_files/loci_edited.csv', 
pickle='git_demo_files/git_demo')​
​
/home/amir/Dropbox/python_modules/rpgit.py:93: UserWarning: Thanks to Stack-Overflow 
users Shane Geiger and Billy Jin for the git wrappers code​
  warnings.warn('Thanks to Stack-Overflow users Shane Geiger and Billy Jin for the 
git wrappers code')​
/home/amir/Dropbox/python_modules/rpgit.py:109: UserWarning: A git repository was 
created in /home/amir/Dropbox/ReproPhylo/Tutorial_files/Git.​
  warnings.warn('A git repository was created in %s.'%repoDir)​
/home/amir/Dropbox/python_modules/reprophylo.py:255: UserWarning: The new repository 
is called git_demo_files/git_demo.​
  warnings.warn('The new repository is called %s.'%open(cwd + '/.git/description', 
'r').read().rstrip())​
DEBUG:Cloud:Log file (/home/amir/.picloud/cloud.log) opened​
 
We get three warnings, which are only information messages. 
 
●​ The first massage includes credit for some code I got online. 
●​ The second gives us the location in which the repository will be maintained 
●​ The third gives us the name of the repository 

 
Read data 
 

61 



We can move on to reading data and aligning some loci: 
 
genbank = './git_demo_files/Tetillidae.gb'​
pj.read_embl_genbank([genbank])​
 
Do alignment 
 
pj.extract_by_locus()​
mafft = AlnConf(pj)​
pj.align([mafft])​
​
mafft 217511440955273.78_CDS_proteins_MT-CO1.fasta​
 
So our data was split to bins according the the Locus objects in the Project, and all the 
loci were aligned with the default settings of Mafft. 
 
Show last Git action (which was to commit the pickle with the alignment) 
 
At this point, let's check what pickle and git did at the background, by asking for git info: 
 
pj.last_git_log()​
​
​
Sun Aug 30 18:21:15 2015​
STDOUT:​
[master 09df506] AlnConf named mafftDefault with ID 217511440955273.78 Loci: MT-CO1 
Created on: Sun Aug 30 18:21:13 2015 Commands: MT-CO1: mafft 
217511440955273.78_CDS_proteins_MT-CO1.fasta​
 1 file changed, 0 insertions(+), 0 deletions(-)​
​
STDERR:None​
>>>>​
 
The last git action was to commit the pickle file, after the sequence alignment was complete. 
The git message is the report we get when we print the used method (from 
pj.used_methods if you recall). 
We can show the full log like this: 
 
pj.show_commits()​
​
commit 09df506f5a5a003f1665d5abf52d11fb66755a90​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:21:15 2015 +0100​
​
    AlnConf named mafftDefault with ID 217511440955273.78​
    Loci: MT-CO1​
    Created on: Sun Aug 30 18:21:13 2015​
    Commands:​
    MT-CO1: mafft 217511440955273.78_CDS_proteins_MT-CO1.fasta​
​
    Environment:​
    Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
     Processor: x86_64​
     Python build: defaultJun 22 2015 17:58:13​
     Python compiler: GCC 4.8.2​
     Python implementation: CPython​

62 



     Python version: 2.7.6​
     ete2 version: 2.2rev1056​
     biopython version: 1.64​
     dendropy version: 3.12.0​
     cloud version: 2.8.5​
     reprophylo version 1.0​
     User: amir-TECRA-W50-A​
     Program and version: MAFFT v7.123b\nPal2Nal v14​
     Program reference:Katoh​
     Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple 
sequence alignment software version 7: improvements in performance and 
usability.\nMikita Suyama​
     David Torrents​
     and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments 
into the corresponding codon alignments.Nucleic Acids Res. 34​
     W609-W612.​
    execution time:​
    1.39940595627​
​
    ==============================​
    Core Methods section sentence:​
    ==============================​
    The dataset(s) MT-CO1 were first aligned at the protein level using the program 
MAFFT v7.123b [1].​
    The resulting alignments served as guides to codon-align the DNA sequences using 
Pal2Nal v14 [2].​
​
    Reference:​
    [1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT 
multiple sequence alignment software version 7: improvements in performance and 
usability.​
    [2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust 
conversion of protein sequence alignments into the corresponding codon 
alignments.Nucleic Acids Res. 34, W609-W612.​
​
commit 5d9e94d44f88128374f0470d4006f4e6cb1ed10c​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:20:25 2015 +0100​
​
    1 genbank/embl data file(s) from Sun Aug 30 18:20:25 2015​
​
commit 0423808e2ef5bec77da2fdb482b7466916546da7​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:13:11 2015 +0100​
​
    Project object with the loci MT-CO1, from Sun Aug 30 18:13:11 2015​
​
commit abeaa0b6195f41049a04f0dbabfe87c9bdece320​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:13:11 2015 +0100​
​
    2 script file(s) from Sun Aug 30 18:13:11 2015​
 
This output is the complete list of git actions since we first started the Project, with the 
oldest at the bottom. Each action has a commit hash, the author of the commit, the time it 
was made, and an indented commit message. If we look at the messages from bottom to top 
we can see that so far we have done the following: 
 
1.​ Saved relevant files that preexisted in the working directory when we started the git 

repository (2 script files, which are this notebook and its checkpoint) 
2.​ Saved a pickle file of a Project with a single gene (MT-CO1) 
3.​ Read a genbank file into the Project and updated the pickle file 

63 



4.​ Ran sequence alignment for the MT-CO1 gene using Mafft 

4.1.2 Revert to older Project version 

In addition to logging our actions, git allows us to 'undo' and 'redo' them by reverting to 
previous versions of the pickle file. 
 
For example, let's say we want to cancel our latest sequence alignment. Our current 
Project has one alignment in it: 
 
pj.alignments.keys()​
​
['MT-CO1@mafftDefault']​
 
 
To move back to when we had no alignments in the Project, we need the 'commit hash' 
from our commits log, of the action the preceded the sequence alignment. The hash is the 
long alphanumeric string at the top of each commit, just a few characters from it's start shoud 
do it. 
 
When I was writing this notebook, the git hash of the action which preceded the sequence 
alignment (one before last) was 5d9e94d44f88128374f0470d4006f4e6cb1ed10c, but 
it will be something else for you. To move back to it I do: 
 
pj = revert_pickle(pj, '5d9e94d4')​
​
Git STDOUT: ​
Git STDERR: 
​
/home/amir/Dropbox/python_modules/reprophylo.py:240: UserWarning: Git repository 
exists for this Project​
  warnings.warn('Git repository exists for this Project')​
 
We get no output or errors from git, which is what we expect. When we revert, ReproPhylo 
restarts the Project and it lets us know that a git repository already exists, and it will keep 
using it. 
 
Lets see how many alignments the Project has now: 
 
pj.alignments.keys()​
 
[]​
 
Right. No alignments now. But wait, was this reversion a mistake? No problem. We can get 
our alignment back. The git hash for the alignment step is 
09df506f5a5a003f1665d5abf52d11fb66755a90 (will be something else for you). Let's 
get it back: 
 
pj = revert_pickle(pj, '09df506f5')​
pj.alignments.keys()​
​
Git STDOUT: ​
Git STDERR:​
['MT-CO1@mafftDefault']​

64 



 
OK! No git error messages, and we have our alignment back in pj.alignments. 

4.1.3 Recovering from unintentional changes 

Now lets do something stupid: We will make a new AlnConf object, with different run 
parameters, but without changing the name of the AlnConf object, thus overwriting the 
resulting alignment of the previous one. For this alignment step, this is not the end of the 
world, since it is very quick. However, this will work the same for long analyses, such as tree 
reconstruction or when there is a lot of data. 
 
new_mafft = AlnConf(pj, cline_args=dict(localpair=True,  
                                        maxiterate=1000))​
pj.align([new_mafft])​
​
mafft --localpair --maxiterate 1000 611281440957509.19_CDS_proteins_MT-CO1.fasta​
 
Now, checking the used_methods dictionary, we realize the gravity of our mistake, as the 
new AlnConf is stored under the same key as the old one, which is now gone from both the 
used_methods and the alignment dictionaries: 
 
print 'Alignments:'​
print pj.alignments​
print​
print 'Used Methods:'​
print pj.used_methods​
​
Alignments:​
{'MT-CO1@mafftDefault': <<class 'Bio.Align.MultipleSeqAlignment'> instance (92 
records of length 1566, IUPACAmbiguousDNA()) at 7f239f2b2950>}​
​
Used Methods:​
{'mafftDefault': <reprophylo.AlnConf instance at 0x7f239f52f488>}​
 
Checking the string representation of the AlnConf object, which has the same name as the 
old one, will confirm it shows the new command line, rather than the old one: 
 
print pj.used_methods['mafftDefault']​
​
AlnConf named mafftDefault with ID 611281440957509.19​
Loci: MT-CO1 ​
Created on: Sun Aug 30 18:58:29 2015​
Commands:​
MT-CO1: mafft --localpair --maxiterate 1000 
611281440957509.19_CDS_proteins_MT-CO1.fasta​
​
Environment:​
Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
 Processor: x86_64​
 Python build: defaultJun 22 2015 17:58:13​
 Python compiler: GCC 4.8.2​
 Python implementation: CPython​
 Python version: 2.7.6​
 ete2 version: 2.2rev1056​
 biopython version: 1.64​
 dendropy version: 3.12.0​

65 



 cloud version: 2.8.5​
 reprophylo version 1.0​
 User: amir-TECRA-W50-A​
 Program and version: MAFFT v7.123b\nPal2Nal v14​
 Program reference:Katoh​
 Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple sequence 
alignment software version 7: improvements in performance and usability.\nMikita 
Suyama​
 David Torrents​
 and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments into 
the corresponding codon alignments.Nucleic Acids Res. 34​
 W609-W612.​
execution time:​
3.97148609161​
​
​
==============================​
Core Methods section sentence:​
==============================​
The dataset(s) MT-CO1 were first aligned at the protein level using the program 
MAFFT v7.123b [1].​
The resulting alignments served as guides to codon-align the DNA sequences using 
Pal2Nal v14 [2].​
​
Reference:​
[1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple 
sequence alignment software version 7: improvements in performance and usability.​
[2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust conversion of 
protein sequence alignments into the corresponding codon alignments.Nucleic Acids 
Res. 34, W609-W612.​
 
Thanks to the Git repository, it is possible to recover from this blunder. We can spot an old 
version that contains the original alignment step and revert to it. 
 
pj.show_commits()​
​
commit 1e11023bab07af3882b10bae65053301c0c16997​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:58:33 2015 +0100​
​
    AlnConf named mafftDefault with ID 611281440957509.19​
    Loci: MT-CO1​
    Created on: Sun Aug 30 18:58:29 2015​
    Commands:​
    MT-CO1: mafft --localpair --maxiterate 1000 
611281440957509.19_CDS_proteins_MT-CO1.fasta​
​
    Environment:​
    Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
     Processor: x86_64​
     Python build: defaultJun 22 2015 17:58:13​
     Python compiler: GCC 4.8.2​
     Python implementation: CPython​
     Python version: 2.7.6​
     ete2 version: 2.2rev1056​
     biopython version: 1.64​
     dendropy version: 3.12.0​
     cloud version: 2.8.5​
     reprophylo version 1.0​
     User: amir-TECRA-W50-A​
     Program and version: MAFFT v7.123b\nPal2Nal v14​
     Program reference:Katoh​
     Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple 
sequence alignment software version 7: improvements in performance and 

66 



usability.\nMikita Suyama​
     David Torrents​
     and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments 
into the corresponding codon alignments.Nucleic Acids Res. 34​
     W609-W612.​
    execution time:​
    3.97148609161​
​
    ==============================​
    Core Methods section sentence:​
    ==============================​
    The dataset(s) MT-CO1 were first aligned at the protein level using the program 
MAFFT v7.123b [1].​
    The resulting alignments served as guides to codon-align the DNA sequences using 
Pal2Nal v14 [2].​
​
    Reference:​
    [1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT 
multiple sequence alignment software version 7: improvements in performance and 
usability.​
    [2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust 
conversion of protein sequence alignments into the corresponding codon 
alignments.Nucleic Acids Res. 34, W609-W612.​
​
commit 809b314e27f5a3303f64a2ecf3a1556b4cd327bd​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:54:19 2015 +0100​
​
    2 script file(s) from Sun Aug 30 18:54:19 2015​
​
commit 39434c1c76a39b9a5f8cda246c714e30817a3138​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:49:46 2015 +0100​
​
    2 script file(s) from Sun Aug 30 18:49:46 2015​
​
commit 09df506f5a5a003f1665d5abf52d11fb66755a90​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:21:15 2015 +0100​
​
    AlnConf named mafftDefault with ID 217511440955273.78​
    Loci: MT-CO1​
    Created on: Sun Aug 30 18:21:13 2015​
    Commands:​
    MT-CO1: mafft 217511440955273.78_CDS_proteins_MT-CO1.fasta​
​
    Environment:​
    Platform: Linux-3.13.0-40-generic-x86_64-with-Ubuntu-14.04-trusty​
     Processor: x86_64​
     Python build: defaultJun 22 2015 17:58:13​
     Python compiler: GCC 4.8.2​
     Python implementation: CPython​
     Python version: 2.7.6​
     ete2 version: 2.2rev1056​
     biopython version: 1.64​
     dendropy version: 3.12.0​
     cloud version: 2.8.5​
     reprophylo version 1.0​
     User: amir-TECRA-W50-A​
     Program and version: MAFFT v7.123b\nPal2Nal v14​
     Program reference:Katoh​
     Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple 
sequence alignment software version 7: improvements in performance and 
usability.\nMikita Suyama​
     David Torrents​

67 



     and Peer Bork (2006) PAL2NAL: robust conversion of protein sequence alignments 
into the corresponding codon alignments.Nucleic Acids Res. 34​
     W609-W612.​
    execution time:​
    1.39940595627​
​
    ==============================​
    Core Methods section sentence:​
    ==============================​
    The dataset(s) MT-CO1 were first aligned at the protein level using the program 
MAFFT v7.123b [1].​
    The resulting alignments served as guides to codon-align the DNA sequences using 
Pal2Nal v14 [2].​
​
    Reference:​
    [1]Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT 
multiple sequence alignment software version 7: improvements in performance and 
usability.​
    [2]Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust 
conversion of protein sequence alignments into the corresponding codon 
alignments.Nucleic Acids Res. 34, W609-W612.​
​
commit 5d9e94d44f88128374f0470d4006f4e6cb1ed10c​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:20:25 2015 +0100​
​
    1 genbank/embl data file(s) from Sun Aug 30 18:20:25 2015​
​
commit 0423808e2ef5bec77da2fdb482b7466916546da7​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:13:11 2015 +0100​
​
    Project object with the loci MT-CO1, from Sun Aug 30 18:13:11 2015​
​
commit abeaa0b6195f41049a04f0dbabfe87c9bdece320​
Author: Amir Szitenberg <szitenberg@gmail.com>​
Date:   Sun Aug 30 18:13:11 2015 +0100​
​
    2 script file(s) from Sun Aug 30 18:13:11 2015​
 
The git log lists a sequence alignment at the top, the very last alignment we ran. But we want 
to revert to an earlier sequence alignment. If we scroll down the log we can find this earlier 
alignment and get its git hash. For me it is 
09df506f5a5a003f1665d5abf52d11fb66755a90 but it will be something else for you. 
 
Wait! before we revert, we need to grab hold of the new alignment and its used method, so 
that we can add them to the Project under a different method name, after we revert: 
 
latest_alignment_object = pj.alignments['MT-CO1@mafftDefault']​
latest_used_method = pj.used_methods['mafftDefault']​
 
now we can revert: 
pj = revert_pickle(pj, '09df506f5a')​
​
Git STDOUT: ​
Git STDERR:​
 
Good. Last step, we add the latest alignment and used method, but with a different name: 
 
new_name = 'mafft_linsi'​

68 



​
# add the alignment to the Project​
pj.alignments['MT-CO1@' + new_name] = latest_alignment_object​
​
# Fix the used method name​
latest_used_method.method_name = new_name​
​
# Add the latest used method to the used_methods dict:​
pj.used_methods[new_name] = latest_used_method​
 
How many alignments and used methods are there now? 
 
pj.alignments.keys()​
​
['MT-CO1@mafft_linsi', 'MT-CO1@mafftDefault']​
​
pj.used_methods.keys()​
 
['mafftDefault', 'mafft_linsi']​
 
Good. Now we have the Project, with the two alternative sequence alignments of the 
MT-CO1 gene. Nothing is lost, nothing had to be rerun, thanks to git. 
 
We're not done! 
 
The Project is automatically pickled when we 
●​ Read data 
●​ Read metadata 
●​ Run alignment, trimming or tree reconstruction 
●​  
We have done nothing of those as our last step, so the pickle is not up to date. Let's save it: 
 
pickle_pj(pj, 'git_demo_files/git_demo')​
​
'git_demo_files/git_demo'​
 
OK, now we're done. We can turn the machine off. Next time we'll start as follows and carry 
on from where we stopped (git=True by default): 
 
pj = unpickle_pj('git_demo_files/git_demo')​
 

4.2 Possible error messages 
If you are not using the Docker ReproPhylo distribution, and you are new to Git, you might 
get the following error when you start a new Project with 
pj=Project('loci_file',pickle='pikle_filename'): 
 
RuntimeError: Git: set your email with '!git config --global 
user.email "your_email@example.com"' or disable git (the ! is needed 

69 



in Jupyter Notebook. In a terminal, ommit it) 
 
This is because git expects your email to be configured. To configure it, run the following in a 
terminal: 
 
git config --global user.email "your_email@example.com" 
 
Another possible error when you start a new Project with 
pj=Project('loci_file',pickle='pikle_filename'), as opposed to loading one 
with unpickle_pj or with revert_pickle, can arise because Project expects pickle to 
be a file name that does not yet exist. Otherwise, the following error will be raised, 
 
IOError: Pickle git_demo_files/git_demo exists. If you want to keep 
using it do pj=unpickle_pj('git_demo_files/git_demo') instead. 
 
to protect you from unintentionally deleting existing projects. 
 
ReproPhylo also tries to make sure that an unpickled, reverted or new Project can identify 
its unique Git repository. This connection can be broken if a Git repository already existed in 
the working directory, which does not belong to the current Project or if the pickle file was 
moved independently from the directory in which it is found. The Git repository is found in a 
directory called .git, which is a hidden directory. To view hidden files and folders in your file 
browser, click ctrt+H. If you want to move the Project to another location, the folder 
containing both the .git directory and the pickle file must be moved as one unit. Should the 
connection between a Project and its Git repository be broken, the following error will be 
show: 
 
RuntimeError: The Git repository in the CWD does not belong to this 
project. Either the pickle moved, or this is a preexsisting repo. 
Try one of the following: Delete the local .Git dir if you don't 
need it, move the pickle and the notebook to a new work dir, or if 
possible, move them back to their original location. You may also 
disable Git by with stop_git(). 
 
Note that even if the link between a repository and a project was broken, the pickle file still 
contains the full Project and is totally usable, by passing git=False, like this: 
pj=unpickle_pj('my_pickle_file', git=False) 

4.2 The short version 
# Show the last git action​
pj.last_git_log()​
​
# Show all the commits in the git repository​
pj.show_commits()​
​
# Revert to a previous commit​
# Using a hash from the commits list​
pj = revert_pickle(pj, '5d9e94d4')​
 
​

70 

mailto:your_email@example.com


 

5. Jupyter notebooks with use cases 
Parameter and data exploration 1 

Parameter and data exploration 2 

 

6. Tools in ReproPhylo 
Abstract methods for including tools in ReproPhylo are in the queue for development. Currently , the 
way to include tools go through hands on modification of the ReproPhylo script. To help with this, 
some hints have been written in as comments, and they are searchable using the phrase PROGRAM 
PLUG. For example, a programme needs to have a default path in the following section of the code: 

922      self.defaults = {'raxmlHPC': programspath+'raxmlHPC-PTHREADS-SSE3', 
923                      'mafft': 'mafft', 
924                      'muscle': programspath+'muscle', 
925                      'trimal': programspath+'trimal', 
926                      'pb': programspath+'pb', 
927                      'bpcomp': programspath+'bpcomp', 
928                      'tracecomp': programspath+'tracecomp', 
929                      'fasttree': programspath+'FastTreeMP', 
930                      'pal2nal': programspath+'pal2nal.pl', 
931                      # PROGRAM PLUG 
932                      # 'program name': programpath+'the basic command' 
933                     } 

where programspath == '', except in the WinPython version where it points to the default 
programmes directory.  

The user runs programmes using Project methods. As an example, the tree method interacts with 
the programme in several places. First, it requires version reference information: 

 
2606        # PROGRAM PLUG 
2607        # NOTE: THIS METHOD SERVES ALL PHYLO PROGRAMS ALTHOUGH THE ITERATOR IS  
2608        # CALLED raxml_method 
2609        # THIS GETS THE VERSION AND REFERENCE OF THE PROGRAM 
2610        
2611        # elif isinstance(raxml_method, Conf object name): 
2612        #    p = sub.Popen(raxml_method.cmd+" command that writes version", 
shell=True, stderr=sub.PIPE, stdout=sub.PIPE) 
2613        #    raxml_method.platform.append('Program and version: '+ 
2614        #                           # 1 for stderr, 0 for stdout 
2615        #                           p.communicate()[1].splitlines()[# get the 
line and split]) 
2616        #    raxml_method.platform.append('Program reference: write the 
reference here') 
 

then it needs to execute the command line stored in the Conf object 

2625                # PROGRAM PLUG 

71 

http://nbviewer.ipython.org/github/HullUni-bioinformatics/ReproPhylo/blob/master/Tutorial_files/Use_cases/Parameter_space_exploration_1/IPython_Notebook_for_ReproPhylo_MS.ipynb


2626                # THIS RUNS THE PROGRAM 
2627                # elif isinstance(raxml_method, Conf Object Name): 
2628                #     sub.call(cline, shell=True) 

finally, it needs to get the output and place it in the Project 

2663        # PROGRAM PLUG 
2664        # NOTE: THIS IS SIMPLIFIED. MIGHT WORK WITH SOMETHING LIKE 
2665        # FASTTREE. SEE MORE EXAMPLES ABOVE 
2666        # THIS SECTION MAKES A Tree OBJECT OUT OF THE OUTPUT FILE 
2667         
2668        # elif isinstance(raxml_method, Conf object name): 
2669        #    base_name = "%s_%s"%(raxml_method.id, trimmed_alignment) 
2670        #    tree_file = "the form of the output file with the %s"%base_name 
2671        #    t = Tree(tree_file) 

                    The user configures the programme execution using Conf objects. PROGRAM PLUG hints for the  

Conf objects are included in the AlnConf class.  

 

7. ReproPhylo module index 
This section provides a detailed index of the objects, object methods and preliminaries if each object. 
Preliminaries are functions designed to be invoked by the object's methods but may also be useful on 
their own right and therefore worth mentioning. Each entry will include usage, raised errors and 
known issues. The index is organised as follows: 

●​ The Locus object 
○​ Locus 
○​ Locus methods 

●​ The Concatenation object 
○​ Concatenation 
○​ Concatenation methods 

●​ The Project object 
○​ Project 
○​ Project methods 
○​ Project preliminaries 

●​ ReproPhylo functions meant to be used directly 
●​ The AlnConf object 

○​ AlnConf 
○​ AlnConf methods 
○​ AlnConf preliminaries 

●​ The TrimalConf object 
○​ TrimalConf 
○​ TrimalConf methods 
○​ TrimalConf preliminaries 

●​ The RaxmlConf object 
○​ RaxmlConf 
○​ RaxmlConf methods 
○​ RaxmlConf preliminaries 

●​ Undocumented functions 

7.1. The Locus object 

72 



A Locus instance contains a description of a gene locus, required for Project methods to function 
correctly 

7.1.1. Locus 

Usage: 

locus = Locus(char_type=char_type, feature_type=feature_type, name=name,  aliases=aliases) 

char_type: dna or prot. The molecule type you want to analyses. 

feature_type: genbank feature type (eg, CDS, gene, tRNA). Needed also for denovo data, when 
the actual type is not important, as long as you specify the same type for your data with 
‘add_feature_to_record' 

name: any string. Preferably the gene or product values as they appear in the genbank file, if one is 
used. No spaces allowed. Preferably, the same name should be designated to your 
denovo data with ‘add_feature_to_record' . 

aliases: a list of names used to represent the locus in the product or gene qualifiers on 
genbank. Must be identical to the way it appears in the genbank file (including 
whitespaces). Each record feature that you want to include in the analysis must have 
the name  or one of the aliases in the gene or product qualifier, which appears in the 
genbank file, or as was specified with  ‘add_feature_to_record' . 

errors will be raised when: 

●​ char_type is anything but dna or prot 
●​ feature_type is not a string 
●​ aliases is not a list 
●​ any value in aliases is not a string 

7.1.2. Locus methods 

__str__(self) 

If L is a Locus object, str(L) will return a string representation of it. 

7.2. The Concatenation object 
A Concatenation instance contains instructions on how to concatenate loci into a super matrix. It 
determines which loci to include, which loci must exist for all the OTUs in the supermatrix and which 
are optional. 

7.2.1. Concatenation 

Usage 

c = Concatenation(name, loci,otu_meta,otu_must_have_all_of = [], otu_must_have_one_of = 
‘all',define_trimmed_alns = []) 

name: any string, have to be unique. 

loci: a list of Locus objects 

otu_meta: the name of the qualifier (or column in the CSV file) which specifies the OTU. This 
column may have the same value for different record features, indicating that the 
sequences belong to the same sample and should be concatenated. 

73 



otu_must_have_all_of: a list  of Locus object names representing sequences that must exist 
for each of the OTUs in the supermatrix. OTUs that do not have this sequence will 
be excluded from the supermatrix. 

otu_must_have_one_of: a list  of lists of Locus object names. The OTUs in the supermatrix must 
have at least one locus in each list.  

define_trimmed_alns: list of strings which are partial or complete tokens of trimmed 
alignments. Tokens are the names of the trimmed alignment. Trimmed alignment 
tokens have three values connected by a ‘@', representing the locus name, the 
alignment name and the trimming name. For example, “cox1@mafftDefault@trimal”. 
When a locus has a single trimmed alignment, it will be used without checking this list. 
If there is more than one trimmed alignment for a locus, this list will be checked for 
clues regarding which alignment should be taken. For example, if all the loci were 
aligned twice, once with MAFFT and again with Muscle, and we wish to use only the 
mafft trimmed alignments, assuming the AlnConf.method_name is “mafftDefault”, the 
value of “define_trimmed_alns” should be [“mafftDefault”]. If we want to use the MAFFT 
alignment for cox1 and the Muscle alignment for cytb, the value can be 
[“cox1@mafftDefault”, “cytb@muscleDefault”] 

errors will be raised when: 

●​ loci contain values which are not Locus objects 
●​ a Locus.name repeats more than once in loci 

known issues: 

You are protected from having a locus represented by less than four sequences in the supermatrix, 
the locus will be dropped. You are NOT protected from having no overlap in the loci, ie, each OTU is 
represented by different loci with no overlap, if your specifications allow it. 

7.2.2. Concatenation methods 

__str__(self) 

If C is a Concatenation object, str(C) will return a string representation of it. 

7.2.3. The Project object 

The Project contains all the input data and analysis output. It also records the (phylogenetic analysis) 
methods used. The majority of steps taken are done using Project (python) methods. The Project can 
be saved as a pickle file which can then be read back in order to add data or modify the analysis. It is 
the best reproducibility option in ReproPhylo, but there also alternative ‘back up' strategies such as 
keeping the sequence records and metadata in a GenBank format, as well as the trees and the 
various stages of the alignments in a chosen format.  

7.3. Project 
Usage 

project = Project(“loci_file.csv”) 

or 

project = Project(loci_objects_list) 

 

74 



Attributes 

The attributes are populated as the analysis progresses. The contain the inputs, outputs and 
information on the analysis. If project is a Project instance, it will have the following attributes. 

project.loci: a list of Locus objects 

project.records: a list of SeqRecord objects of the input data. Records from genbank files only 
retain features that fit one of the Locus objects. Empty list by default 

project.starttime: a formatted string representing the time the project was initiated 

project.user: a list of items containing user specified information. It takes its content from a file 
named USER, placed in the cwd by the user, which contains lines with the format 
keyword=value. It is a good place to record any important aspect of the analysis not 
recorded automatically, such as the search phrase that was used in GenBank and 
when GenBank was accessed, for example: 

name=Amir Szitenberg 

email=A.Szitenberg@hull.ac.uk 

GenBank search phrase = Tetillidae[orgn] 

GenBank accessed on = 24/12/2014 

By default it is an empty list 

project.records_by_locus: a dictionary with Locus object names as keys and lists of 
SeqRecord objects as values. The SeqRecord objects are the precise sequence 
feature described by the Locus object. For example, if we have a nuclear protein CDS 
Locus with name X, and we provide a genbank entry of the DNA sequence containing 
both exons and introns, the SeqRecord object in project.records_by_locus[‘X'] will 
contain only the exons, ie the CDS. It will have no metadata associated. The record ID 
will be the accession number with the suffix “_f0” if it is the first feature from that 
genbank entry to be used, “_f1” if it is the second and so forth. The metadata 
associated with the record feature will be accessed using the extended ID (original 
accession plus the suffix). This attribute is populated using the method 
project.extract_by_locus(). By default it is an empty dictionary. 

project.concatenations: a list of Concatenation objects. Each with a unique name attribute. They 
can be added to the Project using project.add_concatenation(). The default value is an 
empty list. 

project.alignments: a dictionary with alignment tokens as keys and MultipleSeqAlignment 
objects as values. Alignment tokens have the form of  
Locus.name@AlnConf.method_name. For example, “cox1@mufftDefaults”.  The 
project.alignments attribute gets populated by passing an AlnConf object list to the 
project.align method. By default, project.alignments is an empty dictionary. 

project.trimmed_alignments: a dictionary with trimmed alignment tokens as keys and 
MultipleSeqAlignment objects as values. Trimmed alignment tokens have the form 
of  Locus.name@AlnConf.method_name@TrimalConf.method_name. For example, 
“cox1@mufftDefaults@gappyout”.  The prject.trimmed_alignments attribute gets 
populated by passing a TrimalConf object list to the project.trim method. By default, 
project.trimmed_alignments is an empty dictionary. 

project.trees: a dictionary with tree tokens as keys and Tree objects as values. Tree tokens 
have the form of  Locus.name@AlnConf.method_name@RaxmlConf.method_name. 

75 

http://biopython.org/wiki/SeqRecord
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode


For example, “cox1@mufftDefaults@raxmltree”.  The project.trees attribute gets 
populated by passing a RaxmlConf object list to the project.tree method. By default, 
project.trees is an empty dictionary. 

project.used_methods: AlnConf, TrimalConf and RaxmlConf objects that passed through 
project.align, project.trim and project.tree respectively are backed up in the 
project.used methods list for subsequent reporting. In picked Project objects, they are 
replaced by string representations of the Conf objects. By default, 
project.used_methods is an empty list. 

project.aln_summaries: a list of lists of strings. Each list contains string items providing the 
following information about the alignments and trimmed alignments in the Project: 
token, number of columns, number of rows, number of unique sequences, number of 
completely undetermined (all gaps) sequence, number of variable columns, number of 
parsimony informative columns and the average gap proportion. It is populated by 
project.align and project.trim. By default, it is an empty list. 

project.defaults: a dictionary with program names as keys (red) and command paths as values 
(green). The keys have to be kept as they are. By default, it is assumed that all the 
programs are executable and are in the path: 

{'raxmlHPC': 
'raxmlHPC-PTHREADS-SSE3','mafft': 
'mafft','muscle': 'muscle', 'trimal': 
'trimal','pb': 'pb', 'bpcomp': 'bpcomp', 
'tracecomp': 'tracecomp', 'pal2nal': 
'pal2nal.pl'} 

7.3.1. Project methods 

 

project.read_embl_genbank(filenames_list) 

filenames_list: a list of strings. The strings are paths to genbank or embl formatted files. 
According to the Locus objects in project.loci, the records will be stripped from sequence 
features which are not needed for the analysis. In addition, the remaining features will be given 
a feature ID qualifier, as well as sequence length, GC content and the proportion of ambiguity 
symbols qualifiers. If the sequence is protein or the feature is a coding sequence, protein 
ambiguity symbols proportion will be added as well. If start_git was used, the input files will be 
added to the repository, and .ipynb and .py files will be updated. 

project.read_denovo(filenames_list, char_type, format = 'fasta') 

filenames_list: a list of strings. The strings are paths to input files. If start_git was used, the 
input files will be added to the repository, and .ipynb and .py files will be updated. All the files 
must have the same character type, either DNA or protein. The method can be used twice 
consecutively in order to read both DNA and protein data into the same Project. A source 
feature will be created for each sequence. The record will be given a record ID of the form 
‘denovo0'. The  record id will be placed in the ‘original_id' qualifier. The record description, if 
exists, will go into the ‘original_desc' qualifier. The new source feature will be given a feature id 
of the form denovo0_source, which will be placed in the feature_id qualifier of the source 
feature. If the sequences are aligned, the gaps will be reset and a warning will be raised (to 
read alignments as alignments see project.read_alignment). The source feature on its own is 
insufficient. At least one more feature has to be created with project.add_feature_to_record. 

char_type: ‘dna' or ‘protein'. Describes the character type of the sequences in the files read.  

format: the input files format. ‘fasta' by default. Can be any Biopython SeqIO or AlignIO 

76 

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO


format. All the files must have the same format. To read files with different formats use 
consecutively.  

project.read_alignment(filename, char_type, feature_type, locus_name, 
format="fasta", aln_method_name = "ReadDirectly", exclude=[]) 

filename: a string. The string is a path to input an input alignment file. If start_git was used, 
the input file will be added to the repository, and .ipynb and .py files will be updated. The file will 
be read as a MultipleSeqAlignment and placed into project.alignment with the token 
“locus_name@aln_method_name” as key. The records will also be treated in the same manner 
as they would have been if the file was read with project.read_denovo, with two exceptions: 
first,  both a source feature and an additional feature will be created. For the records to be 
used, char_type, feature_type and locus_name have to fit one of the Locus objects in 
project.loci. Second, the same feature qualifiers will be added as when a genbank file is read 
using project.read_embl_genbank. 

char_type: ‘dna' or ‘protein'. Describes the character type of the sequences in the files read.  

feature_type: a string. Needs to fit one of the feature types in project.loci. 

format: the input files format. ‘fasta' by default. Can be any Biopython SeqIO or AlignIO 
format.  

aln_method_name: any string. will be used in tokens serving as keys in project.alignments, 
project.trimmed_alignments and project.trees. "ReadDirectly" by default. 

project.add_feature_to_record(record_id, feature_type, location='full', 
qualifiers={}) 

record_id: string.  The id of the record to which a feature is added. The qualifiers ‘GC 
content', ‘nuc_degen_prop' and ‘prot_degen_prop' will be added. 

feature_type: a string. Type of the added feature. 

location: a list of three integers: [start, end, strand]. end has to be larger then start. strand is 
either 1 or -1. By default, the whole sequence will be included. Biopython will raise an error if 
the sequence is shorter than the specified location length. 

qualifiers: dictionary. keys are feature qualifiers and values are the qualifier values. 

 

project.add_concatenation(concatenation_object) 

concatenation_object: a Concatenation object. The object will be appended to 
project.concatenations.  Values of  used as record ids will be checked and characters that will 
break downstream analyses will be replaced with “_ro_”. The original values will be backed up 
in a new qualifier. 

errors will be raised when: 

●​ concatenation_object is not a Concatenation object 
●​ concatenation_object.name allready exists in project.concatenations (you can reset by 

doing project.concatenations = []) 

project.make_concatenation_alignments() 

Will create a supermatrix for each Concatenation object in project.concatenations and will put 
them in project.trimmed alignment using the concatenation.name as a key. 

77 

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO


errors will be raised when: 

●​ There is more than one trimmed alignment for a locus and no extra definitions are 
provides 

●​ Cannot guess the prefered trimmed alignment based on the hits supplied via 
define_trimmed_aln in the Concatenation object  

 

project.write(filename, format = 'genbank') 

Will write the SeqRecord objects from project.records into a file, including their modifications. 
The modifications can include the exclusion of record features, because they did not match a 
Locus object. I will also include changes and additions made to feature qualifiers, either 
automatically or by the user. If start_git was used, filename will be added to the repository and 
.py and .ipynb files will be updated. 

filename: output file name. 

format: string. Either ‘csv', to produce a tab delimited text file, or any Biopython recognizable 
format. ‘genbank' by default. 

project.correct_metadata_from_file(csv_file) 

A CSV file written with project.write() can be edited manually and then read back into the 
Project in order to modify and add feature qualifiers. If start_git was used, csv_file will be added 
to the repository and .py and .ipynb files will be updated. 

csv_file: CSV file name. The CSV file needs to be tab delimited. It is easy enough to write one 
with project.write(), edit it and read it back. It is almost impossible to write one manually from 
scratch. When editing, be aware of typical errors.  

project.if_this_then_that(IF_THIS, IN_THIS, THEN_THAT, IN_THAT, mode = 
'whole') 

Allows to search for a value in a certain qualifier and when found to put another (or the same) 
value in another (or the same) qualifier, either new or existing one. example 

IF_THIS: any string. A search phrase to look for. 

IN_THIS: a qualifier name. 

THAN_THAT: any_string. A value to introduce to the metadata 

IN_THAT: a qualifier name. The qualifier in which to put the new value. Can be a  pre-existing 
or new qualifier. 

mode: ‘whole' or ‘part'. ‘whole' means that only an identical match to IF_THIS will be 
considered a match. ‘part' means that even if IF_THIS is a subset of the target, it will be taken 
as a match. For example, in order to get genera from species names, the ‘part' mode needs to 
be used. 

project.add_qualifier(feature_ids, name, value) 

Add a qualifier and its value to features for which you specify their feature_id. example 

feature_ids: a list of feature ids. The feature ids can be retrieved by looking at a file 
generated with project.write(). 

name: any string. The name of the new qualifier or existing qualifier. 

78 

http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/wiki/SeqIO#File_Formats
http://nsaunders.wordpress.com/2012/10/22/gene-name-errors-and-excel-lessons-not-learned/


value: any string. The value of the new or existing qualifier. 

project.add_qualifier_from_source(qualifier) 

For each record in Project.records, this will duplicate the source feature qualifier specified by 
name and place it in all the other feature in the record. For example, for a genbank record with 
a source feature and a cox1 gene feature, project.add_qualifier_from_source(‘organism') will 
add the organism value to the new organism qualifier in the cox1 gene feature. 

qualifier: a qualifier name present in source. If there is no qualifier of this name in the 
source feature of some or all of the records, there will be no warning and no error. 

project.copy_paste_within_feature(from_qualifier, to_qualifier) 

Duplicate a qualifier within a feature, and give the duplicate a new name. This can be handy if 
you want to add values to a qualifier in some records, but you want to do it in another field to 
keep the original as is. 

from_qualifier: string. The name of the qualifier you want do duplicate within each record 
feature. 

to_qualifier: string. The name that you want to give to the duplicate. If the name exists, the 
values will be overwritten without warning. 

project.copy_paste_from_features_to_source(from_feature_qual, 
to_source_qual) 

from_feature_qual: a string. The name of the non-source feature qualifier you want to copy 
into the source feature. 

to source_qual: a string. The name this qualifier will have in the source feature. Existing 
source qualifier with the same name will be overwritten. 

 

project.extract_by_locus() 

Will iterate over records and record features in project.records. For each non-source feature: if 
both the feature type and gene or product qualifiers fit the Locus.feature_type and 
Locus.name/Locus.aliases of any of the Locus objects in project.loci, the feature will be placed 
as a SeqRecord object with feature_id as SeqRecord.id in the list 
project.records_by_locus[Locus.name].  

will raise errors when: 

●​ trying to read a record that only has protein sequence as DNA Locus 
●​ trying to read a DNA record that doesn't have a ‘translation' qualifier as a Protein Locus. 

project.exclude(start_from_max=True, **kwargs) 

Will exclude the records specified in kwargs. This method can be used instead of 
project.extract_by_locus() by leaving start_from_max set to its default value - True. In such 
case, all the record features will be read to project.records_by_locus, except for the ones 
specified in kwargs. Alternatively, start_from_max can be set to - False. In this case, the 
excluded record features passed through kwargs will be removed from the current content of 
project.records_by_locus. 

start_from_max: True or False. True means that all the record features in project.records that 
fit any of the Locus objects will be included, except for the ones specified in kwargs. False 

79 

http://biopython.org/wiki/SeqRecord


means the excluded features will be removed from the current content of 
project.records_by_locus  

**kwargs: a dictionary with Locus.name as keys and feautre id lists as values. This 
dictionary can look like this, for example: 

**{cox1: [‘denovo0_f0',  
‘AM45814_f3'], cytb: 
[‘FR784125_f0']} 

Another way to pass this value is as a list of keywords and arguments. For example: 

pj.exclude(cox1=[‘denovo0_f0',  ‘AM45814_f3'], cytb=[‘FR784125_f0']) 

Using this notation, the curly braces are omitted and the locus name is used as a name and not as a 
string (i.e. no quotation marks). While looking nicer, there is a catch with this approach. Locus names 
that start with a number (e.g. 18S) cannot be converted from string to name, and the method will 
break. Therefore, the first notation is safer in this case. 

Two records will be excluded from the cox1 dataset and one from the 18S dataset. 

will warn when: 

●​ not all the specified feature ids are found 
●​ a Locus name, as used in the kwargs keys, is not found in project.loci 

project.include(start_from_null=True, **kwargs) 

Will include the records specified in kwargs. This method can be used instead of 
project.extract_by_locus() by leaving start_from_null set to its default value - True. In such 
case, only the record features passed through kwargs will be read to project.records_by_locus. 
Alternatively, start_from_null can be set to - False. In this case, the included record features 
passed through kwargs will be added to the current content of project.records_by_locus. 

start_from_null: True or False. True means that only the record features in project.records 
that fit any of the Locus objects and are specified in kwargs, will be included. False means the 
included features will be added to the current content of project.records_by_locus  

kwargs: a dictionary with Locus.name as keys and feautre id lists as values. This 
dictionary can look like this, for example: 

**{cox1: [‘denovo0_f0', 
‘AM45814_f3'], 18s: 
[‘FR784125_f0']} 

Two records will be added to the cox1 dataset and one to the 18S dataset. 

will warn when: 

●​ not all the specified feature ids are found 
●​ a Locus name, as used in the kwargs keys, is not found in project.loci 

project.filter_by_seq_length(locus_name, min_length=0, max_length=None) 

Will remove sequences from project.records_by_locus if they are shorter than min_length, for 
the specified locus. If max_length is specified, it will also remove sequences that are longer than 
max_length. The sequences will not be removed from project.records. If you run 
project.extract_by_locus() again, the filtering will be undone. The same will happen with 
project.exclude() with start_from_max=True. 

min_length: integer. The minimum sequence length allowed. Zero by default. 

80 



●​ max_length: integer. The maximum sequence length allowed. Unlimited by default. 

project.filter_by_gc_content(locus_name, min_percent_gc=0, 
max_percent_gc=None) 

Will remove sequences from project.records_by_locus if they fall within the GC content range 
specifiers. The sequences will not be removed from project.records. If you run 
project.extract_by_locus() again, the filtering will be undone. The same will happen with 
project.exclude() with start_from_max=True. 

min_length: integer. The minimum sequence length allowed. Zero by default. 

max_length: integer. The maximum sequence length allowed. Unlimited by default. 

 

project.align(alignment_methods=[], pal2nal='defaults') 

Will run sequence alignments to the data of the loci specified in AlnConf objects and the 
programs and parameters specified. The method will run the command lines in the AlnConf 
object, will run pal2nal if required, and will produce platform, software and timing information 
which will be stored in the AlnConf object. It will also store the resulting alignments as a 
MultipleSeqAlignment in the project.alignments attribute and append the used AlnConf object to 
project.used_methods. Finaly it will add a list of alignment statistics to project.aln_summaries. 

alignment_methods: AlnConf object list. 

pal2nal: path to executable. The defaults value ‘defaults' means the path will be taken from 
the project.defaults attribute. It can be overridden ad-hoc by providing the path as a string or for 
the duration of the analysis by changing it in project.defaults. For example, to change the path 
of pal2nal and using a non executable instance of it you can use the following command: 

project.defaults[‘pal2nal'] = ‘perl /home/user/program/pal2nal.pl' . 

will warn when: 

●​ alignments have less than four unique sequences and are therefore dropped. 

will raise errors when a codon alignment is attempted and: 

●​ cannot find CDSs for all the protein sequences 
●​ cannot find a protein sequence for all the CDSs 
●​ a CDS and its respective protein sequence are not of compatible lengths (CDS three times 

longer the protein 

project.trim(list_of_Conf_objects) 

Will run alignment trimming on  alignments specified in TrimalConf objects and the programs 
and parameters specified. The method will run the command lines in the TrimalConf object, and 
will produce platform, software and timing information which will be stored in the TrimalConf 
object. It will also store the resulting trimmed alignments as MultipleSeqAlignment objects in the 
project.trimmed_alignments attribute and append the used TrimalConf object to 
project.used_methods. 

list_of_Conf_objects: RaxmlConf object list. 

project.tree(list_of_Conf_objects) 

Will run tree reconstruction on trimmed alignments specified in RaxmlConf objects and the 
programs and parameters specified. The method will run the command lines in theRaxmlConf 

81 

http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html


object, and will produce platform, software and timing information which will be stored in the 
RaxmlConf object. It will also store the resulting trees as a Tree object in the project.trees 
attribute and append the used RaxmlConf object to project.used_methods. Finally it will add 
also add a NHX string representation to project.trees. 

list_of_Conf_objects: RaxmlConf object list. 

Also see important reporting functions (ie not Project methods) below 

project.species_vs_loci(outfile_name) 

Will print a CSV file with Locus names as columns and source organism qualifiers (species) as 
rows. The values will be the number of occurrences of each species in each Locus. Records 
without a source feature, or without an organism qualifier in the source feature will be 
summarized in a line called ‘undef'. 

outfile_name: output file name for the CSV table. 

 

project.write_by_locus(format = 'fasta') 

Will write a sequence file for each Locus in project.records_by_locus. The file name will be 
Locus.name.format (eg, cox1.fasta). The sequence ids in the files will be the feature ids (eg, 
denovo0_f0, AM745218_f3).  

format: string. Any Biopython recognizable format. 

project.write_alns(id=['feature_id'], format = 'fasta') 

Will write a sequence alignment file for each MultipleSeqAlignment object stored in 
project.alignments.  

id: a list of feature qualifier names, as they appear in a genbank representation of 
project.records (A genbank file can be produced with project.write()). Names of source 
qualifiers have to be prefixed with “source_”.  Annotations have to be prefixed with 
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the 
written files.The default value is [‘feautre_id']. 

format: any Biopython AlignIO format in which the files should be written. 

will raise an error when: 

●​ there are no alignments in the Project 

project.write_trimmed_alns(id=['feature_id'], format = 'fasta') 

Will write a sequence alignment file for each MultipleSeqAlignment object stored in 
project.trimmed_alignments.  

id: a list of feature qualifier names, as they appear in a genbank representation of 
project.records (A genbank file can be produced with project.write()). Names of source 
qualifiers have to be prefixed with “source_”.  Annotations have to be prefixed with 
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the 
written files.The default value is [‘feautre_id']. 

format: any Biopython AlignIO format in which the files should be written. 

will raise an error when: 

●​ there are no trimmed alignments in the Project 

82 

http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/AlignIO#File_Formats
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/AlignIO#File_Formats


project.show_aln(token, id=['feature_id']) 

Will write an html file of the alignment or trimmed alignment indicated by the token and will 
show it in a new browser tab. 

token: a key in the project.alignments or project.trimmed alignments dictionaries. 

id: a list of feature qualifier names, as they appear in a genbank representation of 
project.records (A genbank file can be produced with project.write()). Names of source 
qualifiers have to be prefixed with “source_”.  Annotations have to be prefixed with 
“annotation_”. The values of the qualifiers in the list will be used as sequence headers in the 
written files.The default value is [‘feautre_id']. 

project.clear_tree_annotations() 

Will clear all node Face objects from all the trees 

project.write_nexml(output_name) 

Will write all the trees to a file in nexml format. The tree leaf attributes will include all the feature 
qualifiers as well as the aligned sequences and the trimmed-aligned sequence. 

output_name: any string. 

project.annotate(fig_folder, root_meta, root_value, leaf_labels_txt_meta, 
leaf_node_color_meta=None, leaf_label_colors=None, node_bg_meta=None, 
node_bg_color=None, node_support_dict=None, heat_map_meta = None, 
heat_map_colour_scheme=2, multifurc=None, scale = 1000, html = None) 

Will produce annotated .png representation of all the trees in the project. The basic operation of 
the method is described next, but it is not essential to understand in order to use. The method 
works by  storing some Face and NodeStyle objects in the Tree objects, making and adding a 
TreeStyle and then rendering a png file for each tree using that TreeStyle. The TreeStyle is not 
retained in the Tree object. The Face and NodeStyle objects can be cleared from the trees by 
using project.clear_tree_annotations(). The options in project.annotate() represent a very small 
selection of the total ETE2 capabilities. It is therefore also possible to fetch a Tree objects and 
use ETE functions and Tree methods directly on it. For example, we can add a customized 
NodeStyle: 

t = project.ft(“cox1”) 

nstyle - NodeStyle() 

# configure nstyle according to ETE2 manual 

for n in t.traverse(): 

    n.set_style(nstyle) 

fig_folder: a string. A path in which to write the png files. Required. 

root_meta: a qualifier name. This qualifier will be used to look for values that match the 
values in root_value and will take the record features which have this value to belong to the 
outgroup. For midpoint rooting use “mid”. Required. 

root_value: a string. Record features which have this value in the root_meta qualifier will be 
included in the outgourp. Required. 

leaf_label_text_meta: a list of strings. The strings are feature qualifier names which should 
be included in the leaf labels in the trees. Required. 

83 

http://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.Face
http://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.Face
https://pythonhosted.org/ete2/reference/reference_treeview.html#nodestyle
http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
https://pythonhosted.org/ete2/reference/reference_treeview.html#treestyle
http://etetoolkit.org/
https://pythonhosted.org/ete2/reference/reference_treeview.html#nodestyle


leaf_node_color_meta: a string. A qualifier name. The values in this qualifier will determine 
the label colors based on a dictionary passed through leaf_label_colors. 

leaf_label_colors: a dictionary with qualifier values as keys and color names, RGB codes 
or a random color generator as values. Possible examples: 

# Using color names 

colors = {‘Tetilla' = ‘red', 

          ‘Craniella' = ‘blue'} 

# Using RGB codes 

colors = {‘Tetilla' = ‘FF0000', 

          ‘Craniella' = ‘0000CD'} 

# Using random 

colors = {‘Tetilla' = random_color(h=None, l=None, s=None), 

          ‘Craniella' = random_color(h=None, l=None, s=None)} 

# You can fix any of the components by specifying h, l or s. 

node_bg_meta: a string. A qualifier name. The values in this qualifier will determine the 
background colors of tree clades based on a dictionary passed through node_bg_colors. 

node_bg_colors: a dictionary with qualifier values as keys and color names, RGB codes 
or a random color generator as values. Possible examples: 

# Using color names 

colors = {'Tetilla' = 'red', 

          'Craniella' = 'blue'} 

# Using RGB codes 

colors = {'Tetilla' = 'FF0000', 

          'Craniella' = '0000CD'} 

# Using random 

colors = {'Tetilla' = random_color(h=None, l=None, s=None), 

          'Craniella' = random_color(h=None, l=None, s=None)} 

# You can fix any of the components by specifying h, l or s. 

node_support_dict: a dictionary of colors as keys and lists of two integers (upper and 
lower node support limits) as values. This dictionary will determine the annotation of node 
supports on the tree, using colored bullets. For example: 

# When node supports are percents (eg, bootstrap percentage) 

supports = {'black':[100,99], 

            'dimgray':[99,75], 

84 

https://pythonhosted.org/ete2/reference/reference_treeview.html?highlight=treestyle#color-names
https://pythonhosted.org/ete2/reference/reference_treeview.html?highlight=treestyle#color-names


            'silver':[75,50]} 

# When node supports are proportion values 

# (eg posterior probabilities) 

supports = {'black':[1,0.99], 

            'dimgray':[0.99,0.75], 

            'silver':[0.75,0.5]} 

heat_map_meta: a list of feature qualifiers. The values in all of these qualifiers have to be 
numeric. They will compose a vector to be used in a profice node feature which will be plotted 
with using a ProfileFace. 

heat_map_colour_scheme: colors used to create the gradient from min values to max 
values. 0=green & blue; 1=green & red; 2=red & blue (default). In all three cases, missing 
values are rendered in black and transition color (values=center) is white. 

multifurc: a numeric value within the range of node supports. For example, 1 - 100 for 
bootstarp support, 0 - 1 for posterior probabilities. Nodes with lower support than specified will 
be multifurcated. 

scale: integer. The tree width. It is the same as the ETE2 TreeStyle attribute named scale. The 
default value is 1000. 

html: file path. If specified, an html with links to the figures off all the trees will be written in the 
path. 

Known issues: 

●​ The node support legend orders randomly 
●​ Multifurc is glitchi in some cases 

project.report_seq_stats() 

Will plot four figures, each with a box plot representation of sequence length, GC content, 
proportion of nucleotide and protein ambiguous positions, for each locus.  

 

In the following methods, token is a search phrase that will be looked for amongst the keys of the 
relevant project attribute. For example, if we look for a trimmed alignmnet using the token “cox1”, we 
will get project.trimmed_alignmnets[“cox1@mafftDefault@gappyout”]. 

will raise an error when: 

●​ the token is not found 
●​ the token matches more than one key. In this case a more informative token is needed. In the 

case of out cox1 token, we may get an error message looking like this:  

The token cox1 was found in more then one tree key: 
[“cox1@mafftDefault@gappyout”, “cox1@muscleDefault@gappyout”] 

we can copy and paste our more informative token from this error message and use 
cox1@mafftDefault as our more specific token. 

 

85 

https://pythonhosted.org/ete2/reference/reference_treeview.html#ete2.ProfileFace
https://pythonhosted.org/ete2/reference/reference_treeview.html#id2


project.ft(token) 

Fetch a Tree objects from project.trees using a token.  

project.fa(token) 

Fetch a MultipleSeqAlignment objects from project.alignments using a token. 

project.fta(token) 

Fetch a MultipleSeqAlignment objects from project.trimmed_alignments using a token. 

project.fr(locus_name, filter=None) 

Will fetch the SeqRecord objects of the specified locus. 

locus_name: the name attribute of one of the Locus objects in project.loci. 

filter: a list of lists. Every (sub)list is a pair of qualifier and value. If filter is specified, only 
records that have all the specified values in the specified qualifiers will be kept. For example, 
the command: 

project.fr('cox1', filter = [['genus', 'Cinachyrella'], 
['porocalyx','2']]) 

will return a list of cox1 SeqRecord objects which have the value ‘Cinachyrella' in their genus 
qualifier and the value ‘2' in their porocalyx qualifier (see here for context). 

 

7.4. ReproPhylo functions meant to be used directly 
list_loci_in_genbank(genbank_filename, control_filename, loci_report=None) 

genbank_filename: the path to the genbank file. 

control_filename: a path to write the loci CSV 

loci_report: a path to write the loci counts report. If None, will be written to stdout. 

will warn when  

●​ a gene or product qualifiers are not found 

will raise error when 

●​ the file format breaks the Biopython genbank parser 

known issues 

for now only accept genbank files (not embl) 

 

pickle_pj(project, pickle_file_name) 

Will create a pickle file of the Project instance. Will commit it if start_git() was used. Will replace 
the Conf objects in project.used_methods with string representations of these Conf objects. 

project: a Project instance. 

86 

http://pythonhosted.org/ete2/reference/reference_tree.html#ete2.TreeNode
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/DIST/docs/api/Bio.Align.MultipleSeqAlignment-class.html
http://biopython.org/wiki/SeqRecord


pickle_file_name: a path to write the file. 

known issues 

The string representations of the Conf objects are badly formatted but readable. 

unpickle_pj(pickle_file_name) 

Will return a Project instance based on the pickle file passed. 

pickle_file_name: the path to the pickle file 

usage: 

project = unpickle_pj(pickle_file_name) 

# project is now a Project instance. For example, 

# it has the project.loci attribute. 

 

known issues 

The string representations of the Conf objects are badly formatted but readable. 

publish(project, folder_name, figures_folder) 

Will archive the following file into a zip file: a report produced with report_methods, a Project 
pickle file produced with pickle_pj, a genbank file containing project.records, a nexml file 
containing all the trees, with the aligned and trimmed aligned sequences as leaf attributes. 

project: a Project instance 

folder_name: the name of the zip file (.zip will be added if missing from this value) 

figures_folder: a path to the tree figure files. The files will be picked up only if they were 
generated using project.annotate() . 

calc_rf(project, figs_folder) 

Will calculate the robinson_foulds distance between each pair of trees in project.trees. Will 
return a list with two values. The first will be a heat map plot of the rf values with numerical 
labels, the second will be a list of strings forming a legend table which associate the labels in 
the figure with trees in project.trees. 

project: a Project instance 

figs_folder: a path to write the heatmap plot png file. 

draw_trimal_scc(project, num_col, figs_folder, trimmed=False, alg = '-scc') 

view_csv_as_table(csv_filename, delimiter, quotechar='|') 

 

7.5. The AlnConf object  
5.5.1. AlnConf 

87 



5.5.2. AlnConf methods 

5.5.3. AlnConf preliminaries 

7.6. The TrimalConf object 
5.6.1. TrimalConf 

5.6.2. TrimalConf methods 

5.6.3. TrimalConf preliminaries 

5.7. The RaxmlConf object 
5.7.1. RaxmlConf 

5.7.2. RaxmlConf methods 

5.7.3. RaxmlConf preliminaries 

78. Undocumented functions 
The following functions are present in the module but are not yet covered by either the use cases or 
this command reference. They include the PbConf object, which can be used to run a phylobayes tree 
reconstruction, a bayestraits function that takes trait information from the project's metadata and a 
tree from the project's trees and exonerate functions designed to run exonerate and feed the data to a 
reprophylo project. The LociStats object allowing sorting and subsetting loci based on various 
statistics is also available. 

The three top things which are under development are a more scalable report, faster feature iteration 
throughout, and multiparanoid functions. 

 

 

 

88 



8. A Galaxy workflow - Iguaninae data 
Galaxy is an open, web browser based environment designed to provide workflow tools using a 
graphic user interface. Galaxy takes care of all the aspects of reproducibility by controlling the input 
and output files and their provenance in recorded histories. The histories record the order of the tools 
that were used, the input and output files and the choice of parameters. It is possible to export, 
publish and share Galaxy histories in a way that will allow others to import them directly into galaxy, 
review the analysis, repeat it and extend it. 

The following use case focuses on an exploratory analysis of genbank data of iguanas. Since the 
ReproPhylo Galaxy tools are powered by the python module, they lag behind in versatility. the Galaxy 
tools do not allow us to configure the phylogenetic analysis at the moment. This is obviously a 
drawback which is the focus of the current development. However, they still provide a powerful 
environment for making sense of your data as well as publicly available data.  

In this use case we will perform the following tasks: 

●​ Obtain and install Galaxy with ReproPhylo 
○​ All inclusive on Ubuntu and similar OSs 
○​ Add only the ReproPhylo tools to your existing Galaxy 
○​ Try other methods to get galaxy if these ones are no good  

●​ Get data from GenBank 
●​ Explore and choose the loci to analyse 
●​ Start a Project with the selected loci 
●​ Read the GenBank records 
●​ Explore the available metadata from the genbank file 
●​ Add additional information of our own 
●​ Run a fixed phylogenetic pipeline 
●​ Annotate the resulting trees using the metadata 
●​ Archive the results 
●​ Tools not covered by this use case 
●​ Export the history 
●​ Make a workflow out of the history and edit it 

 

8.1. Getting ReproPhylo in Galaxy 
An archived Galaxy distribution with the ReproPhylo tools already set up can be downloaded here.  

For any linux distribution which uses apt-get, you can extract the archive file and run the 
INSTALL.sh file. 

$ cd ~/Downloads && unzip ReproPhyloGalaxy-master.zip 

$ cd ~/Downloads/ReproPhyloGalaxy-master && sudo ./INSTALL.sh 

It will place a galaxy-dist folder and will download dependencies using apt-get and pip. To run 
Galaxy, do the following: 

$ cd ~/galaxy-dist && sudo sh run.sh --reload 

The first start up takes time because Galaxy downloads dependencies as well. Subsequent start ups 
will be quick. Once it is done, you'll receive the message  

serving on http://127.0.0.1:8080 

89 

http://galaxyproject.org/
https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
http://127.0.0.1:8080


Go to this address in your browser. 

Later on, in order to quit Galaxy when you're done working, use ctrl+c. 

If you want to add the ReproPhylo tools to your existing Galaxy download the archive here, and 
extract: 

$ cd ~/Downloads && unzip ReproPhyloGalaxy-master.zip 

Then copy the reprophylo directory to your tools directory: 

$ cp -r ~/Downloads/ReproPhyloGalaxy-master/galaxy-dist/tools/reprophylo 
/path/to/your/galaxy-dist/tools/. 

Next, you'll have to update the tool_conf file with the new tools (also these instructions for more help). 
This file can be either  

/your-path/galaxy-dist/tool_conf.xml, 

 or  

/your-path/galaxy-dist/config/tool_conf.xml.main. 

copy the text in bold into anywhere in the file, according to the place you want ReproPhylo to appear 
in your Galaxy tools menu. However, make sure not to break existing section blocks: 

  <section id="some section" name="some section"> 

      <tool file="directory/some tool.xml" /> 

  </section> 

  <section id="ReproPhylo" name="ReproPhylo"> 

    <tool file="reprophylo/start_a_project.xml" /> 

    <tool file="reprophylo/read_data.xml" /> 

    <tool file="reprophylo/read_revised_metadata.xml" /> 

    <tool file="reprophylo/run_exploratory_pipeline.xml" /> 

    <tool file="reprophylo/annotate_trees.xml" /> 

    <tool file="reprophylo/report.xml" /> 

    <tool file="reprophylo/manage_project.xml" /> 

   </section>  

  <section id="some other section" name="some other section"> 

      <tool file="directory/some tool.xml" /> 

  </section> 

You'll also need to install some more dependencies. On machines with apt-get, it is a good idea to 
start with  

$ sudo apt-get update 

You'll need to make sure you have python 2.7 or later, python-pip. (if you use apt-get you can do sudo 

90 

https://github.com/HullUni-bioinformatics/ReproPhylo/archive/master.zip
https://wiki.galaxyproject.org/Admin/Tools/AddToolTutorial
https://www.python.org/downloads/
https://pypi.python.org/pypi/pip


apt-get install python python-dev python-pip). On OSX homebrew is a good 
replacement for apt-get (ie brew install [whatever]). 

Then get some python modules and MAFFT: 

Biopython and ETE2 dependencies and modules  

$ sudo apt-get install python-setuptools python-numpy python-qt4 python-scipy 
python-mysqldb python-lxml 

$ sudo apt-get install python-biopython 

$ sudo pip install ete2  

Dendropy 

$ sudo pip install dendropy 

Cloud 

$ sudo pip install cloud 

Pandas 

$ sudo pip install pandas 

Matplotlib 

$ sudo apt-get build-dep python-matplotlib sudo apt-get install 
python-matplotlib 

and Mafft 

$ sudo apt-get install mafft 

Once this is all done you can start your Galaxy instance: 

$ cd ~/galaxy-dist && sudo sh run.sh --reload 

The first start up takes time because Galaxy downloads dependencies as well. Subsequent start ups 
will be quick. Once it is done, you'll receive the message  

serving on http://127.0.0.1:8080 

Go to this address in your browser. 

Later on, in order to quit Galaxy when you're done working, use ctrl+c. 

Finally, if the above methods do not fit your system, you can check the Galaxy manual for their 
supported OSs. 

While developing, we target Ubuntu. However, I will be willing to attempt to assist with installation on 
other systems if all of the above fails. Contact me at A.Szitenberg@Hull.ac.uk. 

8.2. Getting data from GenBank 
This is probably very obvious for most, but here's a short example, for the sake of completeness. In 
this use case we'll take all the available Iguaninae data from the Nucleotide database in GenBank. 
Type in the search phrase iguaninae[orgn] to the search box in the Nucleotide database: 

91 

http://brew.sh/
http://www.biopython.org/
http://etetoolkit.org/
https://pythonhosted.org/DendroPy/
https://pypi.python.org/pypi/cloud/2.8.5
http://pandas.pydata.org/
http://matplotlib.org/
http://mafft.cbrc.jp/alignment/software/
http://127.0.0.1:8080
https://wiki.galaxyproject.org/Admin/GetGalaxy
https://wiki.galaxyproject.org/Admin/GetGalaxy
mailto:A.Szitenberg@Hull.ac.uk
http://eol.org/pages/4530497/overview
http://www.ncbi.nlm.nih.gov/nucleotide/


 
The result page should look as follows: 

 
Use the Send to: link on the top right hand side to download a genbank file: 

 

The file will be saved in your Downloads directory and will be most likely called sequence.gb. 

8.3. Uploading your data to Galaxy 
Since Galaxy is in your web browser, we will use the term “uploading” for getting data into Galaxy, 
even if it is local, just because this is a browser page terminology. If you haven't already started 
Galaxy, do it as follows. If this is the first start-up, it will take a little time: 

$ cd /path/to/your/galaxy-dist/  

$ sudo sh run.sh --reload 

When you get the message:  

serving on http://127.0.0.1:8080 

go to this address in your browser. The Galaxy page has the tools panel on the left, the analysis 
history on the right. Tool forms and output will appear in the middle. To upload your Iguaninae 
sequences click the icon on the top, right-hand side of the Tools panel: 

92 

http://127.0.0.1:8080


 

The upload box will open. You can either drag and drop your file or locate it using the “Choose local 
file” button. Once dropped/ chosen, click the start button. 

 
When the file has been uploaded you can close the box. You will then be able to spot your file at the 
top of the History panel.  

 

If you wish, you can click “Unnamed history” to edit this history's name. 

8.4. Explore and choose the loci to analyse 
For this we will use the “Start a Project” tool. In the Tools sidebar, click ReproPhylo, then click Start a 
Project. The tool's gui will appear in the middle panel. From the drop-down menu “Initiate the Project 
with:”, choose “a GenBank file”. In the drop-down menu “genbank or embl file:” make sure that your 
uploaded genbank file is chosen. It should be, as it is the only item in the history. Finally click Execute.  

93 



 

Once the tool has started running, four new items will appear in the History panel: 

 

They will first appear grey as the tool is initiating, then they will turn yellow as the tool runs, and green 
when it's done: 

 

The new items are identified by their number in the queue, the name of the tool that generated them, 
the index of the input file and the output type. For example, item number two was generated with the 
tool “Start a Project” using item 1 (sequence.gb) as input, and is a log file of the run. We will look at 
this file in a moment. 

Item number 3 is a pickle file of the Project we have generated. It has all the loci from the genbank file 
in its project.loci attribute and all the records from the genbank file in its project.records attribute (see 
Project for full description). In this use case we are going to ignore this output because we are going 
to customize the included loci instead of taking all of them. 

Item number 4 is a CSV file (comma delimited) describing all the loci in the genbank file. This is the 

94 



file we are going to download and edit, in order to determine the loci we want to include. 

Item number 5 is another CSV file (tab delimited) describing the metadata of all the records in the 
genbank file. Since we are going to exclude some records by removing some loci, this file is also not 
relevant for us in this use case. 

To download the loci CSV file, click item number 4, which will expand and look like this: 

 

On the top right hand side of window shown above, from left to right, we can see the ‘view' button, the 
‘edit' button and the ‘hide' button. The ‘view' button will present this output in the main panel, the ‘edit' 
button will allow you to edit things like the output's name and its format. The ‘hide' button will hide this 
output. It can be shown again using the menu that opens when you use the gear button on the top 
right hand side of the History panel. 

On the middle left hand side of the window there are the ‘save', ‘info' and ‘rerun' buttons. Click the 
‘save' button to save the loci csv file to your Downloads directory. 

In order to choose our loci, we will also need to see the log of this tool. To do that, expand item 
number 2 from the history “Start a Project on data 1: Log” and click the ‘view' (eye) icon. 

 

The log will appear in the middle panel and will look like this: 

95 



. 

… 

 

The top line is the command-line that was used to call the command-line program that powers this 
Galaxy tool (it is truncated in this figure). First we are informed that 148 loci were found in this 
genbank file, loci being unique values found in the gene and product qualifiers of the genbank 
records. Than, all the loci are listed in descending order based on their count in the file. A locus that 
appears in four different names in the genbank file will also appear four times in this list. We are going 
to exclude most of the loci and keep only the abundant ones. To do that, open the loci csv file you 
have saved to Downloads (item number 4) in any text editor (not in a word processor). Keep only the 
lines that appear in the image below and delete the rest. Note that for some loci, such as cyt-b, 
synonyms were identified and placed on one line. In other cases, such as with NT3, synonyms were 
not identified. To indicate that NT3 and NT-3 are synonyms, add “,9” at the end of both lines- as is 
shown below. By adding any shared integer at the end of two or more lines, we can indicate that 
these names belong to the same gene. It can be any integer at all. Go here for more on the structure 
of the loci CSV file. 

 

When you are done editing, save the file. Use the name ‘edited_loci.csv' to match the name used 
here. Upload the file in the same way we uploaded the genbank file. Finally we can start a project that 
will include only the loci we are interested in.  

8.5. Start a Project with the selected loci and the 
relevant records from the genbank files 
Go to the “Start a Project” tool again. This time, choose the “GenBank and loci CSV files” option from 
the “Initiate the Project with:” drop down menu. Now indicate the loci CSV file you have just uploaded 

96 



(should be number 6) and the genbank file and execute (It is also possible to start a Project using a 
loci CSV file only, and to then add sequence from other file formats using another tool. This is not 
covered here). 

 

Three new items (7-9) will appear in the history, and will include a new log file (7), a new Project file 
(8) and a new metadata CSV file (9). The Project and metadata will now only include records that 
belong to loci we have indicated in our loci CSV file. Note that since we have provided our own loci 
CSV file, one is not generated and is not part of the output. 

 

8.6. Explore the available metadata from the genbank 
file. 
The next step in our use case is to edit the metadata. Specifically, we are going to add a genus 
qualifier that will allow us to color the clades according to genus. The first stage is to expand the new 
metadata CSV item in the history panel (item 9). 

 

The history panel provides a peek to the content of the file, but we can also view the full table in the 

97 



main panel by clicking the eye icon. This is a section of the display that should appear: 

 

This view allows us to easily explore the metadata and consider the changes we want to make. In 
order to introduce these changes we will have to download this file, which is a tab delimited text file, 
and open it in a spreadsheet program such as Excel or Libre Office. Click the diskette icon and look 
for the file in the Downloads directory on your machine. 

8.7. Add additional information of our own 
This section has nothing much to do with Galaxy or ReproPhylo. It is one possible example of how 
one might edit the metadata using an external program. In this case we will make a ‘genus' column 
out of the “source:_organism” column: 

1.​ Spot the source:_organism column in the spreadsheet. 

98 



 

2.​ Add five columns to the right of the source:_organism column: 

 

3.​ Copy and paste source:_organism to an empty column (make a duplicate): 

 

4.​ Select the new source:_organism column and use the menu “data/text to columns” to split the 
values to columns on whitespaces. 

99 



 

5.​ Rename the duplicate source:_organism column as “genus”. Note that now it only contains the 
first word of source:_organism, which is the genus. Then delete the other new columns, which 
contain the other parts of the source:_organism split values.  

 

6.​ Save your edited file. Use the name “edited_metadata.csv” to match the name used here. Make 
sure to save it as a tab delimited CSV file. Now you can upload your edited file to galaxy. Once it 
is done, you should expect to see it as a new item (most likely number 10) in your history panel. 

 

Revised metadata files are read back using the tool “Read Revised Metadata”. The tool takes a 
Project file (use the most recent, number 8, which includes only our loci of choice), and the metadata 
CSV file. Click “Execute” to run. 

 

This tool should add a log file (11) and a Project file (12) which will now have the corrected metadata 
in it. 

100 



 

8.8. Run a fixed phylogenetic pipeline 
Unlike the python module, the Galaxy tools do not allow us to configure the phylogenetic analysis at 
the moment. This is obviously a drawback which is the focus of the current development. However, as 
a first run that allows you to evaluate your data, or the data from GenBank, it is still very useful. To 
perform this run, click the “Run Exploratory Pipeline” tool.  

 

The tool takes a Project file as input. Specify the most recent, which has the edited metadata. 
According to your machine specs, specify the number of threads to run (if in doubt 4 is a good 
choice). You can also select to overwrite existing analyses. This can be useful when you are using a 
Project which already contains trees, by adding a locus to it with some new data. In this case you may 
want to run the analysis again for all the loci, by ticking this box, or just for the new locus, by leaving 
the box unticked. The utility of this option will increase, once it is possible to configure the analysis. 
Bear in mind that it is possible to analyse the same locus twice, if we would like for example to try 
several different taxon samplings, by having the same line twice in the loci CSV file, but with a 
different third value, which is the locus name, in each of the lines. 

The last bit of information needed is a path to write .png graphic files showing the trees. The .png files 
will be written in the path you specify here, and will not be tracked by Galaxy. There are several 
reasons for this. First, these files are not needed for reproducibility. You can print them at any time 
using your Project file. Therefore, there is no need to clutter the history with them. Second, if you 
archive the analysis, as we will when we are done here, the archive will contain these figures and it 
will be a part of the history.  

This tool will add two output items to your history. A Project file, which now also contains alignments, 
trimmed alignments and trees, and a log file: 

101 



 

The log file this tool produces can be viewed in the main panel by clicking the eye icon, and it has the 
following sections: 

The command line used to call ReproPhylo (truncated in the figure) followed by a table showing the 
loci in the Project, their record content, and some sequence statistics: 

 

Next, the log shows all the MAFFT command lines that were executed and also information about 
dropped loci or taxa. The alignment strategy is fixed to default MAFFT settings without codon 
alignment. 

 

The next part shows the TrimAl command lines, which are fixed to the gappyput approach. It also 
informs us of sequences that were all gap after trimming and were therefore removed. 

 

The log ends with RAxML command lines, html formated links to the figures, and references for all the 
software used. The tree reconstruction strategy is fixed to the default RAxML rapid hill climbing 

102 



algorithm for a single ML search, with relBootstrap branch supports. 

 

If you check out the path you specified for the png files, you will see a png file for each one of the 
trees: 

 

The file names are composed of a unique ReproPhylo process ID (mostly an internal thing, but can be 
useful to assert which process created which tree by checking the log), the locus name, the AlnConf 
name and the TrimalConf name. The RaxmlConf name is not included, but if you run several tree 
strategies on the same trimmed alignment (currently only possible using the python module directly) it 
will be noted by a different process ID. You will be able to identify the process by checking the log or 
the archive we will create later. 

8.9. Annotate the resulting trees using the metadata 
The “Run Exploratory Pipeline” tool provides very basic and somewhat uninformative tree figures, 
because they have no meaningful annotation. The “Annotate Trees” tool allows you to add all those 
things that will make the trees easier to interpret. The first value taken in the tool's GUI is the Project 
file produced by the “Run Exploratory Pipeline” tool. The second is a path to which you wish to write 
your annotated trees png files. Next comes “Tree width” which controls the width of the trees 
compared to the figure borders. 

By default, rooting is done at midpoint. If you wish to change this, you can choose “Specify outgroup 
using metadata” from the “How to root” dropdown menu. This will add two new boxes to the form, the 
first of which will ask you to specify a column name in your metadata. If you wish to use a source 
qualifier, the format will be source_qualifierName (no colon). In the second new box, put the value 
specifying an outgroup OTU. In our case we might have put ‘genus' in the first of these boxes and 
some outgroup genus name in the second of these boxes. For sets of loci that don't have the this 
genus, the rooting would stay at midpoint. 

103 



 

After sorting out rooting, we need to decide how to label the leaves. By default they are labeled with 
the species name from the organism qualifier of the source feature. If you wish to change this, choose 
“specify labels using the metadata” from the dropdown menu. This will open a new box, in which you'll 
need to provide a whitespace delimited list of all the qualifiers you want to include in the label (eg 
“source_organism feature_id gene”). 

You can also decide whether to leave the labels black or to color them based on some metadata. If 
you wish to color the labels, choose “According to rules” in the “How to color labels” dropdown menu. 
As before, this will open a box in which to specify a column name, and a dropdown menu in which to 
choose a color scheme. 

In this use case, we will color clade backgrounds according to genera. Choose yes for “Color node 
backgrounds?”. In the box that appears, labeled “A metadata column name to use for determining bg 
color” type in “genus”. In the dropdown menu “select color scheme” choose “blues”. 

We are going to leave “Use default ranges for node support annotation?” at Yes. If you wish to change 
it to No, you'll be asked to provide support ranges and corresponding colors. You will need to type in a 
string similar to this one: “black 100 90 gray 90 80 silver 80 50”. You can see color names here.  

Another feature we'll take advantage of now is the heatmap. Our's is going to be a simple one with 
just one column, but the principle is the same for any size. Change “make heatmap?” to Yes. In the 
box that appears, type in “GC_content”, which is one of the column names in the metadata 
spreadsheet. Finally, we can choose a color scheme. Here we'll leave it on Red to blue. 

Last option in the form has to do with node collapsing based on node support. You can specify a 
value, under which nodes will be multifurcated in the figure. We are going to leave as is. 

The tool allows you to either make only the figures, with an html file to point at them, or to make a full 
archive. We are going to do the first, and leave the second for later. 

104 

http://en.wikipedia.org/wiki/Web_colors#X11_color_names


Execute the action. Once it is done, your tree files in the path you specified should look like this: 

 

The cox 3 tree (next page) seems to be a nice example of how even this quick analysis provides 
insight on the data. Each genus in the tree is colored with a different shade of blue, and GC values 
are color coded on the right hand side. Since the extreme colors (red and blue in this case) are given 
to the actual lowest and highest values encountered, (which are 42.9% for the species Ctenosaura 
pectinata and 48.99% for the species Sauromalus ater in this case) our example is on one hand a bit 
misleading because it looks like the range of GC values is higher than it really is. On the other hand, 
using the full range of the color scale allows us to visualize the fit between the GC values and the 
phylogeny, and to highlight the connection between the tree's midpoint (as it is midpoint rooted) and 
the GC content of the leaves. This kind of information is valuable while building a phylogenetic tree, 
and we make it jump out at us with almost no effort at all.  

105 



 

 

 

106 



8.10. Archive the results 
An archive of our analysis can be produced by the annotation tool, by selecting an archive output at 
the very bottom of the form. 

 

However, typically we would want to archive only after having a look at the figure. We might also want 
to write files that are not part of the default archive. For these things we can use the “Report” tool. The 
input for this tool is our latest Project file, then we get to choose between producing a zip file and 
between producing a GenBank file for the records and alignment files with our choice of format. Here 
we'll make a zip file. The last input is the path that contains our figure files, the same one we specified 
in the annotation tool. 

 

Running the tool with the zip file option will produce three outputs: A log file (18) a Project file (19) and 
a report zip file (20). 

 

Expand number 20 and click the diskette icon to download the zip file once the analysis is ready. 

 

107 



Extract or mount the zip file and have a look on the files it contains: 

 

Now open the report.html in your web browser. It should have the following sections: 

The report begins with a header specifying the date it was made, followed by a table counting the 
number of sequence per locus per species in the Project's records. 

 

The second section is a set of plots showing a bunch of sequence statistics, such as sequence 
length, for each locus. 

 

This is followed by a description of each of the Conf objects that were used to align, trim and 
reconstruct a tree. These descriptions include the names of the analyzed loci, the time the analysis 
started, the command lines that were run, environment info and the length of the execution. 

108 



 

The results section of the report include the following alignment statistics table 

 

as well as plots showing gap proportions and residue similarity values for each position in each full 
and trimmed alignment. 

 

109 



The final section of the report shows all the trees in the Project, including their newick and nhx 
representations, and the figure generated. 

 

The archive includes several additional files. One of them is a genbank file, which is different from the 
input file in several ways. First of all, it includes any data we included, even sequences we have 
passed through the Read Data tool (see below). It also includes some automatically included feature 
qualifiers (such as feature id and GC content) and ones that were manually added (such as genus), 
as the snippet below shows. We have written this data in genbank file format because it is a standard 
format that can be opened and analysed easily by many scripts and other programs. 

 

110 



Finally, it includes a PhyloXML file, containing all the trees and alignments format. The leaf attributes 
in those trees include the aligned and trimmed-aligned sequences, as the snippet below shows. 
Remember you can produce sequence alignment files in any format using the Report tool. 

8.11. Tools not covered by this use case 
Earlier we included data from a genbank file in a new project. The Read Data tool allows us to add 
data to an existing Project. We have the option to read a genbank file, a fasta file or both. Since 
ReproPhylo is capable to read any file format of unaligned or aligned sequences supported by 
BioPython, this feature will soon follow in the galaxy tools as well. 

In the example below, the choice taken is to add both file formats. We therefore get a dropdown menu 
from which to choose a genbank file, and another to choose a fasta file. We also need to specify 
whether the fasta file is DNA or protein, the gene name of the fasta sequences and their feature type. 
The tool can be used several times consecutively to add several files. The command line tool also 
allows to use the file name as gene and feature, in order to enable reading multiple files in one go, so 
this will follow in Galaxy as well.   

 

The Manage Project tool includes most of the functions encountered in other tools, but in a way that 
allows to break them down to independent operations or to clump them in a different way than they 
are clumped by the other tools. This should allow more flexibility in designing a workflow. 

8.12. Export your history 
The History panel allows you to export the history to a file, which can then be imported by others (or 
your future self) into Galaxy. This file will include all the inputs, outputs and intermediates, as well as a 
record of all the tools and parameter choice. The history is exported to a file by choosing “Export to 
file” from the gear button at the top right side of the panel. 

8.13. Save and edit a workflow 
The history can be saved as a workflow, which will present the tools in the order they were used and 
will allow you to repeat the analysis with or without changing the parameters. You can also edit the 
workflow to add or remove tools, as well as split and parallelize the workflow. See this page on how to 
do all those things. 

111 

http://www.phyloxml.org/
http://biopython.org/wiki/SeqIO#File_Formats
http://biopython.org/wiki/AlignIO#File_Formats
https://usegalaxy.org/u/aun1/p/galaxy101


9. FAQ 
9.1. Where can I get ReproPhylo? 
The software is available to download from the ReproPhylo GitHub repository. It is under the most 
permissive licence we could find, CC0, which makes it public domain. Our intention is that you can do 
anything you wish with this software including re-using, modifying, and incorporating into other 
software, whether commercial or not. It would be great however if you fed any improvements back in 
to ReproPhylo. 

9.2. How can I cite ReproPhylo? 
If you use ReproPhylo in a publication, please cite: 

Szitenberg A, John M, Blaxter ML, Lunt DH. ReproPhylo: An Environment for Reproducible 
Phylogenomics. PLoS Comput Biol. 2015;11: e1004447. doi:10.1371/journal.pcbi.1004447 

The programs running within the ReproPhylo pipeline should also be cited appropriately. So, if you 
align with MAFFT, trim the alignment with TrimAl and create a tree with RAxML or PhyloBayes which 
you modify with ETE2 you should cite appropriately. All the program references are in the next 
section. 

9.3. I have found an error in the code or manual 
If something is generating an error, and you think it is a bug rather than your setup, you should create 
an issue (bug report) on GitHub. See if you can replicate the error using a standard Docker 
ReproPhylo installation- that way we will know it is not the environment. If you can help you could fix 
the code yourself and then issue a pull request on GitHub, otherwise create a GitHub issue.  

If the problem is with documentation then you can just directly edit this manual to improve or correct it. 
Be bold. We consider this manual an evolving community document and actively encourage your 
contributions. You could also email the authors if you would like to discuss the documentation or the 
code at A.Szitenberg@hull.ac.uk. 

9.4. I would like [my favourite feature] included 
There are far too many approaches in phylogenetics for us to attempt to include them all, though we 
will try to build in the most important. Suggestions could be added to the GitHub issue page. It is not 
that difficult to ‘wrap' many existing programs so that they will operate within the ReproPhylo pipeline. 
Have a look at adding tools into ReproPhylo section, we would welcome contributions. If you would 
like to take a more active role in developing ReproPhylo, welcome, please email us. 

 

10. Program References 
​
RAxML: A. Stamatakis: "RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of 
Large Phylogenies". In Bioinformatics, 2014 

Phylobayes: N. Lartillot, T. Lepage and S. Blanquart, 2009: PhyloBayes 3: a Bayesian software 

112 

https://github.com/HullUni-bioinformatics/ReproPhylo
http://dx.plos.org/10.1371/journal.pcbi.1004447
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
mailto:A.Szitenberg@hull.ac.uk
https://github.com/HullUni-bioinformatics/ReproPhylo/issues
http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btu033.abstract?keytype=ref&ijkey=VTEqgUJYCDcf0kP
http://megasun.bch.umontreal.ca/People/lartillot/www/PhyloBayes2009.pdf


package for phylogenetic reconstruction and molecular dating. Bioinformatics Vol. 25 no. 17.  

MAFFT: Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780) MAFFT multiple 
sequence alignment software version 7: improvements in performance and usability. 

Muscle: Edgar 2004: MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Research 32(5):1792-1797 

Pal2Nal: Mikita Suyama, David Torrents, and Peer Bork (2006) PAL2NAL: robust conversion of 
protein sequence alignments into the corresponding codon alignments.Nucleic Acids Res. 34, 
W609-W612. 

​
trimAl: Salvador Capella-Gutierrez; Jose M. Silla-Martinez; Toni Gabaldon. trimAl: a tool for 
automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009 25: 
1972-1973.​
​
ETE: Jaime Huerta-Cepas, Joaquin Dopazo and Toni Gabaldon. ETE: a python Environment for Tree 
Exploration. BMC Bioinformatics 2010, 11:24.​
​
NumPy: Stefan van der Walt, S. Chris Colbert and Gael Varoquaux. The NumPy Array: A Structure for 
Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011)​
​
Matplotlib: John D. Hunter. Matplotlib: A 2D Graphics Environment ,Computing in Science & 
Engineering, 9, 90-95 (2007)​
​
Pandas: Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th 
Python in Science Conference, 51-56 (2010)​
​
HTML.py: http://www.decalage.info/python/html 

Biopython: Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, 
Kauff F, Wilczynski B, and de Hoon MJ. Biopython: freely  available Python tools for computational 
molecular biology and bioinformatics. Bioinformatics 2009 Jun 1; 25(11) 
1422-3.doi:10.1093/bioinformatics/btp163 pmid:19304878​
​
Cython: Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn and 
Kurt Smith. Cython: The Best of Both Worlds, Computing in Science and Engineering, 13, 31-39 
(2011)​
​
​
Cloud: https://pypi.python.org/pypi/cloud/2.8.5 

 

11. Contact 
For general questions about ReproPhylo contact Amir Szitenberg (szitenberg@gmail.com) or Dave Lunt 
(dave.lunt@gmail.com). For technical issues, bug reports, and feature suggestions you should create a 
GitHub issue if possible. If the problem is with documentation then you can just directly edit this manual 
to improve or correct it. Be bold. 

 

 
 

113 

http://mbe.oxfordjournals.org/content/30/4/772
http://europepmc.org/abstract/MED/15034147
http://www.bork.embl.de/pal2nal/pal2nal.pdf
http://trimal.cgenomics.org/_media/trimal.2009.pdf
http://www.biomedcentral.com/1471-2105/11/24
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5725236
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4160265
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://www.decalage.info/python/html
http://www.hubmed.org/display.cgi?uids=19304878
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5582062
https://pypi.python.org/pypi/cloud/2.8.5
mailto:szitenberg@gmail.com
mailto:dave.lunt@gmail.com
https://github.com/HullUni-bioinformatics/ReproPhylo/issues

	 
	ReproPhylo  
	reproducible  
	phylogenomics 
	 
	 
	1. Introduction 
	1.1. What ReproPhylo is 
	1.2. About this Manual 
	1.3. Brief overview of reproducibility 
	1.4. Version control in ReproPhylo 

	2. Installation and Launch  
	2.1. ReproPhylo in Docker (Linux machines) 
	2.1.1. Starting up 
	2.1.2. Stopping a ReproPhylo Docker container 

	2.2. Linux installation without Docker 
	2.3. Windows and OSX (and also linux) 
	2.3.1 Vagrant 
	2.3.2. WinPython (deprecated) 


	 
	3. Tutorial 
	3.1. Jupyter Notebook Intro 
	 
	 
	3.2. Starting a Project 
	3.2.1 Describing Loci 
	3.2.2 Loading loci to a new Project 
	3.2.3 Modifying the loci of an existing Project 
	3.2.4 Quick reference 

	3.3. Reading Data 
	3.3.1 Reading data from GenBank or EMBL files 
	3.3.2 Reading other sequence file formats 
	3.3.3 Reading sequence alignments 
	3.3.4 Reading a Nexus alignment with PAUP commands 
	3.3.5 Quick reference 

	3.4. Metadata handling  
	3.4.1 What is metadata in ReproPhylo? 
	3.4.2 Modifying the metadata 
	3.4.3 Quick reference 

	3.5. Pre alignment filtering 
	3.5.1 Filtering by sequence length or GC content 
	3.5.2 Excluding and including 
	3.5.3 Quick reference 

	3.6 Producing and accessing sequence alignment 
	3.6.1 Configuring a sequence alignment process 
	3.6.2 Executing sequence alignment processes 
	3.6.3 Accessing sequence alignments 
	3.6.4 Quick reference 

	3.7 Alignment trimming 
	3.7.1 Configuring an alignment trimming process 
	3.7.2 Executing the alignment trimming process 
	3.7.3 Accessing trimmed sequence alignments 
	3.7.4 Quick reference 

	3.8 Building a supermatrix 
	3.8.1 Sorting out the metadata 
	3.8.2 Designing the supermatrix 
	3.8.3 Building the supermatrix 
	3.8.4 Quick reference 

	3.9 Reconstructing trees 
	3.9.1 Using RAxML 
	3.9.2 Using Phylobayes 
	3.9.3 Executing the tree reconstructions and accessing trees 
	3.9.4 Quick reference 

	3.10 Tree annotation and report 
	3.10.1 Updating the metadata after the tree has been built 
	3.10.2 Configuring and writing a tree figure 
	3.10.3 Archive the analysis as a zip file 


	4 Git and Pickle integration in ReproPhylo 
	4.1 The long version 
	4.1.1 Start a Project, read data, do alignment, show Git log 
	4.1.2 Revert to older Project version 
	4.1.3 Recovering from unintentional changes 

	4.2 Possible error messages 
	4.2 The short version 

	5. Jupyter notebooks with use cases 
	6. Tools in ReproPhylo 
	7. ReproPhylo module index 
	7.1. The Locus object 
	7.1.1. Locus 
	7.1.2. Locus methods 

	7.2. The Concatenation object 
	7.2.1. Concatenation 
	7.2.2. Concatenation methods 
	7.2.3. The Project object 

	7.3. Project 
	7.3.1. Project methods 
	 
	 
	 
	 
	 

	 

	7.4. ReproPhylo functions meant to be used directly 
	7.5. The AlnConf object  
	5.5.1. AlnConf 
	5.5.2. AlnConf methods 
	5.5.3. AlnConf preliminaries 

	7.6. The TrimalConf object 
	5.6.1. TrimalConf 
	5.6.2. TrimalConf methods 
	5.6.3. TrimalConf preliminaries 

	5.7. The RaxmlConf object 
	5.7.1. RaxmlConf 
	5.7.2. RaxmlConf methods 
	5.7.3. RaxmlConf preliminaries 

	78. Undocumented functions 

	 
	 
	8. A Galaxy workflow - Iguaninae data 
	8.1. Getting ReproPhylo in Galaxy 
	8.2. Getting data from GenBank 

	Selection_016.png 
	Selection_017.png 
	8.3. Uploading your data to Galaxy 

	Selection_020.png 
	8.4. Explore and choose the loci to analyse 
	8.5. Start a Project with the selected loci and the relevant records from the genbank files 
	8.6. Explore the available metadata from the genbank file. 
	8.7. Add additional information of our own 
	8.8. Run a fixed phylogenetic pipeline 
	8.9. Annotate the resulting trees using the metadata 
	8.10. Archive the results 
	8.11. Tools not covered by this use case 
	8.12. Export your history 
	8.13. Save and edit a workflow 

	9. FAQ 
	9.1. Where can I get ReproPhylo? 
	9.2. How can I cite ReproPhylo? 
	9.3. I have found an error in the code or manual 
	9.4. I would like [my favourite feature] included 

	10. Program References 
	11. Contact 

