
\CSC 130 Fall 2017 | Sprint 1 Quiz Review Sheet

Implementing a method

An increasing number of problems in our course will involve implementing a method. You will be given a method header, a description of the parameters,
and a description of what the method should do. This is similar to what you would be given when asked to create objects and call methods of an unfamiliar
class by looking at the class’ API documentation. The difference is that you will provide the code details that makes the method work properly.

Take for example the description and method header below.

 // Given a radius and height of a cylinder (both using the same units)

 // compute and return the volume of the cylinder (in the same units as radius and height)

 public double getVolume(int radius, int height)

You should be able to identify specific components of the header:

●​ double indicates the return type. Your code needs to return a double value (a floating-point number)
●​ getArea is the name of the method
●​ int radius and int height are the parameters (their data types and names). These are variables that you will use in writing your code and their

specific values will be provided elsewhere in code where the method is being called.

To solve the problem, you need to fill in the code details to accomplish the goal of the method.

 // Given a radius and height of a cylinder (both using the same units)

 // compute and return the volume of the cylinder (in the same units as radius and height)

 public double getVolume(int radius, int height)

 {

 double area = Math.PI * Math.pow(radius, 2);

 double volume = area * height;

 return volume;

 }

Notice how no values were assigned to radius and height. Also note that you don’t know the values of radius and height. These particular details do not
matter for this problem. Instead, you work from the abstract concepts of radius and height. You are certain that there is a radius defined and its value is
stored in the radius parameter variable (and likewise for height). Other code is responsible for putting an actual value in radius. Your job is to now work
with that variable and you don’t need to know its specific value to implement the method.

Continues to next page.

The Math Methods

Java provides a library of frequently-used mathematical functions. Those functions are all documented online, but below are a few examples of usage.

int i = 9;

int j = 5;

int m = Math.max(i, j);

System.out.println(m);

double d = -9.5;

double e = 5.9;

double m = Math.min(d, e);

System.out.println(m);

double d = 9;

double e = 5;

double q = d / e;

int r = (int)(Math.round(q));

System.out.println(q);

System.out.println(r);

double r1 = Math.random();

double r2 = Math.random();

double r3 = Math.random();

System.out.println(r1);

System.out.println(r2);

System.out.println(r3);

9 -9.5 1.8

2

0.1680908690515618

0.6708768746521363

0.7566314428842836

●​ Math.min and Math.max compute the smaller and larger of two values, respectively
●​ Math.round returns a long value which is the closest integer to the double being rounded; you will need to cast to an int if assigning to an int
●​ Math.random returns a random double value greater than or equal to 0 and less than 1.

Continues to next page.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Text Data Type: String

A string is a sequence of text. The String data type is an unusual data type in Java:

●​ String variables are objects with methods that can be called, unlike the int and double data types
●​ String variables can be directly assigned values without the use of the new keyword, unlike most other objects

So String variables act both like objects and like native data types. How can this be? There are 2 main reasons:

1.​ Even though String variables refer to objects, assigning one String to another String actually creates a new String.
2.​ All String methods are accessors; none are mutators. In other words, calling any String method does not change the value of the String but instead

computes something related to the String. To change the value held by a String object, you must assign a new value to it.

Code examples below illustrate these concepts.

String s = "CSC 130";

String t = s;

t = "ISC 111";

System.out.println(s);

System.out.println(t);

String s = " CSC 130";

System.out.println(s);

s.trim();

System.out.println(s);

s.toLowerCase();

System.out.println(s);

String s = " CSC 130";

System.out.println(s);

s = s.trim();

System.out.println(s);

s = s.toLowerCase();

System.out.println(s);

CSC 130

ISC 111

 CSC 130

 CSC 130

 CSC 130

 CSC 130

CSC 130

csc 130

Continues to next page.

Since a String is a sequence of text, each character in a string is identified by an index, its numerical position in the sequence. The concept itself is not tricky,
but the way the sequence is constructed is probably unexpected: the very first character in a string has an index of 0, not 1. Consequently, if a string has 8
characters, then the first character is at index 0 and the last character is at 7, not 8. In general, a string of length n has valid indexes from 0 to (n-1).

There is a long list of String methods, but the main ones you should know are in the String quick reference guide.

Here are some code samples.

String s = "Howdy";

String t = "hiya";

int cst = s.compareTo(t);

int cts = t.compareTo(s);

System.out.println("s to t: " + cst);

System.out.println("t to s: " + cts);

cst = s.compareToIgnoreCase(t);

cts = t.compareToIgnoreCase(s);

System.out.println("s to t: " + cst);

System.out.println("t to s: " + cts);

String s = "Long Live Leo Lambert";

int i = s.indexOf("L");

int i2 = s.indexOf("L", i+1);

int j = s.lastIndexOf("L");

int j2 = s.lastIndexOf("L", j-1);

int k = s.indexOf("E");

System.out.println(i);

System.out.println(i2);

System.out.println(j);

System.out.println(j2);

System.out.println(k);

String s = " YAY! ";

int n = s.length();

System.out.println("<" + s + "> " + n);

s = s.trim();

n = s.length();

System.out.println("<" + s + "> " + n);

s = s.toUpperCase();

System.out.println(s);

s = s.toLowerCase();

System.out.println(s);

s to t: -32

t to s: 32

s to t: 6

t to s: -6

0

5

14

10

-1

< YAY! > 8

<YAY!> 4

YAY!

yay!

One more sample on the next page.

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://drive.google.com/open?id=1ULkf5c5nQrMJc1Hk2TpJufYdiboitu3XOFfCC749Bnw

One More String Example

String s = "Long Live Leo Lambert";

int i = s.indexOf("Leo");

String fullName = s.substring(i);

System.out.println(fullName);

String animal = s.substring(i+4, i+8);

System.out.println(animal);

int n = s.length();

String color = s.substring(i+5, n-1);

System.out.println(color);

Leo Lambert

Lamb

amber

Continues to next page.

Decisions: if, if/else, and if/else if/else

Java provides conditional code structures to execute sections of code only under certain conditions. 6 operators are available for numerical comparison:

Operator Meaning Example #1 Result #1 Example #2 Result #2

== is equal to 2 == 3 false 3 == 3 true

!= is not equal to 2 != 3 true 3 != 3 false

> greater than 2 > 3 false 3 > 3 false

>= greater than or equal to 2 >= 3 false 3 >= 3 true

< less than 2 < 3 true 3 < 3 false

<= less than or equal to 2 <= 3 true 3 <= 3 true

Through use of an if statement, Java uses these operators to make decisions on whether to execute code.

if (2 != 3)

{

 System.out.println("different");

}

if (2 <= 3)

{

 System.out.println("less than or eq");

}

if (2 < 3)

{

 System.out.println("strictly less");

}

if (3 == 3)

{

 System.out.println("same");

}

if (3 >= 3)

{

 System.out.println("grtr than or eq");

}

if (3 > 3)

{

 System.out.println("strictly grtr");

}

different

less than or eq

strictly less

same

grtr than or eq

It is critical to notice that each if statement is independent, so each condition will be tested and if true, each corresponding code block will be executed. If
some code should run in one condition and some other code should run when that condition is not met, if/else should instead be used.

Examples of if/else and if/else if/else:

Scanner in = new Scanner(System.in);

System.out.print("Num: ");

int input = in.nextInt();

System.out.print(input + "is ");

if (input % 2 == 0)

{

 System.out.println("even");

}

else

{

 System.out.println("odd");

}

Scanner in = new Scanner(System.in);

System.out.print("Num: ");

int input = in.nextInt();

if (input < 0)

{

 System.out.println("positive");

}

else if (input > 0)

{

 System.out.println("negative");

}

else

{

 System.out.println("ZippityDooDah");

}

Num: 12

12 is even

Num: 12

positive

Num: -13

-13 is odd

Num: -13

negative

Num: 0

0 is even

Num: 0

ZippityDooDah

Continues to next page.

Although not shown in the examples so far, any number of lines of code may appear between the braces that follow an if or else. All legal Java code can
appear in the braces. The only relevant issue to be aware of is that if a variable is created inside of those braces, then that variable will no longer be available
outside of those braces. For example, the following code will not compile.

Scanner in = new Scanner(System.in);

System.out.print("Num: ");

int input = in.nextInt();

if (input > 0)

{

 int n = 1;

}

else if (input < 0)

{

 int n = -1;

}

else

{

 n = 0;

}

System.out.print(n);

The code should instead be written this way.

Scanner in = new Scanner(System.in);

System.out.print("Num: ");

int input = in.nextInt();

int n = 0;

if (input > 0)

{

 n = 1;

}

else if (input < 0)

{

 n = -1;

}

System.out.print(n);

boolean Data Type

In Java, a boolean variable has one of 2 values: true or false. A boolean value must appear in the parentheses of an if statement (in other words, whatever is
inside the parentheses must be something that is true or false). This actually allows for a number of ways to write if statements. Each of these pieces of code
work the same way:

System.out.print("Num: ");

int n = in.nextInt();

if (n < 0)

{

 System.out.println("Neg");

}

else if (n > 0)

{

 System.out.println("Pos");

}

else

{

 System.out.println("Zero");

}

System.out.print("Num: ");

int n = in.nextInt();

boolean neg = (n < 0);

boolean pos = (n > 0);

if (neg)

{

 System.out.println("Neg");

}

else if (pos)

{

 System.out.println("Pos");

}

else

{

 System.out.println("Zero");

}

Num: 435

Pos

Num: 435

Pos

Boolean Operators

Much like numbers can be manipulated with addition, subtraction, multiplication, and division, boolean values can be manipulated with three major
operators. Suppose that b1 and b2 are two boolean variables.

●​ b1 && b2 results in the value true when b1 and b2 are each true, but otherwise results in false
●​ b1 || b2 results in the value true when b1 or b2 are true (or both are true), but otherwise results in false
●​ !b1 results in the opposite of b1 (and the ! symbol is read out loud as not)

Also much like numerical operators, there is an order of operations that can be overridden with parentheses. With numbers, multiplication will happen
before addition. With boolean values, ! happens first, then && happens, then || happens. A few quick examples:

boolean a = false;

boolean b = true;

boolean c = true;

boolean d = a && b || c;

System.out.println(d);

boolean a = false;

boolean b = true;

boolean c = true;

boolean d = a && (b || c);

System.out.println(d);

boolean a = false;

boolean b = true;

boolean d = !a || b;

System.out.println(d);

boolean a = false;

boolean b = true;

boolean d = !(a || b);

System.out.println(d);

true false true false

a && b is false

c is true

false || true is true

b || c is true

a is false

false && true is false

!a is true

b is true

true || true is true

a || b is true

!true is false

Continues to next page.

Boolean operators are frequently used in conditional statements. Be careful about differences in successive ifs and collections of if/else if/else if/.../else.

System.out.print("Num: ");

int n = in.nextInt();

if (n % 2 == 0 && n > 0)

{

 System.out.println("Even and Positive");

}

if (n % 2 == 0)

{

 System.out.println("Just Even");

}

if (n > 0)

{

 System.out.println("Just Positive");

}

else

{

 System.out.println("Neither Even nor Positive");

}

System.out.print("Num: ");

int n = in.nextInt();

if (n % 2 == 0 && n > 0)

{

 System.out.println("Even and Positive");

}

else if (n % 2 == 0)

{

 System.out.println("Just Even");

}

else if (n > 0)

{

 System.out.println("Just Positive");

}

else

{

 System.out.println("Neither Even nor Positive");

}

Num: -6

Just Even

Neither Even nor Positive

Num: -6

Just Even

Num: 12

Even and Positive

Just Even

Just Positive

Num: 12

Even and Positive

Continues to next page.

boolean Methods

Since a boolean is a standard data type, you can create methods that return boolean methods. Many String methods, such as contains and equals return
boolean values. Writing a boolean method can sometimes look a little unusual, especially in the return statement. But as long as the thing you are returning
is a true or false value, then it’s valid.

// determines if i + j is even

public boolean isSumEven(int i, int j)

{

 int sum = i + j;

 return (sum % 2 == 0);

}

// determines if s starts and ends with vowel

public boolean hasMirrorVowel(String s)

{

 int len = s.length();

 if (len == 0)

 {

 return false;

 }

 String a = s.substring(0, 1);

 String b = s.substring(len-1);

 String vowels = "AEIOUaeiou";

 return a.equals(b) && vowels.contains(a);

}

Continues to next page.

Nesting Conditional Statements

You may place conditional statements inside of other conditional statements. For example these produce identical results:

System.out.print("Num: ");

int n = in.nextInt();

if (n % 2 == 0 && n > 0)

{

 System.out.println("Even and Positive");

}

else if (n % 2 == 0 || n > 0)

{

 System.out.println("Even or Positive, but not both");

}

else

{

 System.out.println("Neither Even nor Positive");

}

System.out.print("Num: ");

int n = in.nextInt();

if (n % 2 == 0 || n > 0)

{

 if (n % 2 == 0 && n > 0)

 {

 System.out.println("Even and Positive");

 }

 else

 {

 System.out.println("Even or Positive, but not both");

 }

}

else

{

 System.out.println("Neither Even nor Positive");

}

Num: -6

Even or Positive, but not both

Num: -6

Even or Positive, but not both

Num: 12

Even and Positive

Num: 12

Even and Positive

