
Fullscreen with out-of-process iframes
Alex Moshchuk <alexmos@chromium.org>

3-4-2016

Links

HTML5 spec: https://fullscreen.spec.whatwg.org/
Tracking bug: https://crbug.com/550497

Objective

Currently, fullscreen does not work correctly with out-of-process iframes. For example, when
pressing the fullscreen button on a Youtube video embedded in an OOPIF, the whole tab does
fullscreen instead of just the video. The goal of this document is to explain what’s broken today
and propose/discuss solutions.

Background: browser side

There are two separate fullscreen codepaths in Chromium: Flash fullscreen and HTML5
fullscreen. Some more detailed information about how they work can be found in this
Chromium design doc (a bit outdated); below is a quick overview.

Flash fullscreen uses ViewHostMsg_CreateFullscreenWidget and
ViewHostMsg_ShowFullscreenWidget IPCs to

-​ create a new widget (RenderWidgetHost and RenderWidgetHostView)
-​ save it in the current WebContents using fullscreen_widget_routing_id_
-​ call into FullscreenController::EnterFullscreenModeForTab() in the

chrome/ layer, which will tell the BrowserWindow to expand to fill the screen.

views::WebView, the child view within BrowserWindow for the actual tab contents, will
receive a WebContentsObserver::DidShowFullscreenWidget(), making it:

-​ look up the fullscreen widget via
WebContents::GetFullscreenRenderWidget(), which uses
fullscreen_widget_routing_id_ and the main frame’s process ID.

-​ swap its normal native view (for current WebContents) with the fullscreen native
view (for the Flash widget).

Once the fullscreened view is resized and ready, a ViewMsg_OnResize is sent to renderer,
which will tell the renderer that fullscreen was entered (is_fullscreen_granted in
ResizeParams will become true) and pass fullscreen dimensions.

mailto:alexmos@chromium.org
https://fullscreen.spec.whatwg.org/
https://crbug.com/550497
http://www.chromium.org/developers/design-documents/embedding-flash-fullscreen-in-the-browser-window

HTML5 fullscreen allows arbitrary DOM elements to be fullscreened. It reuses some, but not
all of Flash fullscreen plumbing. It is initiated differently: the frame containing the DOM element
to be fullscreened, sends a FrameHostMsg_ToggleFullscreen to enter fullscreen mode,
passing an enter_fullscreen bool. This bubbles up to
WebContentsImpl::EnterFullscreenMode, which then follows the Flash path above
(Browser::EnterFullscreenModeForTab and
FullscreenController::EnterFullscreenModeForTab) to put the whole current tab
into fullscreen mode, but this time, views::WebView just fullscreens its normal native view (for
current WebContents). Note that fullscreen_widget_routing_id_ is not used at all here.
Once that’s done, as before, ViewMsg_OnResize is sent to the main frame renderer, telling it
that fullscreen mode was entered. Blink then performs some layout magic to put the
fullscreened element in front and hide everything else within the current page’s bounds.

Background: Blink side

On the Blink side, there are two relevant classes: Fullscreen in core/ (one per Document),
and FullscreenController in web/ (one per page, lives on WebViewImpl, not to be
confused with the browser-side class of the same name).

Suppose there is a DIV which wants to go fullscreen. The page will execute something like:
​
​ document.querySelector("div").webkitRequestFullscreen();

This will bubble up to current document’s Fullscreen::requestFullscreen, which will:

-​ Walk up the iframe chain to see if all ancestor iframes have the allowFullscreen
attribute set to true.

-​ constructs a fullscreenchange event to be fired on the fullscreened element
-​ walks up the frame ancestor chain and constructs a bunch of fullscreenchange

events in the embedding documents with e.target pointing at appropriate <iframe>
elements.

All these events are saved in a queue but not fired yet. 1

Next, things move to the web/ layer to
FullscreenController::enterFullScreenForElement, which will save the provisional
fullscreened element and some page sizing stuff, and then ask the embedder
(RenderFrameImpl) to send the FrameHostMsg_ToggleFullscreen.

1 The reason for saving them now is to preserve the fullscreen request type (prefixed vs. unprefixed),
which have slightly different event semantics. When fullscreen is entered later, the event of appropriate
type is fired.

Once the renderer receives a ViewMsg_OnResize with the fullscreen bits turned on,
RenderWidget::Resize detects that it entered fullscreen and calls
RenderWidget::DidToggleFullscreen, which forwards to
WebWidget::didEnterFullScreen. WebViewImpl then calls
FullscreenController::didEnterFullScreen. This updates various page sizing stuff
and call Fullscreen::didEnterFullScreenForElement, passing the provisional
fullscreen element it had saved earlier.

Fullscreen::didEnterFullScreenForElement is where the most interesting things
happen:

1.​ It triggers the magic layout stuff, which fill the whole page with the fullscreen element
and hide everything else, “by wrapping the fullscreen element in an anonymous
flexbox with a large z-index and solid black background” [source]. This specific
mechanism doesn’t actually follow the mechanism described in the spec’s rendering
section, and there were some attempts to change this, but it doesn’t look like anything
shipped (see https://codereview.chromium.org/1363023005, which was reverted).

2.​ It walks up the fullscreen element’s ancestor element chain, crossing frame boundaries,
and on all those elements it sets a contains-fullscreen-element flag to true (see
Element::setContainsFullScreenElement) and triggers style recalc -- this is
used to apply CSS :-webkit-full-screen pseudoclass to the element and all
<iframe> containers. Containers also get the -webkit-full-screen-ancestor
class. Typically, an element detects that it’s become fullscreened via
:-webkit-full-screen and restyles itself accordingly (e.g., setting “width: 100%;
height: 100%” to fill the whole screen). Example.​
Some elements, including <iframes>, have default UA CSS rules for the
-webkit-full-screen pseudoclass, which are specified in
Source/core/css/fullscreen.css. So, when an element is fullscreened in an iframe, the
parent window will apply these styles to the <iframe> element to stretch it to fill the
whole viewport, remove margin/borders, etc.

3.​ It triggers dispatch of the fullscreenchange events it had saved earlier in
Fullscreen::requestFullscreen, for current frame and all the ancestor frames.

HTML5 fullscreen with OOPIFs: what happens today

Suppose a.com embeds a frame b.com, which requests an element E to go
fullscreen.

First, b.com incorrectly calculates that it is always allowed to go fullscreen
(see allowfullscreen). Next, it sends FrameHostMsg_ToggleFullscreen
to the browser, which makes the current WebContents fullscreen. However, the browser then
sends the confirmation of the fullscreen change (in ViewMsg_Resize) to the main frame

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/dom/Fullscreen.h&l=47&ct=xref_jump_to_def&cl=GROK&gsn=Fullscreen
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/dom/Fullscreen.cpp&l=422&gs=cpp:blink::class-Fullscreen::didEnterFullScreenForElement(blink::Element%2520*)@chromium/../../third_party/WebKit/Source/core/dom/Fullscreen.cpp%257Cdef&gsn=didEnterFullScreenForElement&ct=xref_usages
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/dom/Fullscreen.h&l=47&ct=xref_jump_to_def&cl=GROK&gsn=Fullscreen
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/dom/Fullscreen.cpp&l=422&gs=cpp:blink::class-Fullscreen::didEnterFullScreenForElement(blink::Element%2520*)@chromium/../../third_party/WebKit/Source/core/dom/Fullscreen.cpp%257Cdef&gsn=didEnterFullScreenForElement&ct=xref_usages
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/yJUanvg7d40/UungudcjD-UJ
https://fullscreen.spec.whatwg.org/#rendering
https://fullscreen.spec.whatwg.org/#rendering
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/f-V2GWatXkA
https://codereview.chromium.org/1363023005
https://chromium.googlesource.com/chromium/src.git/+/2460a95281959d1b4dd941fed10998adf8dcb63c
https://developer.mozilla.org/samples/domref/fullscreen.html
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/css/fullscreen.css

process, a.com, which bail outs early since it’s not expecting any of its elements to go
fullscreen. We end up leaving the whole tab fullscreen and leave the FullscreenController
in b.com hung in provisional state.

Making HTML5 fullscreen work with OOPIFs

Overview

The following aspects of fullscreen need to be refactored to work with OOPIFs:

●​ allowFullscreen attribute needs to be replicated to proxies
●​ document.fullscreenElement needs to return the <iframe> element containing the

fullscreened element in ancestor frames
●​ -webkit-full-screen and -webkit-full-screen-ancestor CSS styles need to

be correctly applied to OOP <iframe> ancestors.
●​ fullscreenchange events need to fire on ancestor frames.

allowfullscreen
Elements in <iframes> can only go fullscreen if their iframe container elements have the
allowfullscreen attribute set to true.

For example, in this page hierarchy,

foo.html: <iframe src=”bar.html”></iframe>
​ bar.html: ​ <iframe src=”baz.html” allowfullscreen=true></iframe>
​ baz.html: ​ ​ document.querySelector(“img”).webkitRequestFullscreen()

the image is not allowed to go fullscreen because the top frame lacks the attribute.

This is exposed to JS via document.fullscreenEnabled, so that any frame can check
whether it is allowed to go fullscreen.

Currently, this attribute is not replicated across processes, so a fullscreen request in an OOPIF
will incorrectly always succeed. (We fail open because the ancestor frame iteration in
blink::fullscreenIsAllowedForAllOwners thinks it reached the top-level frame once
Document::ownerElement returns nullptr, but that also returns nullptr for remote parent
frames.)

Proposal: add the allowfullscreen flag to FrameReplicationState and replicate it
similarly to sandbox flags or strict mixed content flag. Note that although
WebFrameOwnerProperties seems like a good fit for it, that is not replicated to proxies, so

we won’t be able to look it up when walking the ancestor chain containing several
RemoteFrames. Dynamic JS updates of the attribute take effect immediately and so will need
to be sent immediately to all proxies.

The checks in blink::fullscreenIsAllowedForAllOwners will need to change to
properly discover the flag for RemoteFrameOwner.

Alternatively, we could add the flag to WebFrameOwnerProperties and replicate that struct
to proxies in addition to RenderFrames. This might make sense since updates to
WebFrameOwnerProperties should be very rare and uncommon. As an optimization, we
could replicate it only when it has non-default values.

Browser->renderer IPCs
Currently, ViewMsg_OnResize carries the fullscreen bits and is only sent to main frames.
However, if an element goes fullscreen in an OOPIF, we will need to send an IPC to that
subframe’s renderer, as well as all renderers on the ancestor chain, as all of these renderers will
need to dispatch fullscreenchange events, flip containsFullScreenElement bits, and
correctly support document.fullscreenElement (which needs to return the <iframe>
element containing the fullscreened element in ancestor frames).

Proposal: add a FrameMsg_WillEnterFullscreen, which can be sent to a particular frame
when it contains an element that is going to enter/exit fullscreen. Let ViewMsg_Resize trigger
fullscreen enter/exit for subframe widgets in addition to main frame ones.

The reason for keeping ViewMsg_Resize as the trigger for entering fullscreen, rather than a
separate IPC, is that it also carries the fullscreen resize params that will stretch the widget to fill
the whole screen. This way, we (1) don’t fire the fullscreenchange event too early, before
fullscreen resize has happened, and (2) don’t separate the work of resizing the widget and
restyling content for fullscreen, which might help avoid flicker with the wrong intermediate
layout.

The FrameMsg_WillEnterFullscreen IPC can include the routing ID of the child frame
proxy containing the fullscreened element for OOPIF scenarios. For example, suppose a.com
embeds a subframe b.com, which embeds another subframe c.com, which requests its element
E to go fullscreen. In this case, the browser will send IPCs to b.com and a.com in addition to
c.com:

Each renderer, upon receiving the IPC, can invoke Fullscreen::requestFullscreen() on
either the actual element or the embedding <iframe> element. This will prepare
fullscreenchange event and future document.fullscreenElement in all frames. Later, when
the browser completes fullscreen resizing, it will send ViewMsg_Resize to all widgets, with the
is_fullscreen_granted bit flipped. That can in turn forward to
Fullscreen::didEnterFullScreenElement, which will take care of setting CSS
:fullscreen everywhere, updating bits required for document.fullscreenElement,
firing fullscreenchange events that are already prepared, etc. Note that it shouldn’t be
necessary to iterate through widgets to send a ViewMsg_Resize: sending it to the top widget
should trigger frameRectChanged on subframe widgets, which will then themselves send a
ViewMsg_Resize, and this can continue downward. We do want to change
WebContentsImpl::IsFullscreenForCurrentTab (used by
RenderWidgetHostImpl::GetResizeParams) to allow subframe widgets to know that
they’re in a fullscreen tab.

Question 1: should we send this IPC per frame, per widget, or per ancestor SiteInstance? E.g.,
in a A-B-B-C hierarchy, do we send one or two messages to B’s process? What about A-B-A --
does the top A need an extra message? Per frame would be easier to reason about on the
browser side. Per widget or SiteInstance may make it simpler to deal with the fullscreen layout
stuff that Blink currently does (see next section).
Answer: For A-B-A, after calling element.requestFullscreen() in the bottom frame, JS in the top
frame can synchronously query document.webkitCurrentFullScreenElement, which should
return the <iframe> element for B (even before fullscreen is entered). This suggests that we
should process all local ancestors in one shot in places like
Fullscreen::requestFullscreen, and given that, it makes sense to send the IPC one for
each ancestor SiteInstance to be consistent.

Another reason for this is that there’s one FullscreenController per page, so sending the
IPC per widget or per frame will need some refactoring of how FullscreenController
works.

Open question 2: is it ok to send all the renderer IPCs in parallel or do they have to be done
serially? The spec (section 6 in requestFullscreen) does specify a particular order (top-down)
for firing fullscreenchange events, but I wonder if we can get away with that with the usual
argument about inherently asynchronous nature of cross-origin frames.

Timing of resizing and onfullscreenchange events: It appears that one reason for tying
fullscreen changes to ViewMsg_OnResize is so that onfullscreenchange event handlers
can observe the new innerWidth/innerHeight after fullscreen resizing has occurred (see
100264). This is why the proposed design doesn’t use a separate browser->renderer IPC for
actually entering fullscreen, but rather reuses ViewMsg_OnResize. Unfortunately, it appears
difficult to guarantee the final width/height even at the time of ViewMsg_OnResize (see
396576, 544269, and fix resize doc). For example, in default Chrome today, entering fullscreen
with devtools open on the side, or with gold bars on top, appears to give a transient
innerWidth/innerHeight inside the fullscreenchange event handler. So this problem might need
to be addressed everywhere consistently, not just for OOPIFs, and so this won’t be high priority
initially. It appears that developers already know about this limitation and use the onresize
event instead (example). Also see this related discussion of fullscreen and orientation.

Layout for a fullscreened element with multiple frame widgets
This is probably the trickiest part. As is, Blink’s layout magic to fullscreen an element in a
WebFrameWidget will only work within that widget’s boundaries. So, additionally, we need to
somehow stretch the subframe to cover the entire screen, covering all the ancestor frame
widgets.

Fullscreen Flash codepaths contain the ability to fullscreen a particular widget within a
WebContents (via fullscreen_render_widget_routing_id_, which could be expanded
to also keep track of process ID). However, this can’t be used because
RenderViewHostViewChildFrame doesn’t have its own native view, which
views::WebView::ReattachForFullscreenChange requires.

We could do something on the browser side to resize/reposition each widget on the ancestor
chain to completely fill the space in its parent widget, but it seems easier to drive that from the
renderer:

Proposal: when an element E in a subframe widget is fullscreened:

1.​ Take the entire tab fullscreen via WebContentsImpl::EnterFullscreenMode.
2.​ Run the Blink fullscreen layout algo to fullscreen E in the subframe widget’s bounds.

https://fullscreen.spec.whatwg.org/#dom-element-requestfullscreen
https://bugs.chromium.org/p/chromium/issues/detail?id=100264
https://bugs.chromium.org/p/chromium/issues/detail?id=396576
https://bugs.chromium.org/p/chromium/issues/detail?id=544269
https://docs.google.com/document/d/1POLDq-L_T9iZ_Ul39sjOMiOO-yvLnmb1WFsH4JfIyVU/edit#heading=h.w8adji9cxnbd
http://stackoverflow.com/questions/26819413/getting-fullscreenchange-post-event-post-reflow-body-dimensions
https://docs.google.com/document/d/1NXluXrFqgEjqtbfq4yninCXUqEl3OwykvJGDQ_M9Z0w/edit#

3.​ For all the ancestor widgets, run the Blink algo to fullscreen the <iframe> element
containing the next subframe widget.

a.​ This can be facilitated as part of handling FrameMsg_WillEnterFullscreen
and ViewMsg_Resize (is_fullscreen_granted=1) from the previous section.

For example, if the element to be fullscreened is in the bottom widget in a hierarchy of three
frame widgets, the fullscreening layout would be adjusted roughly like this:

This is somewhat similar to how fullscreen is implemented in <webview>: when an element
goes fullscreen inside a <webview>, it is first fullscreened within the guest’s bounds, and then
the embedder executes JS to make the <webview> element fullscreen (see
https://codereview.chromium.org/984963004), which proves that the layout part of this should
work.

Note that “within the widget’s bounds” doesn’t mean that E is cropped to the widget’s bounds. If
E is bigger than the size of the subframe’s widget, E might still become fully visible in fullscreen
mode. So really, E should be resized to the visual viewport size, and then gradually become
more and more visible as its ancestor frames become fullscreened. See visual viewport below.

Visual viewport
The page’s visual viewport is used by LayoutFullscreen::updateStyle() when setting
the style of a fullscreened element to determine the container’s width/height. When this is
called in a subframe widget, the ​
​ document().page()->frameHost().visualViewport().size()​
returns a null size. I.e., we don’t track visual viewport correctly in subframe processes, and this
needs to be fixed. Visual viewport is a page-level concept, so whenever it changes, the new
size needs to be replicated to all subframe renderers.

To update this for OOPIF, we need to:

1.​ Pass correct visual viewport in ViewMsg_Resize messages to subframe widgets.
Currently, the source of ResizeParams::visible_viewport_size is
RenderWidgetHostViewBase::GetVisibleViewportSize, which doesn’t return
correct size for RenderWidgetHostViewChildFrame: it returns the widget’s size
rather than the page size.

https://codereview.chromium.org/984963004

2.​ Implement WebFrameWidgetImpl::resizeVisualViewport() for OOPIFs.
Currently this has a FIXME.

Plumbing in WebFrameWidget
WebFrameWidgetImpl::didEnterFullScreen and
WebFrameWidgetImpl::didExitFullScreen are both empty with FIXMEs to implement
them for OOPIFs. Depending on whether browser->renderer fullscreen IPC targets frames vs.
widgets, they might need to forward the call to the subframe renderer’s
FullscreenController or be NOTREACHED().

Return correct fullscreen status for subframe RWHs in browser process
WebContentsImpl::IsFullscreenForCurrentTab currently only returns true for main
frame RenderWidgetHosts. It will probably need to work for subframe widgets as well (e.g.,
this is what gets used to populate ViewMsg_Resize params).

Exiting fullscreen
The exit flow changes for fullscreen will need to mirror the enter flow changes. I.e., IPCs will be
sent to all renderers on the ancestor chain of an element that’s exiting fullscreen. We will need
to make sure that this works for both renderer-initiated exit (e.g., via
document.exitFullscreen or by removing the fullscreened element from the DOM) and
browser-initiated exit (pressing ESC).

Currently, Fullscreen::fullyExitFullscreen() uses Document::topDocument()
and assumes the result is local; this will need to change.

blink::FullscreenController
FullscreenController assumes that the top frame is a LocalFrame in several places,
e.g., when saving and restoring scroll offset:
​
​ m_exitFullscreenScrollOffset = m_webViewImpl->mainFrame()->scrollOffset();

This probably will matter only in main frame renderers, so we will need to bail out in subframe
renderers.

FullscreenController is a page-level object which keeps track of the current fullscreened
element and fullscreened frame (and assumes it’s a LocalFrame). For example, this is used to
handle transitions to a different fullscreen element when fullscreen is already active. This will

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/web/FullscreenController.h&l=73&ct=xref_jump_to_def&cl=GROK&gsn=m_exitFullscreenScrollOffset
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/web/FullscreenController.h&l=69&ct=xref_jump_to_def&cl=GROK&gsn=m_webViewImpl
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/web/WebViewImpl.cpp&l=2833&ct=xref_jump_to_def&cl=GROK&gsn=mainFrame
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/public/web/WebFrame.h&l=182&ct=xref_jump_to_def&cl=GROK&gsn=scrollOffset

need to be adapted to work for renderers where the fullscreened element is in a descendant
cross-process iframe.

Incorrect background when fullscreening a cross-site <iframe>
Currently,

document.querySelector("iframe").webkitRequestFullscreen()

for a frame that’s rendered out of process will work mostly correctly, and the iframe’s body will
be correctly positioned and resized to fill the screen. However, in debug builds, with default
styles, the iframe’s background is incorrect (blue instead of white). In release builds, the old
page “screenshot” is still visible alongside the fullscreened page.

Post-fullscreen resizing
While in fullscreen mode, the visible area might be resized: for example, by closing gold bars
such as “default browser”, or by devtools side-by-side. The plumbing for this also needs to work
with OOPIFs.

Removing fullscreened element from DOM
Currently, Element::removedFrom checks for this and makes various OOPIF-unfriendly
calls, including
setContainsFullScreenElementOnAncestorsCrossingFrameBoundaries. We’ll
need to make this case work for OOPIF.

Making Flash fullscreen work with OOPIFs

There are two filed bugs:
Flash doesn’t animate inside OOPIFs: https://crbug.com/593520
Renderer crashes when Flash fullscreen is activated from OOPIF: https://crbug.com/593522

The main fullscreen-related issues are:

●​ RenderFrameImpl::CreatePepperFullscreenContainer crashes because it
tries to use main frame’s document URL, incorrectly assuming that the main frame is
local.

●​ Incorrect creator/opener routing ID is used when sending
ViewHostMsg_ShowFullscreenWidget and
ViewHostMsg_CreateFullscreenWidget. These pass in the subframe’s widget
routing ID from the renderer but are handled in RenderViewHostImpl. As a result,

https://bugs.chromium.org/p/chromium/issues/detail?id=593520
https://bugs.chromium.org/p/chromium/issues/detail?id=593522

RenderWidgetHelper::OnCreateFullscreenWidgetOnUI can’t resolve the RVH
from the passed in routing ID and aborts early.

●​ RenderViewHostImpl::OnShowFullscreenWidget aborts early if is_active_ is
false. Similarly to RenderViewHostImpl::OnShowWidget, this can be legitimately
called from a subframe for a swapped-out RVH, so this check is incorrect.

●​ WebContentsImpl tracks the fullscreen RenderWidgetHostView using a single routing id,
fullscreen_widget_routing_id_. Various other places resolve the current fullscreen
RenderWidgetHostView using
WebContentsImpl::GetFullscreenRenderWidgetHostView, which couples that
routing ID with the main frame’s process ID. For OOPIFs, this is incorrect and needs to
use the subframe’s process instead.

	Fullscreen with out-of-process iframes
	Overview
	The following aspects of fullscreen need to be refactored to work with OOPIFs:
	allowfullscreen
	Browser->renderer IPCs
	Layout for a fullscreened element with multiple frame widgets
	Visual viewport
	Plumbing in WebFrameWidget
	Return correct fullscreen status for subframe RWHs in browser process
	Exiting fullscreen
	blink::FullscreenController
	Incorrect background when fullscreening a cross-site <iframe>
	Post-fullscreen resizing
	Removing fullscreened element from DOM

