

GWT Unit Testing

Proposed by Reshu Kumari

1. About me
Name: Reshu Kumari

College: Banasthali Vidyapith

Branch: Computer Science

Email: reshukumari786@gmail.com

Country: India

Timezone: Asia/Kolkata (UTC +05:30)

Github: ReshuKumari

Linkedin: Reshu Kumari

2. Interest in MIT App Inventor
I am interested in contributing to MIT App Inventor because I felt the idea of the

MIT App to be very unique and Impactful. People with no technical background

can use it to make applications. We can use this in multiple ways for making

educational apps, fun applications, productivity applications like to-do lists, etc.

Someone who wants to convert their idea into execution can rely on MIT App

Inventor. It is very fast and easy to build apps. Also, The community of MIT App

Inventor is very supportive.

3. Interest In Introductory Programming
I have been part of college clubs and held sessions for juniors. I held sessions on

technologies like HTML, CSS, and javascript.

4. Experience with development tools
I am a final year undergrad student and have worked on multiple technologies

and projects. I have worked in languages and technologies like C++, Java,

mailto:reshukumari786@gmail.com
https://github.com/ReshuKumari
https://www.linkedin.com/in/reshu-kumari/

Angular, Javascript, Typescript, and Spring Boot, HTML, CSS, PHP. I like solving

programming challenges and working on projects.

It feels great to build things that people will use and will make their life easier. It

gives me immense satisfaction after completing the planned tasks, and when

people use our created product or additions we do to that product.

5. Experience with teams, online developer
communities, and large codebases
I used to contribute to open source earlier and all my pull requests can be

viewed here. I was a member of that organization and also a part of one of their

teams. I have also written unit tests for the frontend part for the changes made.

Therefore, I have experience working with large codebases. I have also done

multiple internships and worked on different technologies like Minio, and

Keyclock and built microservices and REST apis in Java from scratch. I also built a

dashboard in one of my internships from scratch both frontend and the

backend. From all my experiences I learned collaboration, time management,

and planning.

6. Abstract
MIT App Inventor is built in GWT. There is no systematic code coverage metric

for the AppEngine client. So the project aims to set up a code coverage metric

and test the client code of AppEngine.

Unit testing helps us in strengthening the application. When we add new

features then testing ensures that we don’t break existing features. Increase

https://github.com/oppia/oppia/pulls/ReshuKumari

product quality and enhance the development process. Unit testing ensures the

stability of its component modules in large applications.

Code coverage increases the effectiveness of testing. Increasing code coverage

makes it easy to spot bugs and increases code quality

7. Implementation

MIT App Inventor has numerous features. The AppEngine is based on GWT. The

project aims to set up a unit testing architecture that can tell us the coverage of

the client code in AppEngine. Code coverage assures the tested lines of code. It

tells us which branch and block of code is tested and which needs to be tested.

To set up the code coverage in AppEngine we can use Jacoco.

Jacoco is a visual tool that tells us the code coverage through a visual report. It

shows us the branched lines tested thoroughly, partially, or incompletely. It tells

us the code coverage percentage also.

Setting up Jacoco in AppEngine

We will add the Jacoco jar file in the appinventor in lib folder and modify the

files mentioned below to add jacoco coverage, we will also add the jacoco report

to it. And thus this will set up the jacoco for our AppEngine and we can run the

tests. Our test report will be created and shall be accessible to us.

build-common.xml file has the testing task for the AppInventor so we can

modify it to access jacoco code coverage reports also.

Changes in build-common.xml
<project name="CommonDefinitions" xmlns:if="ant:if" xmlns:unless="ant:unless"

 xmlns:jacoco="antlib:org.jacoco.ant">

<taskdef uri="antlib:org.jacoco.ant" resource="org/jacoco/ant/antlib.xml">

 <classpath path="${appinventor.dir}/lib/jacoco/jacocoant.jar"/>

</taskdef>

Wrap the junit of AppEngine in jacoco coverage
<jacoco:coverage destfile="${local.build.dir}/jacoco.exec" inclnolocationclasses="true">

</jacoco:coverage>

Resulting coverage information is collected during the execution of tests and

written to a file when the process terminates.

Write the jacoco report
<jacoco:report>

 <executiondata>

 <file file="${build.dir}/jacoco.exec"/>

 </executiondata>

 <structure name="coverage report">

 <classfiles>

 <fileset dir="${class.dir}"/>

 </classfiles>

 <sourcefiles encoding="UTF-8">

 <fileset dir="${src.dir}"/>

 </sourcefiles>

 </structure>

 <html destdir="${coverage.dir}"/>

 </jacoco:report>

We will use the jacoco coverage data to convert it into a coverage report. For

this we will execute the data in jacoco.exec which will be generated in jacoco

coverage this is the first necessary element.

The next necessary element is the structure it will have two parts classifier

which will have the directory which will have Java class files.

And the sourcefiles will have the directory of the source corresponding source

files.

And finally, we will store the report at location reports/coverage and can access

that report.
<property name="coverage.dir"

location="${basedir}/reports/coverage"/>

After setting up jacoco we can move forward to writing unit tests for the files in

AppEngine. We will be writing the tests in JUnit.

Files which we aim to write unit tests for

1.​ appengine/src/com/google/appinventor/client/boxes

2.​ appengine/src/com/google/appinventor/client/editor/simple/component

s

Files in appengine/src/com/google/appinventor/client/boxes

1.AdminUserListBox.java

2.BlockSelectorBox.java

3.MotdBox.java

4.ProjectListBox.java

5.SourceStructureBox.java

6.AssetListBox.java

7.MessagesOutputBox.java

8.OdeLogBox.java

9.PaletteBox.java

10.PropertiesBox.java

11.ViewerBox.java

Files in

appengine/src/com/google/appinventor/client/editor/simple/components

1.DataFileChangeListener.java

2.MockChartDataModel.java

3.MockFirebaseDB.java

4.MockLineChartBaseDataModel.java

5.MockPieChartDataModel.java

6.MockSwitch.java

7.DesignPreviewChangeListener.java

8.MockChart.java

9.MockFormHelper.java

10. MockLineChartDataModel.java

11.MockPieChartView.java

12. MockTableArrangement.java

13. FormChangeListener.java

14.MockChartLayout.java

15.MockForm.java

16.MockLineChartViewBase.java

17.MockPointChartDataModel.java

18.MockTableLayout.java

19. LayoutInfo.java

20.MockChartView.java

21.MockFormLayout.java

22. MockLineChartView.java

23.MockPointChartView.java

24. MockTextBoxBase.java

25.MockAreaChartDataModel.java

26. MockCheckBox.java

27.MockFusionTablesControl.java

28.MockLineString.java

29.MockPolygonBase.java

30.MockTextBox.java

31.MockAreaChartView.java

32.MockCircle.java

33.MockHorizontalArrangement.java

34.MockListPicker.java

35.MockPolygon.java

36.MockTimePicker.java

37.MockAxisChartView.java

38.MockCloudDB.java

39.MockHVArrangementHelper.java

40.MockListView.java

41.MockRadioButton.java

42.MockToggleBase.java

43.MockBall.java

44.MockComponent.java

45.MockHVArrangement.java

46.MockMapFeatureBase.java

47.MockRectangle.java

48.MockTranslator.java

49.MockBarChartDataModel.java

50.MockComponentsUtil.java

51.MockHVLayoutBase.java

52.MockMapFeatureBaseWithFill.java 53.MockScatterChartDataModel.java

54.MockVerticalArrangement.java

55.MockBarChartView.java

56.MockContactPicker.java

57.MockHVLayout.java

58.MockMapFeature.java

59.MockScatterChartView.java

60.MockVideoPlayer.java

61.MockButtonBase.java

62.MockContainer.java

63.MockImageBase.java

64.MockMap.java

65.MockScrollHorizontalArrangement.java 66.MockVisibleComponent.java

67.MockButton.java

68.MockDataFile.java

69.MockImage.java

70.MockMapLayout.java

71.MockScrollVerticalArrangement.java

72.MockWebViewer.java

73.MockCanvas.java

74.MockDatePicker.java

75.MockImagePicker.java

76.MockMarker.java

77.MockSlider.java

78.MockWrapper.java

79.MockCanvasLayout.java

80.MockEmailPicker.java

81.MockImageSprite.java

82.MockNonVisibleComponent.java

83.MockSpinner.java

84.package-info.java

85.MockChartData2D.java

86.MockFeatureCollection.java

87.MockLabel.java

88.MockPasswordTextBox.java

89.MockSpreadsheet.java

90. utils

91.MockChartData.java

92.MockFeatureCollectionLayout.java

93.MockLayout.java

94.MockPhoneNumberPicker.java

95.MockSprite.java

All these files are approximately 10k lines of code which we plan to unit test in

the given time period. We will create a separate test file of each file in these

locations in the test folder to write the JUnit tests.

I will also be documenting the jacoco setup and writing a document titled “How

to write Junit test” which can be added to the developer guide.

8. Deliverables/Outcome

We will have Jacoco code coverage setup for AppEngine with tests written for

the above-mentioned files, with updated documentation.

9. Timeline
First phase coding period breakdown

Week Task

29 May - 3 June Set up the Jacoco code coverage

4 June - 10 June Set up the Jacoco code coverage

11 June - 17 June 1-8 files from the box folder

18 June - 24 June 8-12 files from the box folder and

Files in

appengine/src/com/google/appinventor/client/editor

/simple/components/utils

25 June - 1 July 1-8 in editor/simple/component

2 July - 8 July Buffer Time to complete work if left

10 July Evaluation

Final Phase Coding Period breakdown

Week Task

11 July - 15 July 9-20 in editor/simple/component

16 July - 22 July 21-35 in editor/simple/component

23 July - 29 July 36-50 in editor/simple/component

30 July - 5 Aug 51-65 in editor/simple/component

6 Aug - 12 Aug 66-75 in editor/simple/component

13 Aug - 19 Aug 76-95 in editor/simple/component

20 Aug - 28 Aug Final Evaluation

I will have my summer vacation starting on May 4 so I will be accessible during

the summer. And will commit 30-40 hours per week to complete the tasks.

10. Future Work

I will write tests for files that are left and not included here. I also wish to

contribute to MIT AppInventor in its other ongoing projects/tasks.

	
	GWT Unit Testing
	2. Interest in MIT App Inventor
	3. Interest In Introductory Programming
	5. Experience with teams, online developer communities, and large codebases
	6. Abstract
	7. Implementation
	10. Future Work

