
Git for 61C  
Part 1: Getting Started with detailed explanations 

Step 1: Download Git 
Step 2: Start tracking with Git 
Step 3: Add the repository with the files you want to start out with as a remote 
Step 4: Get files from the remote 
Step 2B: git clone 
git add 
git commit 
git push 

Part 2: Getting Started, with short descriptions 
I have the files I want on Github, and I want them on a machine I’m working on 
I have Git set up, I want to make some changes and push them so that they’re reflected 
on Github 
I want to get the starter files for class, make some changes, and push them to my 
personal Github 

Part 3: Slightly more advanced Git 
Going back in time: revert and reset 
Branching and git checkout 

Part 4: The 8 most common errors I’ve seen as a 61C TA 
 
Writing a Git guide is a bit like reinventing the wheel; there are dozens of great Git resources 
available to you on the internet. Here are some I endorse:  

●​ 61B’s Git tutorial, by Sarah Kim and Josh Hug; I did this as a student, and it has been 
incredibly useful; it starts out from the very beginning and takes you through everything 
you need to know, and I couldn’t recommend it highly enough. 

●​ A git cheat sheet from Github with all the basic commands in one page. 
●​ A git cheat sheet that has a great diagram that I highly recommend you look at. 
●​ The Atlassian git tutorials are very complete, written to be fairly accessible to beginners, 

and are full of great diagrams. If your goal is to understand what a command is doing, 
this should be your first stop. 

 
Please don’t hesitate to ask conceptual questions about Git. When I was a student in 61C it 
seemed like everyone was a Git/command line wizard but me, but as a TA, I’ve discovered this 
is absolutely not the case.  
 
And if you have any suggestions for this guide, definitely let us know!  

https://sp18.datastructur.es/materials/guides/using-git.html
https://education.github.com/git-cheat-sheet-education.pdf
http://files.zeroturnaround.com/pdf/zt_git_cheat_sheet.pdf
https://www.atlassian.com/git/tutorials


Part 1: Getting Started with detailed explanations 

Step 1: Download Git  
●​ Before working with git, you’ll need to download it! Git is available to download for Mac, 

Windows, and Linux.  
○​ Git is a program that tracks changes in your files and allows you to coordinate 

multiple people changing the same files  

Step 2: Start tracking with Git  

●​ Git only tracks changes in a directory when you “initialize” that directory as a git 
repository 

○​ Option 1: you’ve already created a directory on your local machine for the files 
you want to track with git 

■​ Command: git init 
■​ What does it do? In whatever directory you’re in, creates a directory 

called “.git” that stores all the information Git needs to track changes 
●​ Inside .git directory, a file called .gitignore, specifying files and file 

types that git will ignore (if you do “git add -A” these files will *not* 
be added)  

●​ Often this includes executable files, which are specific to the 
architecture of the computer it’s compiled on 

○​ Option 2: don’t have a directory on your local machine yet 
■​ Command: git init [directory name] 
■​ What does it do? Creates an empty directory with the name you specify, 

and a .git directory within it 

Step 3: Add the repository with the files you want to start out with as a remote  

●​ A remote may exist on a website like Github or Bitbucket, or it may be a repository on a 
machine that you have SSH access to 

○​ Command: git remote add [name of remote] [URL] 
■​ Usually: git remote add origin [URL], or git remote add 

starter [URL] 

Step 4: Get files from the remote  

●​ If you want to work on your local machine, this is the step where you actually transfer the 
files 

○​ Command: git pull [remote name] [branch] 
■​ Usually: git pull origin master   

○​ What does it do? Pulling is basically equivalent to two steps, which you can do 
separately:  

■​ git fetch --all to pull all changes on all branches from the remote 

https://git-scm.com/downloads
https://git-scm.com/downloads


■​ git merge [remote name]/[current_branch], usually git 
merge origin/master which attempts to combine the changes from 
the remote repository with the current state of the files in your repository 

Step 2B: git clone  

●​ git clone does many of the previous steps all-in-one 
○​ Creates a copy on your local machine of a repository that exists elsewhere  
○​ git clone [URL] [directory name] 
○​ What does git clone do?  

■​ git init [directory name]  
■​ cd [repo name] 
■​ git remote add origin [URL]  
■​ git pull origin master 

 
The holy trinity:  

git add 

●​ Adds specified files to “staging area” so git tracks changes in them. Some options:  
○​ git add -A  

■​ Add all files 
○​ git add *.c  

■​ Add all .c files 
○​ git add foo.py  

■​ Add a particular file called foo.py 

git commit 

●​ Packages changes for tracked files into a “commit”, so it is officially in the history of your 
local repository 

○​ git commit -m “Message”  
■​ Create a commit with the specified message 

○​ git commit -a -m “Message”  
■​ Does git add for all files and creates a commit with the specified 

message 

git push 

●​ Sends all commits to a remote repository 
○​ git push  

■​ Pushes to the default upstream and branch. Usually, default upstream is 
origin, but you can change this using the “--set-upstream” flag  

○​ git push origin master  
○​ git push [remote] [branch]  



Part 2: Getting Started, with short descriptions 
 

I have the files I want on Github, and I want them on a machine I’m working on  

 
git init [project directory] 
cd [project directory] 
git remote add origin [remote URL].git 
git pull origin master  
 
--OR-- 
 
git clone [URL]  
cd [remote repository name] // You *don’t* chose name of directory 
 
--OR-- 
 
git clone [URL] [directory name] 
cd [directory name] // You *do* choose name of directory 
 

I have Git set up, I want to make some changes and push them so that they’re reflected 
on Github 

 
git add [files changed] 
git commit -m “Commit message” 
git push origin master 
 

I want to get the starter files for class, make some changes, and push them to my 
personal Github  

 
git init [project directory] 
cd [project directory] 
git remote add starter [starter URL].git  
git pull starter master 
git add -A 
git commit -m “Starter files”  
git remote add origin [origin URL].git 
git push origin master 



Part 3: Slightly more advanced Git 

Going back in time: revert and reset 
●​ git revert 

○​ Syntax: git revert [commit hash for BAD commit] 
■​ How do you get the commit hash? Use git log 
■​ If you want to revert to HEAD, you can use git revert HEAD 

○​ What does it do? Takes all the changes you’ve made since a specified commit, 
inverts them, and creates a new commit, and moves the HEAD pointer to that 
commit   

○​ This is a somewhat safer option than git reset, and maintains your “bad 
changes” in case you find you’d like to go back to them 

●​ git reset 
○​ Syntax: git reset [commit to reset repository to] 
○​ What does it do? Moves the HEAD pointer to the specified commit 

■​ If you use the --hard flag:  
●​ Removes changes from working directory & staging area 
●​ This is dangerous! You will “orphan” commits that are 

chronologically after the one you reset to. You can still get to them 
using git reflog in the short term, but in the long term, they 
will be removed by the Git garbage collector  

■​ If you use the --soft flag: 
●​ Does *not* remove changes from working directory & staging area 

Branching and git checkout 

●​ You may want to use a branch if...  
○​ ...you want to make experimental changes 
○​ ...you and a partner are working on separate tasks and you don’t want to interfere 

with each other for testing purposes 
○​ ...you want to pull changes from Github that you don’t want to mix up with local 

changes  
●​ The default branch is master  
●​ Figure out what branch you’re currently on using git status 
●​ git branch  

○​ git branch 
■​ List all branches  

○​ git branch [branch name] 
■​ Make a new branch with specified name 
■​ Unlike checkout, does not move you onto this branch 

○​ git branch -d [branch name] 
■​ Delete the specified branch 



■​ Use -D (capital “D”) if you want to delete unmerged changes; I 
recommend -d for safety  

●​ git checkout  
○​ Make a new branch and check it out, from HEAD:  

■​ git checkout -b [new branch name] 
○​ Make a new branch and check it out, from existing branch: 

■​ git checkout -b [new branch name] [existing branch 
name] 

○​ Switch onto a different branch:  
■​ git checkout [branch name] 

○​ Switch onto a branch from a remote repository 
■​ git fetch --all 
■​ git checkout [remote branch name] origin/[remote 

branch name]  



Part 4: The 8 most common errors I’ve seen as a 61C TA 
1.​'git' is not recognized as an internal or external command, 

operable program or batch file. 
○​ First: did you download git?  
○​ Second: did you close and re-open your command prompt, if you downloaded git 

recently?  
○​ Third: is git on your path? Two fixes:  

■​ Are you on Windows, and trying to use the command prompt?  
●​ Use Git bash instead 
●​ Re-download Git and select the option to use git from command 

prompt 
■​ Add git to your path  

2.​fatal: not a git repository (or any of the parent directories): 
.git 

○​ First: are you in the right directory? Do a double check 
○​ Second: you’re in the right repository. You may need to initialize this repository as 

a git repository. Do this with git init 
3.​ fatal: unable to access '[URL for git repo]': The requested URL 

returned error: 403 when trying to push (or any sort of “fatal: unable to 
access” error) 

○​ If you’re using a URL: check the spelling of the URL for the repository you’re 
trying to push to  

○​ If you’re using a named remote:  
■​ Use git remote -v to list all of your remote repositories 
■​ Check the URL for the one you’re trying to push to  
■​ 99% of the time, this is what happened: you have origin set to our starter 

code, which students have read access to but not write access.  
●​ The best solution is for you to reset the URL for origin to your 

personal repository, with these steps:  
○​ git remote set-url origin [URL] 

●​ If for some reason you want to remove a remote repository, you 
can use this command:  

○​ git remote rm origin 
4.​ I want to transfer something from my local machine to the hive machine; I’m thinking 

about using scp, but I don’t want to mess up my Git history 
○​ If you have the same git repository on both machines, you can use this all-in-one 

command:  
■​ git push 

cs61c-XXX@hive30.cs.berkeley.edu:~/projectY.git 
master 

○​ Or, if you want to add the hive machine as a remote repository you can push to:  



■​ git remote add hive30 
cs61c-XXX@hive30.cs.berkeley.edu:~/projectY.git 

■​ git push hive30 master  
5.​ Help, I tagged the wrong commit for submission of my project!  

○​ Step 1: Remove the incorrect tag locally 
■​ git tag -d [tag] 
■​ e.g. git tag -d proj1-2-sub 

○​ Step 2: Push to remove the incorrect tag from your Github 
■​ git push origin :refs/tags/[tag] 
■​ e.g. git push origin :refs/tags/proj1-2-sub 

○​ Step 3: Re-tag the correct commit locally 
■​ git tag -a [tag] [first 7 digits of commit hash]  
■​ e.g. git tag -a proj1-2-sub 9ebd89c 

○​ Step 4: Push this new, correct tag to Github 
■​ git push origin :refs/tags/[tag] 
■​ e.g. git push origin :refs/tags/proj1-2-sub 

6.​ The horror! A merge conflict 
○​ Resolving a merge conflict is a lot of work, what are some tools to make it 

easier?  
■​ If you’re working locally and can use an IDE:  

●​ There’s a great interface for resolving merge conflicts in Visual 
Studio Code--it really minimizes the work you have to do. VSCode 
is available for Linux, Windows, and Mac 

■​ If you’re working over SSH:  
●​ You can use git rebase interactively to solve merge conflicts from 

the command line.  
7.​ I want my local repository to match my remote exactly 

○​ Be careful using git reset --hard!! Something to be safe--save your local 
changes on a branch *before* you do this, so that you still have access to them if 
something unexpected happens 

■​ git add -A Add all your files 
■​ git commit -m “Saving local changes before hard 

resetting” Commit your changes to those files 
■​ git branch saving_local Create a new branch called 

“saving_local” for your local changes 
○​ Get everything from your remote 

■​ git fetch [remote name], probably git fetch origin 
○​ Reset to what you got from your remote 

■​ git reset --hard [remote name]/[branch], probably git 
reset --hard origin/master 

8.​ I want my remote repository to match my local exactly 
○​ Be careful using git push -f! It overwrites your remote irrevocably.  



○​ The command: git push -f [remote] [branch], so probably git push 
-f origin master 


	Git for 61C  
	Part 1: Getting Started with detailed explanations 
	Step 1: Download Git  
	Step 2: Start tracking with Git  
	Step 3: Add the repository with the files you want to start out with as a remote  
	Step 4: Get files from the remote  
	Step 2B: git clone  
	git add 
	git commit 
	git push 

	Part 2: Getting Started, with short descriptions 
	I have the files I want on Github, and I want them on a machine I’m working on  
	I have Git set up, I want to make some changes and push them so that they’re reflected on Github 
	I want to get the starter files for class, make some changes, and push them to my personal Github  

	Part 3: Slightly more advanced Git 
	Going back in time: revert and reset 
	Branching and git checkout 

	Part 4: The 8 most common errors I’ve seen as a 61C TA 


