تمارين درس المعايرات المباشرة

. تمرين 1: نحضر محلول مائى (S_1) بإذابة كتلة m من كبريتات الحديد II في نصف لتر من الماء الخالص

نأخذ V_1 =40mL من المحلول V_1)مع بعض قطرات من حمض الكبريتيك ثم نضيف إليه تدريجيا محلول مائي V_1 الثنائي كرومات البوتاسيوم

التي تختزل إلى $C_2 = 5.10^{-2} \text{mol.L}^{-1}$ تركيزه $C_2 = 5.10^{-2} \text{mol.L}^{-1}$ الذي يتميز باللون البرتقالي المميز لأيونات التي تختزل إلى

أيونات الكروم $Cr^{3+}_{(aq)}$. و عند صب 14 من المحلول (S_2) ينتهي اختفاء اللون البرتقالي .

1. ارسم التركيب التجريبي المستعمل لإنجاز هذه المعايرة, محددا أسماء الأدوات المستعملة و مشيرا إلى المتفاعل المعاير و المتفاعل المعاير .

2. أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعلُ ؟ و حدد المزدوجتين المتفاعلتين .

 $M(S) = 32.1g.mol^{-1}$ $M(O) = 16g.mol^{-1}$

3. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة؟

 $M(Fe) = 55.8g.mol^{-1}$

4. أنشئ الجدول الوصفى لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

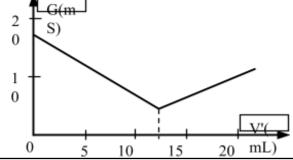
 C_1 التركيز المولى للمحلول S_1) و حدد قيمة C_1

 $V=100 \mathrm{mL}$ تمرين 2 . لتحديد التركيز المولي C_0 لحمض الكلوريدريك , نخفف هذه الأخير 00 مرة , فنحصل على محلول 0 . نعاير حجما مِن المحلولِS بواسطة محلول الصودا تركيزه المولي 1-C'=9,6.10-2mól.L و ذلك بقياس مواصلة الخليط بعد كل إضافة . فنحصل على

حدد المتفاعل المعاير و المتفاعل المعاير .

2. أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعل ؟

3. ما المزدوجتان المتفاعلتان ؟


4. علل كيفيا تطور المواصلة

5. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة؟

ما طبيعة الخليط عند التكافؤ

7. أنشئ الجدول الوصفى لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

 C_0 احسب التركيز C للمحلول S_{+} و استنتج التركيز C_{0}

تمرين 4: نحضر محلول مائي (S_1) بإذابة كتلة m=36g من ثنائي كرومات البوتاسيوم $(2K^+ + Cr_2O_{7(aq)}^{2-})$ في لترين من الماء الخالص

 $m V_1=25mL$ فند محلول مائي (S_1) محمض و نعاير به $V_2=10mL$ من المحلول (S_2) للماء الأوكسيجيني ناخذ محلول مائي وعند صب

المحلول (S_1) ينتهي اختفاء اللون البرتقالي . 1. ارسم التركيب التجريبي المستعمل لإنجاز هذه المعايرة , محددا أسماء الأدوات المستعملة و مشيرا إلى المتفاعل المعاير و المتفاعل المعاير .

 $Cr_2O_7^{2-}{}_{(aq)}/Cr^{3+}{}_{(aq)}$ و $O_{2(aq)}/H_2O_{2(aq)}$: خلال هذه المعايرة يحدث تفاعل كيميائي تتدخل فيه المزدوجتان $O_{2(aq)}/H_2O_{2(aq)}$ أكتب نصف معادلة أكسدة و اختزال المقرونة بكل مزدوجة, و استنتج معادلة تفاعل المعايرة.

3. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة؟

 (S_1) التركيز المولي للمحلول ((S_1)).

5. أنشئ الجدول الوصفى لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .

 $M(K_2CrO_7) = 242,2g.mol^{-1}$: نعطی (S_2) استنتج التركيز المولى للمحلول (S_2) .

تمرین C_1 نصع حجما (S_1) تنائي کرومات البوتاسیوم البوتاسیوم (S_1) ترکیزه S_1 ترکیزه البوتاسیوم خجما نركيزه $V_1 = 20cm^3$ من هذا المحلول في كاس, ثم نضيف إليه حجما $V_2 = 50cm^3$ من محلول مائي $V_1 = 20cm^3$ بعد نهاية التفاعل نعاير أيونات الحديد Π المتبقية, و ذلك باستعمال محلول مائي (S_3) لبرمنغنات البوتاسيوم, تركيزه $C_2=2.10^{-1}mol.L^{-1}$. (S_3) من المحلول $V_3 = 28cm^3$ من المحلول وجب صب $V_3 = 28cm^3$ من المحلول وجب صب $C_3 = 2.10^{-2} \, mol. L^{-1}$

1. أكتب المعادلة الحصيلة لكل من التفاعلين الحاصلين.

2. حدد تعبير C_1 , ثم احسب قيمته.

نعاير حجما $V_b=10m$ من محلول مائي لهيدروكسيد الصوديوم تركيزه المولي واسطة محلول مائي لحمض الكلوريدريك

تركيزه $_{_{3}}^{}$ و ذلك بقياس مواصلة الخليط بعد كل إضافة و ذلك باستعمال مقياس للمواصلة ثابتة خليته $k=10^{-2}m^{-1}$ فنحصل على المنحنى التالى:

حدد المتفاعل المعاير و المتفاعل المعاير .

2. أكتب معادلة تفاعل هذه المعايرة . و ما نوع هذا التفاعل ؟

3. ما المزدوجتان المتفاعلتان ؟

4. علل كيفيا تطور المواصلة.

5. كيف يمكنك معرفة حدوث حالة التكافؤ أثناء هذه المعايرة ؟ 6. ما طبيعة الخليط عند التكافؤ

G(mS)

7. أنشئ الجدول الوصفي لتطور التفاعل و أثبت علاقة التكافؤ لهذه المعايرة .					
				. ($egin{aligned} C_a & C_b \end{aligned}$. و استنتج قيمة . C_b
9 أجرد أنواع الأيونات المتواجدة في الخليط عند التكافؤ و احسب تراكيز ها					
	$C \mathbb{Z}^-$	H_3O^+	HO^-	Na ⁺	الأيون
	7,63	35	19,9	5,01	$\lambda(mS.m^2.mol^{-1})$

Www.AdrarPhysic.Com