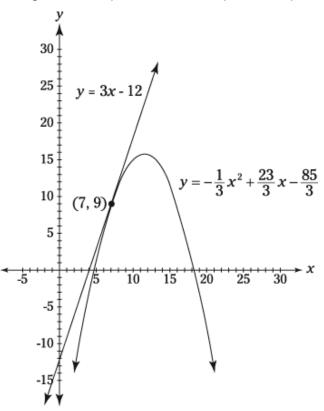
Warm Up:

Find the derivative of each:

1
$$3x^2 - x\sqrt{x}$$

$$\frac{5}{x^2\sqrt{x}}$$


h
$$2x - \frac{3}{x\sqrt{x}}$$

Tangent and Normal Lines

- * A tangent to a curve is a line that _____ the curve without _____ over.
- * A normal to a curve is a line that is ______ to the tangent line.
- * When lines are perpendicular, the slopes are ______ __________

Below is a graph of a quadratic function with the equation given.

At the point (7,9), there is a tangent line. The slope of this tangent line represents the slope of the parabola at that point.

- a) Find the slope at x = 7.
- b) Find the equations of the tangent and normal lines at x = 7.

$$f(x) = (x-2)(x^2 - x - 11)$$

Find the equations of all horizontal tangent lines to the given curve.

Write an equation for each line.

- **a** The tangent line to the curve $f(x) = x^2 + 1$ at the point (1,2)
- **b** The normal line to the curve $f(x) = 2\sqrt{x}$ when x = 9
- **c** The tangent and normal lines to the curve $f(x) = x + \frac{27}{2x^2}$ when x = 3
- **d** The tangent to $f(x) = x^3 3x^2 13x + 15$ that is parallel to the tangent at (4, -21)