
GSoC Project Proposal 2019: Palette
Accessibility

Profile
Name: Anand H

Country: India

School and Degree: Amritapuri Vishwa Vidyapeetham

Gmail: anand.h1729@gmail.com

Phone Number: +91-9400994628

Github: https://github.com/AnandHemachandran

Telegram Nickname: anandhemachandran

Synopsis

Musescore is a powerful score-writing software which provides many musicians the
ability to create, play and print exquisite scores. The Palette of Musescore is a
quintessential tool which provides various elements for editing the scores.

The current palette packs in a lot of elements from all kinds of notations and
symbols. Due to the presence of a lot of elements in the palette, it is sometimes
challenging to get the required elements at the right time. Therefore a quick UI
revision of a palette is needed.

The main changes that I propose to bring to the palette are :

● Making a QTreeWidget to store the Palette Items.
● Implementing a feature to create Custom Shortcut for the Palette Items.
● Creating an Icon View for the Palette.

mailto:anand.h1729@gmail.com
https://github.com/AnandHemachandran

1

Benefits to Musescore

Musescore’s Palettes are not accessible to keyboard controls except via the palette
search box, also the palette seems to be crumpled with elements which create
problems to the users to access the desired elements quickly.

The new Palette is designed using a QTreeWidget and it can provide the Musescore
users to quickly access the elements by utilizing the ability of the tree widget to
display the palette item in branch and the palette element as the child of each
parent branch.

The new palette also provides the users to customize the palette view to different
ways

● Icon mode
● List Mode

Deliverables

Redesign the Palette

This will include the creation of two views in which, the list view uses the
QTreeView and icon view uses a custom delegate to show palette items in a
grid. The position of the Palette Items will also be changed according to the
width of the Palette Box.

Optional Extra:

Implementation of custom keyboard shortcuts for the Palette Items

Keyboard shortcuts can be implemented for each of the palette elements as
per the user's interest. This feature can be implemented using QMenu to
display the option to create a custom keyboard shortcut. The input is taken
from the user and then it is compared with the present shortcuts which are
already designated for different purposes; if it doesn’t match with the present
keyboard shortcut, then a shortcut to the palette is established.

2

Project Details
The current palette uses QDockWidget and QWidget to display different Palettes on
the Palette Box and the Palette.cpp file is used to show the Palette elements in each
of the Palette. The ideal implementation would make use of Qt's model-view classes,
and QAbstractItemView to create a Category-List View (i.e. a tree view with an icon
mode) where the number of columns is able to change dynamically as the user
needs. This implementation can be done using the two modules:

● QTreeView.
● QAbstractItemView.

User Interface:
The user interface consists of a Tree widget displaying all the Palette Items as its
branch and the palette elements as its leaves. The Palette Items can be viewed in
both Grid mode and also List mode.

These views can be implemented by using the following files which are located in
the directory MuseScore/mscore/

palette.cpp palette.h

menus.cpp menus.h

palettebox.cpp palettebox.h

The shift from icon mode to list mode can be achieved by using the grid-list
QPushButton which is situated at the top right corner of the palette box. The width
of the palette can be changed by using QGeometry and the icon will rearrange itself
along with the change in the grid width.

The palette elements are stored as leaves in each branch (Palette Item) in a
QTreeWidget. This can be done by utilizing the menu.cpp file which contains the
code for all the palette items.

3

When the palette item is clicked, the palette elements pop up along with its name,
which can also be changed with the help of grid-list icon situated in the top right
corner.

The ability to create new workspaces is also present in the new palette design. The
workspace can also be edited as per user’s need. The information regarding the
workspace is provided in a workspace.cpp file.

When the palette items are right-clicked a menu pops-up which can be implemented
using a QMenu Class widget. The menu contains options such as creating a Custom
Keyboard shortcut, re-arranging the elements and also the ability to change the
delete the elements.

Implementation:

1. List View:

First, a QDockWidget is added. The QDockWidget shall contain the QTreeView to
show the PaletteBox as a widget that can be docked in the Main Window.

At the top level, a QTreeView is added. This will give the hierarchical view to the
palette as well as manage the scrolling area. Each branch of the TreeView shall
contain the Palettes which when clicked pops up to show the different Palette Items
in a Grid Layout.

Each Listed Item of the (expanded) QTreeWidgetItem (Palette) will be a QListView or
a QListWidget. The icon view of each of the Palette Items can be set using
setViewMode(QListView::IconMode) on them. The listView is made using a custom
delegate which will handle the icon view and the model of the item which contains
the information about the palette item. The information of the palette items for each
palette is provided in the file menu.cpp.

The size of the icon in each of the palette can be customized to the user’s needs.
The Palette Items in each palette can be rearranged using the code
setResizeMode(QListView::Adjust), which dynamically arranges the List Item (palette
item in Icon View) of the QTreeWidget in a Grid layout with the provided width of the
tree view.

4

Custom Keyboard Shortcut Implementation

Each of the List Items (Palette) contains certain
options. The menu can be opened by right-clicking
the Palette. The options are created using the
QMenu. The new option included is called the
“Custom Shortcut” which helps you to assign a
keyboard Shortcut to the Palette Item. This is then
cross-checked with the shortcuts already assigned
for other purposes. This is done by utilizing the
shortcut.cpp file.

2. Icon View:

This view can be achieved using Qt’s Custom Delegate on QListWidget. The
ListWidget is shown as an icon as provided in the mockup using the code
setViewMode(QListView::IconMode).

5

Project Schedules

Week
No

Timeframe Plans

From To

May 6 May 26 Community Bonding.

1. May 27 June 2 Start working with the UI and make the
basic QTreeWidget.

2. June 3 June 9 Implement each palette element one by
one by creating a QListWidgetItem.

3. June 10 June 23 Work on the layout of the QTreeWidget
and implement the signal and slots for
the palette by making use of the
information provided in the menu.cpp
for each palette.

4. June 24 June 30 Phase 1 Evaluation.

5. July 1 July 7 Using Custom Delegates to add Icons to
the Palette Items

6. July 8 July 14 Add the ability to change the view, size
of the Palette Box and also the ability
to rearrange and dynamically allocate
the palette icons.

7. July 15 July 21 Add the menu option for each palette
Item using the QMenu Widget.
Add the feature to create a Custom
Shortcut for the Palette Item.

8. July 22 July 28 Phase 2 Evaluation.

9. July 29 August 4 Continue working on the Keyboard
Shortcut Implementation.

10. August 5 August 11 Make a final revision in the new UI.

11. August 12 August 19 Complete the documentation. Work on
the bugs, if any are present.

12. August 19 August 26 Final Evaluation.

6

Bio
I am Anand H, an undergraduate Computer Science student at Amrita Vishwa
Vidyapeetham. My keen interest in music and Open-Source Software are the two
major reason why I am contributing to this software. I have played keyboard in my
free time and also have attended Trinity College of music till fifth grade for my
keyboard lessons. The time I have spent to learn music has provided me with
substantial knowledge on notes and notations of a music sheet. I have used
Musescore to create and practice new scores, this provided me with the foundation
to work for this organization. I always enjoyed using this software since its powerful,
elegant and most importantly it is an Open Source Software. I am really excited to
contribute to this organization.

The reason why I selected Palette Accessibility as my project is that I have always
found the palette elements to be a bit challenging to acquire and an interesting
segment to develop on since it is vital for any artist to get the required notations in
the right time. I hope, my knowledge of Qt and C++ would be resourceful for the
organization. For the past 4 weeks, I have dedicated myself to get familiar with the
codebase and went through different documentation on Qt to get to understand as
many concepts as possible on QTreeWidgets, Delegate Class and Model/View
Programming and I am pretty sure I will be able to work on this project.

My work time would be around 40-45 hrs per week except for the time period during
the community bonding which is when my Semester exams will be conducted. Even
if I won’t get GSoC I will still continue to contribute to this software since this is my
ideal score-writing software.

Work Done till now:

Submitted PR:

● Update Play Panel
● fix #270765:Update Layout for Plugin-Manager
● fix #281810:Fix Label Truncation
● Update Timeline Tempo

Qt Works:

● https://github.com/AnandHemachandran/Qt-Projects
● https://github.com/AnandHemachandran/QT-Calculator

https://github.com/musescore/MuseScore/pull/4609
https://github.com/musescore/MuseScore/pull/4760
https://github.com/musescore/MuseScore/pull/4744
https://github.com/musescore/MuseScore/pull/4708
https://github.com/AnandHemachandran/Qt-Projects
https://github.com/AnandHemachandran/QT-Calculator

