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Q1. What are you trying to do? Articulate your 
objectives using absolutely no jargon. 
We propose a new abstraction that combines multiple Apache Spark transformations into a 
single declarative dataflow graph, to simplify the development and management of data 
pipelines. This approach extends Spark's lazy, declarative execution model beyond single 
queries, to pipelines that keep multiple datasets up to date. It supports a shift in development 
from imperative coding ('how' to execute) to declarative specification ('what' needs to exist), 
reducing cognitive overhead and manual orchestration of dependencies. 
 
One of Apache Spark’s most common use cases is building data pipelines: sets of connected 
data flows that derive downstream datasets from upstream source data. Today, developing data 
pipelines is difficult and error-prone. Pipeline developers share a common set of challenges 
around ordering execution of data flows, catching boundary issues, and executing pipelines 
efficiently. 
 
Fig: example pipeline 

 
 
The Declarative Pipelines framework for Apache Spark will address these challenges by 
enabling users to build data pipelines by using familiar Spark SQL & DataFrame APIs within a 
declarative framework. Inspired by frameworks like dbt, SQLMesh, Flink Tables, and DLT, it will 
include APIs that allow defining a full graph of tables and data flows prior to launching any 

https://github.com/dbt-labs/dbt-core
https://sqlmesh.com/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/table/intro_to_table_api/
https://docs.databricks.com/aws/en/dlt/


execution. Understanding the dataflow graph ahead of execution enables efficient parallel 
execution and catching bugs early. 
 
We will provide the framework across Spark’s supported languages, including Python, SQL, and 
Scala/Java. In addition to the public API, we will provide a pipeline runner for parallel dataflow 
graph execution. 

Q2. What problem is this proposal NOT designed to 
solve? 
Declarative Pipelines is not intended to replace general-purpose orchestration tools like Airflow, 
Dagster, or Prefect: it won’t include general-purpose orchestration features like scheduling or 
history-tracking. Rather, Declarative Pipelines will be able to be embedded as tasks inside 
general-purpose orchestration DAGs. 

Q3. How is it done today, and what are the limits of 
current practice? 
Today, users ingest data from disparate sources and perform a series of transformations 
between intermediary storage layers before sending the results to their final destinations. Those 
sources and destinations include message buses, cloud storage, data lakes, data warehouses, 
databases, monitoring tools, and more. 
 
These multi-step pipelines introduce complexity that has to be managed outside of each 
individual flow. Common challenges include: 

●​ Updating tables in the right order – if a step in a data pipeline reads data from a table 
before another step has a chance to update it, it’s easy for downstream data to end up 
stale and out-of-sync in unexpected ways. Manually managing execution dependencies 
is tedious and error-prone. 

●​ Handling parallelism, while respecting data dependencies, across multiple queries. 
Steps in a pipeline are often executed sequentially, even when they don’t have data 
dependencies, because it’s easier to implement. This results in higher end-to-end 
latency and lower resource utilization. 

●​ Quickly identifying errors at the boundaries between data processing steps, such as a 
downstream transformation expecting columns that don’t exist in an upstream table. 

 



Python

Q4. What is new in your approach and why do you 
think it will be successful? 

Q4a. What is new in your approach? 

Developing data pipelines 
The Declarative Pipelines API will enable users to develop pipelines that describe their data 
processing graph end-to-end. 
 
The proposed APIs are based on Databricks DLT APIs, which have been battle-tested through 
several iterations of user feedback and revision. While DLT is tied to the Delta table format and 
a restricted set of data catalogs, the Spark Declarative Pipelines proposal generalizes to all the 
data formats and catalogs that Spark supports. Some strategies for incremental computation will 
depend on features that are only available in table formats, like Iceberg, Delta, and Hudi. These 
features will be accessed through Spark’s data source APIs, and will not favor or be tied to any 
particular format. 
 
A declarative pipeline is composed of declarations of flows, tables, materialized views, and 
external sinks. 
 

●​ A flow is a data processing step: each flow is responsible for updating the contents of a 
particular object in persistent storage, like a table. Except in the cases where multiple 
flows target a single object, flows are typically defined in the same statement that defines 
the object they target. 

●​ A materialized view is an object containing the results of a query in physical storage. 
From the perspective of the Pipelines framework, a materialized view is a combination of 
a storage location and a “batch” flow that, when executed, updates the data inside the 
storage location to contain the results of the query. 

●​ A streaming table is a combination of a table and a flow that appends to that table by 
processing source data one record at a time. 

●​ An external sink is a generic target for a flow to send data that is external to the 
pipeline. Because sinks are external to the pipeline, we can’t always provide the 
idempotency semantics that we can with streaming tables and materialized views. 

 
Below is an example of a pipeline that uses the Pipelines Python API to transform raw 
clickstream data into top page referrers. It defines a streaming table that holds the clickstream 
data, as well as several materialized views built on top of it. 
 

from pyspark import pipelines 

https://docs.databricks.com/aws/en/dlt/language-references


 
# Defines a streaming table, i.e. a table targeted by a flow that reads data 
from a  
# stream 
@pipelines.table(comment="The raw wikipedia clickstream dataset.") 
def clickstream(): 
    return spark.readStream.format("json").load("clickstream.json") 
 
# Defines a materialized view that reads data from the clickstream table above 
@pipelines.materialized_view() 
def top_spark_internal_referrers(): 
    return spark.read.table("clickstream") \ 
      .filter(expr("current_page_title == 'Apache_Spark'")) \ 
      .filter(expr("type == 'Link'")) \ 
      .sort(desc("click_count")) \ 
      .select("referrer", "click_count") \ 
      .limit(10) 
 
# Defines a materialized view that reads data from the clickstream table above. 
# Because the query that defines this materialized view doesn't depend on the  
# top_spark_internal_referrers materialized view, the framework can execute 
their 
# queries in parallel. 
@pipelines.materialized_view() 
def top_spark_external_referrers(): 
    return spark.read.table("clickstream") \ 
      .filter(expr("current_page_title == 'Apache_Spark'")) \ 
      .filter(expr("type == 'External'")) \ 
      .sort(desc("click_count")) \ 
      .select("referrer", "click_count") \ 
      .limit(10) 
 
# Defines a materialized view that reads data from both of the materialized 
views above. 
@pipelines.materialized_view( 
  name="main_catalog.gold.top_spark_referrers" 
  comment="A materialized view containing the top pages linking to the Apache 
Spark page." 
) 
def top_spark_referrers(): 
    top_internal = spark.read.table("top_spark_internal_referrers") \ 
        .withColumn("type", lit("Internal")) 
    top_external = spark.read.table("top_spark_external_referrers") \ 
        .withColumn("type", lit("External")) 



None

    return top_internal.union(top_external) 

 
This pipeline is represented in the following diagram, in which tables and materialized views are 
colored green and flows are colored yellow: 

 
 
 
Below is an example that uses SQL to define the same pipeline: 
 

 
CREATE OR REPLACE STREAMING TABLE clickstream AS SELECT * FROM 
json.`clickstream.json`; 
 
 
CREATE OR REPLACE MATERIALIZED VIEW top_spark_internal_referrers AS 
SELECT referrer, click_count 
FROM clickstream 
WHERE current_page_title = 'Apache_Spark' AND type = 'Link' 
ORDER BY click_count DESC 
LIMIT 10; 
 
 
CREATE OR REPLACE MATERIALIZED VIEW top_spark_external_referrers AS 
SELECT referrer, click_count 
FROM clickstream 
WHERE current_page_title = 'Apache_Spark' AND type = 'External' 
ORDER BY click_count DESC 
LIMIT 10; 
 
 
CREATE OR REPLACE MATERIALIZED VIEW main_catalog.gold.top_spark_referrers AS 
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SELECT referrer, click_count, 'Internal' AS type FROM 
top_spark_internal_referrers 
UNION ALL 
SELECT referrer, click_count, 'External' AS type FROM 
top_spark_external_referrers; 

 
Below is an example pipeline that uses an append flow and sink, but no internal datasets: 

from pyspark import pipelines 
 
# example sink representing an Apache Kafka topic 
pipelines.create_sink( 
    format="kafka", 
    name="myKafkaTopic", 
    topic="topic1", 
    options={ 
        "kafka.bootstrap.servers": "host1:port1,host2:port2", 
        "kafka.security.protocol": "SASL_SSL", 
    } 
) 
 
# example flow targeting the kafka sink 
@pipelines.append_flow( 
    target="myKafkaTopic", 
    name="flow1", # optional, defaults to function name 
)  
def appendKafkaFlow(): 
  return spark.readStream.format("delta").table("catalog.schema.table") 

 

Executing data pipelines  
There can be two modes for executing pipelines: 

●​ Triggered mode: all streaming flows are executed to process the data that’s available at 
the start of the update, and all materialized views are updated to reflect the latest results 
of their query. 

●​ Continuous mode: streaming flows are run to continuously process incoming data. 
Materialized views are updated at regular intervals when their inputs change. 

 
We will add a new spark-pipelines CLI, built on top of spark-submit, which assembles 
and executes a pipeline. An example usage: 



None

None

 

./bin/spark-pipelines run \ 
  --pipeline-conf my_pipeline.yaml 

 
As with spark-submit, these arguments will be able to be included in config files so they don’t 
need to be included on the command line every time. The command references a configuration 
file that defines the set of source files that declare the flows that compose the pipeline: 
 

name: my_pipeline 
schema: my_schema 
catalog: my_catalog 
configuration: 
  spark.sql.shuffle.partitions: "1000" 
libraries: 
  - file: 
      path: /my/path/clean_up.py 
  - file: 
      path: /my/path/pre-aggregate.sql 

Q4b. Why do you think it will be successful? 
The Declarative Pipelines API and framework help address the challenges mentioned in 
question two in the following ways: 
 

Challenge How declarative pipelines helps 

Updating tables in the right order Automatically analyzes data dependencies to 
determine execution order 

Handling parallelism Automatically executes updates in parallel when 
they don’t have data dependencies 

Quickly identifying errors at the boundaries 
between data processing steps 

Automatically analyzes the entire graph before 
execution to find cycles, schema 
incompatibilities, and other inconsistencies. 
 
E.g., in the example above, if the query that 
defines the top_spark_internal_referrers 
materialized view depends on a column that’s 
not produced by the query that creates the 
clickstream table, the framework can surface this 



before executing either query. 

 

Q5. Who cares? If you are successful, what 
difference will it make? 
One of Spark’s most common use cases is building data pipelines. Providing a first-party 
declarative pipelines API will dramatically simplify this use case for Spark developers. It will also 
make building data pipelines with Spark accessible to a wider audience: e.g. developers who 
are primarily familiar with writing data transformations using SQL will be able to use Spark to 
write performant data pipelines. 

Q6. What are the risks? 
Maximizing pipeline flow execution efficiency requires taking advantage of incremental data 
processing, which relies on an understanding of the changes in the underlying tables. The 
current Data Source v2 API only has limited support for this, so expanding the Data Source V2 
API to expose more of the capabilities of table formats like Iceberg/Delta/Hudi will be required to 
take full advantage of the pipeline model. 

Q7. How long will it take? 
The expected timeframe for implementing the new APIs and a basic pipeline runner is three 
months. The full functionality described at a high-level in this document will take six to twelve 
months.  

Q8. What are the mid-term and final “exams” to 
check for success? 

●​ Mid-term: new Pipelines APIs are all implemented, but function as no-ops. 
●​ Final: pipeline runner that can execute the flows in the pipeline in parallel, respecting 

data dependencies. 
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