Presenting Credentials on the Web

Editor: Simone Onofri
Status: Editor’s Draft

Introduction

Verifiable Digital Credentials can be presented to a mobile wallet or website using different
methods. As an example, it is possible to use what happens in the browser.

The user interacts with a wallet to consent to share information with the Verifier. How does the
browser hand-control the wallet for credential selection?

' . [ ]
- . Verifier
Holder (User) . Receives and verifies P ions

Acaquires, stores, presents Credentials

" - 7~ \ - I Theuserclicks the link to submit (—\

. their presentation to access a resource

< - Pr

. = 2.The website requests the

. — < presentation of a credential.

. . X 5. Credential
3. Credential Browser . 4.The browsef sends the presentation Website Verification
Selection & . of the credential Do (another flow)
Presentation . 6.The websites grants/denies
preparation < the access to the resource
(another flow)

g . g

The three main approaches described in EUDI ARF: QR code scan, a custom URL
scheme/app link, or a Browser API (also known as Digital Credentials API).

Each method has trade-offs in security & privacy, usability, and implementation. Below is a
comparison of these methods across dimensions such as Security and Privacy, Usability, and
Implementation.

Concerning trust, the holder generally trusts their software (OS, Wallet, Browser) and their
hardware (Desktop, Mobile).

Approaches

Before considering the model based on Wallet, it is worth describing how the base case works.
With the user entering his or her data via input type text, files (e.g., ' scanned documents) to be
verified are normally analyzed by other people or - in the specific case of KYC/AML - by
third-party companies that may also use Al systems.



In the specific context of identifying a user in a governmental setting, it is often used as a means
of centralized or federated authentication.

This corresponds to the base case, so to “do nothing”, and also the default option that should
be present as an alternative to presenting credentials.

Custom URLs Scheme:

A website link or redirect (like ageverification://authorize?client id) that
opens the wallet app on the user’s phone. The wallet processes any request parameters and
may return the user to the browser upon completion or using a side channel.

From the Apple website 2 URL schemes offer a potential attack vector into your app, so make
sure to validate all URL parameters and discard any malformed URLs. In addition, limit the
available actions to those that don’t risk the user’s data. For example, don'’t allow other apps to
directly delete content or access sensitive information about the user.

From the EUDI ARF?: relying on custom URI schemes or universal links introduces variability in
User experiences across different browsers and operating systems, resulting in operational
inefficiencies and potential security risks.

Threats/Attacks*°¢”

e Scheme Hijacking: Another app can register the same scheme, intercepting calls or
stealing data.

e Phishing / Origin Confusion: The wallet often cannot confirm which site triggered it;
malicious or untrusted sites can initiate requests.

e Data Interception: If sensitive info is passed back via a URL, other apps could log or
intercept it.

' https://github.com/WICG/digital-credentials/blob/main/custom-schemes.md
2 https://developer.apple.com/documentation/xcode/defining-a-custom-url-scheme-for-your-app

3

https://eu-digital-identity-wallet.qgithub.io/eudi-doc-architecture-and-reference-framework/latest/architectur

e-and-reference-framework-main/
4

https://www.vaadata.com/blog/what-are-deep-links-vulnerabilities-attacks-and-security-best-prac
tices/

5 https://securityaffairs.com/88469/hacking/ios-url-scheme-flaw.html
8 https://docs.ostorlab.co/kb/IPA URL SCHEME HIJACKING/index.html
7

https://developers.googleblog.com/en/improving-user-safety-in-oauth-flows-through-new-oauth-

m-uri-scheme-restriction



https://developers.googleblog.com/en/improving-user-safety-in-oauth-flows-through-new-oauth-custom-uri-scheme-restrictions/
https://developers.googleblog.com/en/improving-user-safety-in-oauth-flows-through-new-oauth-custom-uri-scheme-restrictions/
https://docs.ostorlab.co/kb/IPA_URL_SCHEME_HIJACKING/index.html#:~:text=A%20malicious%20application%20can%20register,OAuth%20authorization%20codes%20or%20tokens
https://securityaffairs.com/88469/hacking/ios-url-scheme-flaw.html
https://www.vaadata.com/blog/what-are-deep-links-vulnerabilities-attacks-and-security-best-practices/
https://www.vaadata.com/blog/what-are-deep-links-vulnerabilities-attacks-and-security-best-practices/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/latest/architecture-and-reference-framework-main/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/latest/architecture-and-reference-framework-main/
https://developer.apple.com/documentation/xcode/defining-a-custom-url-scheme-for-your-app
https://github.com/WICG/digital-credentials/blob/main/custom-schemes.md

QR Code Scan/app link

The website displays a QR code (on the same or a separate screen); the user opens their
wallet and scans it.

In general, QR Codes suffer from a structural problem: they are Machine Readable and not
Human Readable, therefore it is difficult for the user to understand if it is a malicious request.

Threats/Attacks®®

e Fake/Tampered QR: Attackers can replace or alter QR codes to point to malicious
servers (“quishing”).

e Man-in-the-Middle (QRLjacking): Attackers might scan or clone the code before the
rightful user, and hijack the session.

e Data Leakage: Private details could be overexposed if the protocol or wallet app shares
full ID info or fails to limit data.

Browser API

A standardized web API that lets the website request Verifiable Digital Credentials directly
through the browser. The browser mediates this request, requiring user consent, and
coordinates with the OS/wallet IPC to only share approved data.

One of the main threats is related to the fact that the browser can observe the credential
request. Given that this is similar to the Threat Model of what we enter as payment information,
a password or an email as input type text or password (which the browser can easily
understand what it is), as well as WebAuthn or a Secure Payments Confirmation. It can be
controlled and balanced by defining, on the one hand, the data visible to the browser by the API
(e.g., by encrypting it) and, on the other hand, using a side channel.

Threats/Attacks

e Phishing/Harvesting: Malicious websites could request credentials. Mitigations: The
browser shows the requesting domain, requires explicit user approval, and ensures safe
browsing.

e Reply Attack: Where valid digital credential messages are maliciously captured and
retransmitted to authenticate or authorize actions fraudulently.

e API Abuse: Potential spamming or misuse of the credential prompt. Mitigations: The
browser enforces user interaction and can limit repeated prompts.

8
https://www.vubico.com/blog/gr-codes-within-enterprise-security-key-considerations-and-best-pr
actices/

® https://www.cyber.gc.ca/en/guidance/security-considerations-qgr-codes-itsap00141



https://www.cyber.gc.ca/en/guidance/security-considerations-qr-codes-itsap00141
https://www.yubico.com/blog/qr-codes-within-enterprise-security-key-considerations-and-best-practices/
https://www.yubico.com/blog/qr-codes-within-enterprise-security-key-considerations-and-best-practices/

e Session Hijacking: Attackers might try to replay or intercept credential responses.
Mitigations: Use nonces, one-time tokens, and TLS to prevent reuse or interception.

e Man-in-the-Middle: Credential data could be spied on in transit. Mitigations: Use
end-to-end encryption (TLS/SSL) and cryptographic binding to the relying party.

e Information Leakage: The Browser APl scheme can expose wallet's metadata to the
OS and browsers. Even if the Browser already have access to the information even if
shared using QR Codes and Schemes.

Method Security Usability Implementation
Custom Low: It is Easy to hijack, has no Moderate Potentially quick Easy to implement but full of
URL built-in domain check, and is prone app switch, but can be pitfalls (scheme conflicts, no
Scheme to oversharing. Its origin is also confusing or fail silently. standard).

unclear, and it can easily leak data.

QR Code Moderate. It depends on robust Moderate Great for Moderate Uses standard libraries
cryptographic protocols, and code cross-device; slightly more for QR & OID flows must ensure
tampering is risky. It is user-initiated, | friction on single-device short-lived tokens

but domain transparency depends
on wallet Ul, and there is a risk of
scanning fake codes.

Browser APl | High Browser + OS mediation via High Seamless 1-device flow, | Moderate Requires modern
IPC/other means prevents phishing clear user prompts browser support & wallet
& interception, consent screens, integration.

and origin-binding. Relatively
increases the attack surface.

Considerations

Each method involves trade-offs between security and convenience. The Digital Credentials API
(Browser API) method offers a compelling balance — high security with a reasonable UX; QR
codes provide a device-agnostic, fairly secure alternative that is usable today at the cost of a bit
more user effort; Custom schemes should be phased out due to their security weaknesses™ ",
though they remain an important compatibility option for now.

Concerning the Digital Credential API, which is the newest solution and is still under study, it is
possible to create a trust boundary between the browser and the wallet (therefore exposing a
subset of information related to the request for presentation to the browser), guaranteeing the
privacy of the holder and still taking advantage of the protections offered by the browser.
However, the user agent could be considered a security element (e.g., blocking malicious

10 https://blog.timcappalli.me/p/preso-nistmdl24-dcapi/nistmd|24-dcapi.pdf
" T = . . ;



https://github.com/WICG/digital-credentials/blob/main/explainer.md
https://blog.timcappalli.me/p/preso-nistmdl24-dcapi/nistmdl24-dcapi.pdf

verifiers before the wallet, possibly alerting the user in case of non-privacy-preserving
credentials, limiting the telemetry information collected for the credential).

Two elements must be considered regarding interoperability and freedom: the Default Wallet
must be chosen by the user (avoiding Wallet War™), and the user must be free to choose their
wallet type (i.e. Web, Mobile, Desktop).

Further readings

e Rick Byer’s Credentials consideration'
e High Level Threat model™

Appendices

Appendix A - Requirements

A key aspect when understanding “what we are building” is related, to understanding what are
the assets to be protected (in this case, the user’s data) and what the requirements needs to be
followed and properties needs to be assured

This can be described both by some principles, in particular while designing a web feature but in
general also on presenting credentials on the web, as well as by regulations (as the Digital
Credentials API will be used in eIDAS 2.0) use case are and thus, in this specific case user data
and credentials.

These requirements need to be considered, at the API level, particularly to define limits for the
release of information, some bad patterns that must not be implemented, as in the default
options to be presented to the user to avoid dark patterns, as they are nudges™:

Any aspect of the choice architecture that alters people’s behavior in a predictable way without
forbidding any options or significantly changing their economic incentives.

These nudges can also be used in a positive sense, for example by alerting the user to a
request from a Verifier for a full credential (and not selective disclosure), as well as if the
credential being used uses technologies that call home or release information to the issuer.

12 hitps://github.com/w3c/credential-considerations/blob/main/credentials-considerations.md
3 https://qithub.com/w3c-ca/threat-modeling/blob/main/models/decentralized-identities.md



https://www.behavioraleconomics.com/resources/mini-encyclopedia-of-be/nudge/#:~:text=According%20to%20Thaler%20and%20Sunstein,easy%20and%20cheap%20to%20avoid.
https://github.com/w3c-cg/threat-modeling/blob/main/models/decentralized-identities.md
https://github.com/w3c/credential-considerations/blob/main/credentials-considerations.md

W3C Principles on ldentity and Privacy

Two main W3C Design principles' are “1.4. Ask users for meaningful consent” and “1.5. Use
identity appropriately in context’. Quoting the relevant parts:

Features that use or depend on identifiers and the attachment of data about a person to
that identifier carry privacy risks which often reach beyond a single API or system. This
includes data that has been passively generated (for example, about their behaviour on the
web) as well as that which has been actively collected (for example, they have filled in a
form).

For such features, you should understand the context in which it will be used, including
how it will be used alongside other features of the web. Make sure the user can give
appropriate consent. Design APIs to collect the smallest amount of data necessary. |[...]

In the context of fulfilling a user need, a web page may want to make use of a feature that has
the potential to cause harm. Features that have this potential for harm should be designed such
that people can give meaningful consent for that feature to be used, and that they can
refuse consent effectively.

In order to give meaningful consent, the user must: understand what permission they may
choose whether to grant the web page; be able to choose to give or refuse that
permission effectively.

Relevant W3C Privacy principles'® are Principle 2.1 “A user agent should help its user
present the identity they want in each context they are in, and should prevent or support
recognition as appropriate”, and Principle 2.15.1 “User agents should support people in
choosing which information they provide to actors that request it, up to and including
allowing users to provide arbitrary information”

elDAS 2.0 on privacy requirements

elDAS 2.0 regulation” from which is possible to derive some technical requirements, as
described by cryptographer’s feedback'® summarized here'® and , focused on Privacy Loss:
e Selective Disclosure: users can decide to limit the information in a presentation.

'® hitps://www.w3.org/TR/design-principles/

16 hitps://www.w3.org/TR/privacy-principles/#support-choosing-info

'7 hitps://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

18 https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/issues/200
19

https://docs.goodle.com/presentation/d/10OX1xRGUKRS305x7ajTaLMTO0sn0-fBaZCWctHi _AQYrs/edit#sli
de=id.g305652a2a73_0_0



https://docs.google.com/presentation/d/1OX1xRGUKRS3O5x7ajTaLMT0sn0-fBaZCWctHi_AQYrs/edit#slide=id.g305652a2a73_0_0
https://docs.google.com/presentation/d/1OX1xRGUKRS3O5x7ajTaLMT0sn0-fBaZCWctHi_AQYrs/edit#slide=id.g305652a2a73_0_0
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/issues/200
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://www.w3.org/TR/privacy-principles/#support-choosing-info
https://www.w3.org/TR/design-principles/

Unlinkability: two verifiers should not recognize the same holder, issuer should not
know when a credential is presented or verified, even with the collusion of verifier and
issuer.

Pseudonymous Authentication: don't use unique identifiers unless necessary.
Non-Transferability: must not use fraudulent or shared credentials.



	Presenting Credentials on the Web 
	Introduction 
	Approaches 
	Custom URLs Scheme1 
	Threats/Attacks4 5 6 7 

	QR Code Scan/app link 
	Threats/Attacks8 9 

	Browser API 
	Threats/Attacks 


	Comparison 
	Considerations 
	Further readings 
	Appendices  
	Appendix A - Requirements 
	W3C Principles on Identity and Privacy 
	eIDAS 2.0 on privacy requirements 


