Data Analysis In-Class Worksheet #10: Regression 2 of 2

Does the number of clicks (CLICKS) predict the number of stars (STAR) in ratings?

To answer this question, we can rephrase it as a pair of hypotheses:

H₀: Number of clicks **does not** predict number of stars (no linear relationship)

H₁: Number of clicks **does** predict number of stars (there is a linear relationship).

Express these hypotheses in terms of the regression β_1 slope

 $H_0: \beta_1=0$

 H_1 : $β_1$ ≠0

For H_0 : $\hat{Y} = \beta_0$

For H_1 : $\hat{Y} = \beta_0 + \beta_1 * \text{Clicks } (\beta_1 \neq 0)$

Assume the sample size is 101, and the variance of the STAR variable is 2.

Calculate the Sum of Squares Total (SST) = $(n-1)\cdot Var_{STAR} = (101-1)^2 = 100^2 = 200$

What is the Degrees of Freedom Total (DFT)? N-1 = 101-1=100

Assume that the Sum of Squares Residual (SSR) is 120.

Calculate the Sum of Squares Model (SSM) = SST-SSR= 200-120=80

What is the Degrees of Freedom Model (DFM)? No of predictors= 1

Calculate Mean Squares Model (MSM) = SSM/DFM=80/1=80

What is the Degrees of Freedom Residual (DFR)? n-2=101-2=99

Calculate Mean Squares Residual (MSR) = SSR/DFR= 120/99=1.212

Calculate the F ratio = $\frac{MSM}{MSR}$ = $\frac{80/1.212=66}{1.212=66}$

Use Google Sheets to determine the p-value of this F ratio

What Google Sheets formula did you use? F.DIST.RT(66, 1, 99) p<0.001

Calculate R² using SSM & SST= SSM/SST= 80/200=0.4

So the correlation between CLICK and STAR is sqrt(R)=0.632

Calculate Adjusted $R^2 = 1 - ((1-R^2)^*((n-np-1)/(n-1))) = 1 - (0.6^*(100/99)) = 0.394$

APA Writeup

Regression analysis was used to test if Clicks significantly predicted Stars. Results indicated that the predictor explained 40% of the variance (Adjusted $R^2 = _0.394$,)

$$F(_1_, _99_) = _66_, p_<0.001_.$$